You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
261 lines
9.5 KiB
261 lines
9.5 KiB
5 months ago
|
from functools import partial
|
||
|
from typing import Any, Callable, List, Optional
|
||
|
|
||
|
import torch
|
||
|
from torch import nn, Tensor
|
||
|
|
||
|
from ..ops.misc import Conv2dNormActivation
|
||
|
from ..transforms._presets import ImageClassification
|
||
|
from ..utils import _log_api_usage_once
|
||
|
from ._api import register_model, Weights, WeightsEnum
|
||
|
from ._meta import _IMAGENET_CATEGORIES
|
||
|
from ._utils import _make_divisible, _ovewrite_named_param, handle_legacy_interface
|
||
|
|
||
|
|
||
|
__all__ = ["MobileNetV2", "MobileNet_V2_Weights", "mobilenet_v2"]
|
||
|
|
||
|
|
||
|
# necessary for backwards compatibility
|
||
|
class InvertedResidual(nn.Module):
|
||
|
def __init__(
|
||
|
self, inp: int, oup: int, stride: int, expand_ratio: int, norm_layer: Optional[Callable[..., nn.Module]] = None
|
||
|
) -> None:
|
||
|
super().__init__()
|
||
|
self.stride = stride
|
||
|
if stride not in [1, 2]:
|
||
|
raise ValueError(f"stride should be 1 or 2 instead of {stride}")
|
||
|
|
||
|
if norm_layer is None:
|
||
|
norm_layer = nn.BatchNorm2d
|
||
|
|
||
|
hidden_dim = int(round(inp * expand_ratio))
|
||
|
self.use_res_connect = self.stride == 1 and inp == oup
|
||
|
|
||
|
layers: List[nn.Module] = []
|
||
|
if expand_ratio != 1:
|
||
|
# pw
|
||
|
layers.append(
|
||
|
Conv2dNormActivation(inp, hidden_dim, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6)
|
||
|
)
|
||
|
layers.extend(
|
||
|
[
|
||
|
# dw
|
||
|
Conv2dNormActivation(
|
||
|
hidden_dim,
|
||
|
hidden_dim,
|
||
|
stride=stride,
|
||
|
groups=hidden_dim,
|
||
|
norm_layer=norm_layer,
|
||
|
activation_layer=nn.ReLU6,
|
||
|
),
|
||
|
# pw-linear
|
||
|
nn.Conv2d(hidden_dim, oup, 1, 1, 0, bias=False),
|
||
|
norm_layer(oup),
|
||
|
]
|
||
|
)
|
||
|
self.conv = nn.Sequential(*layers)
|
||
|
self.out_channels = oup
|
||
|
self._is_cn = stride > 1
|
||
|
|
||
|
def forward(self, x: Tensor) -> Tensor:
|
||
|
if self.use_res_connect:
|
||
|
return x + self.conv(x)
|
||
|
else:
|
||
|
return self.conv(x)
|
||
|
|
||
|
|
||
|
class MobileNetV2(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
num_classes: int = 1000,
|
||
|
width_mult: float = 1.0,
|
||
|
inverted_residual_setting: Optional[List[List[int]]] = None,
|
||
|
round_nearest: int = 8,
|
||
|
block: Optional[Callable[..., nn.Module]] = None,
|
||
|
norm_layer: Optional[Callable[..., nn.Module]] = None,
|
||
|
dropout: float = 0.2,
|
||
|
) -> None:
|
||
|
"""
|
||
|
MobileNet V2 main class
|
||
|
|
||
|
Args:
|
||
|
num_classes (int): Number of classes
|
||
|
width_mult (float): Width multiplier - adjusts number of channels in each layer by this amount
|
||
|
inverted_residual_setting: Network structure
|
||
|
round_nearest (int): Round the number of channels in each layer to be a multiple of this number
|
||
|
Set to 1 to turn off rounding
|
||
|
block: Module specifying inverted residual building block for mobilenet
|
||
|
norm_layer: Module specifying the normalization layer to use
|
||
|
dropout (float): The droupout probability
|
||
|
|
||
|
"""
|
||
|
super().__init__()
|
||
|
_log_api_usage_once(self)
|
||
|
|
||
|
if block is None:
|
||
|
block = InvertedResidual
|
||
|
|
||
|
if norm_layer is None:
|
||
|
norm_layer = nn.BatchNorm2d
|
||
|
|
||
|
input_channel = 32
|
||
|
last_channel = 1280
|
||
|
|
||
|
if inverted_residual_setting is None:
|
||
|
inverted_residual_setting = [
|
||
|
# t, c, n, s
|
||
|
[1, 16, 1, 1],
|
||
|
[6, 24, 2, 2],
|
||
|
[6, 32, 3, 2],
|
||
|
[6, 64, 4, 2],
|
||
|
[6, 96, 3, 1],
|
||
|
[6, 160, 3, 2],
|
||
|
[6, 320, 1, 1],
|
||
|
]
|
||
|
|
||
|
# only check the first element, assuming user knows t,c,n,s are required
|
||
|
if len(inverted_residual_setting) == 0 or len(inverted_residual_setting[0]) != 4:
|
||
|
raise ValueError(
|
||
|
f"inverted_residual_setting should be non-empty or a 4-element list, got {inverted_residual_setting}"
|
||
|
)
|
||
|
|
||
|
# building first layer
|
||
|
input_channel = _make_divisible(input_channel * width_mult, round_nearest)
|
||
|
self.last_channel = _make_divisible(last_channel * max(1.0, width_mult), round_nearest)
|
||
|
features: List[nn.Module] = [
|
||
|
Conv2dNormActivation(3, input_channel, stride=2, norm_layer=norm_layer, activation_layer=nn.ReLU6)
|
||
|
]
|
||
|
# building inverted residual blocks
|
||
|
for t, c, n, s in inverted_residual_setting:
|
||
|
output_channel = _make_divisible(c * width_mult, round_nearest)
|
||
|
for i in range(n):
|
||
|
stride = s if i == 0 else 1
|
||
|
features.append(block(input_channel, output_channel, stride, expand_ratio=t, norm_layer=norm_layer))
|
||
|
input_channel = output_channel
|
||
|
# building last several layers
|
||
|
features.append(
|
||
|
Conv2dNormActivation(
|
||
|
input_channel, self.last_channel, kernel_size=1, norm_layer=norm_layer, activation_layer=nn.ReLU6
|
||
|
)
|
||
|
)
|
||
|
# make it nn.Sequential
|
||
|
self.features = nn.Sequential(*features)
|
||
|
|
||
|
# building classifier
|
||
|
self.classifier = nn.Sequential(
|
||
|
nn.Dropout(p=dropout),
|
||
|
nn.Linear(self.last_channel, num_classes),
|
||
|
)
|
||
|
|
||
|
# weight initialization
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, nn.Conv2d):
|
||
|
nn.init.kaiming_normal_(m.weight, mode="fan_out")
|
||
|
if m.bias is not None:
|
||
|
nn.init.zeros_(m.bias)
|
||
|
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
|
||
|
nn.init.ones_(m.weight)
|
||
|
nn.init.zeros_(m.bias)
|
||
|
elif isinstance(m, nn.Linear):
|
||
|
nn.init.normal_(m.weight, 0, 0.01)
|
||
|
nn.init.zeros_(m.bias)
|
||
|
|
||
|
def _forward_impl(self, x: Tensor) -> Tensor:
|
||
|
# This exists since TorchScript doesn't support inheritance, so the superclass method
|
||
|
# (this one) needs to have a name other than `forward` that can be accessed in a subclass
|
||
|
x = self.features(x)
|
||
|
# Cannot use "squeeze" as batch-size can be 1
|
||
|
x = nn.functional.adaptive_avg_pool2d(x, (1, 1))
|
||
|
x = torch.flatten(x, 1)
|
||
|
x = self.classifier(x)
|
||
|
return x
|
||
|
|
||
|
def forward(self, x: Tensor) -> Tensor:
|
||
|
return self._forward_impl(x)
|
||
|
|
||
|
|
||
|
_COMMON_META = {
|
||
|
"num_params": 3504872,
|
||
|
"min_size": (1, 1),
|
||
|
"categories": _IMAGENET_CATEGORIES,
|
||
|
}
|
||
|
|
||
|
|
||
|
class MobileNet_V2_Weights(WeightsEnum):
|
||
|
IMAGENET1K_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/mobilenet_v2-b0353104.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/classification#mobilenetv2",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 71.878,
|
||
|
"acc@5": 90.286,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 0.301,
|
||
|
"_file_size": 13.555,
|
||
|
"_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
|
||
|
},
|
||
|
)
|
||
|
IMAGENET1K_V2 = Weights(
|
||
|
url="https://download.pytorch.org/models/mobilenet_v2-7ebf99e0.pth",
|
||
|
transforms=partial(ImageClassification, crop_size=224, resize_size=232),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-reg-tuning",
|
||
|
"_metrics": {
|
||
|
"ImageNet-1K": {
|
||
|
"acc@1": 72.154,
|
||
|
"acc@5": 90.822,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 0.301,
|
||
|
"_file_size": 13.598,
|
||
|
"_docs": """
|
||
|
These weights improve upon the results of the original paper by using a modified version of TorchVision's
|
||
|
`new training recipe
|
||
|
<https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
|
||
|
""",
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = IMAGENET1K_V2
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", MobileNet_V2_Weights.IMAGENET1K_V1))
|
||
|
def mobilenet_v2(
|
||
|
*, weights: Optional[MobileNet_V2_Weights] = None, progress: bool = True, **kwargs: Any
|
||
|
) -> MobileNetV2:
|
||
|
"""MobileNetV2 architecture from the `MobileNetV2: Inverted Residuals and Linear
|
||
|
Bottlenecks <https://arxiv.org/abs/1801.04381>`_ paper.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.MobileNet_V2_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.MobileNet_V2_Weights` below for
|
||
|
more details, and possible values. By default, no pre-trained
|
||
|
weights are used.
|
||
|
progress (bool, optional): If True, displays a progress bar of the
|
||
|
download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.mobilenetv2.MobileNetV2``
|
||
|
base class. Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv2.py>`_
|
||
|
for more details about this class.
|
||
|
|
||
|
.. autoclass:: torchvision.models.MobileNet_V2_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = MobileNet_V2_Weights.verify(weights)
|
||
|
|
||
|
if weights is not None:
|
||
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
|
||
|
|
||
|
model = MobileNetV2(**kwargs)
|
||
|
|
||
|
if weights is not None:
|
||
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
|
||
|
|
||
|
return model
|