You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
633 lines
18 KiB
633 lines
18 KiB
5 months ago
|
"""Module for querying SymPy objects about assumptions."""
|
||
|
|
||
|
from sympy.assumptions.assume import (global_assumptions, Predicate,
|
||
|
AppliedPredicate)
|
||
|
from sympy.assumptions.cnf import CNF, EncodedCNF, Literal
|
||
|
from sympy.core import sympify
|
||
|
from sympy.core.kind import BooleanKind
|
||
|
from sympy.core.relational import Eq, Ne, Gt, Lt, Ge, Le
|
||
|
from sympy.logic.inference import satisfiable
|
||
|
from sympy.utilities.decorator import memoize_property
|
||
|
from sympy.utilities.exceptions import (sympy_deprecation_warning,
|
||
|
SymPyDeprecationWarning,
|
||
|
ignore_warnings)
|
||
|
|
||
|
|
||
|
# Memoization is necessary for the properties of AssumptionKeys to
|
||
|
# ensure that only one object of Predicate objects are created.
|
||
|
# This is because assumption handlers are registered on those objects.
|
||
|
|
||
|
|
||
|
class AssumptionKeys:
|
||
|
"""
|
||
|
This class contains all the supported keys by ``ask``.
|
||
|
It should be accessed via the instance ``sympy.Q``.
|
||
|
|
||
|
"""
|
||
|
|
||
|
# DO NOT add methods or properties other than predicate keys.
|
||
|
# SAT solver checks the properties of Q and use them to compute the
|
||
|
# fact system. Non-predicate attributes will break this.
|
||
|
|
||
|
@memoize_property
|
||
|
def hermitian(self):
|
||
|
from .handlers.sets import HermitianPredicate
|
||
|
return HermitianPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def antihermitian(self):
|
||
|
from .handlers.sets import AntihermitianPredicate
|
||
|
return AntihermitianPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def real(self):
|
||
|
from .handlers.sets import RealPredicate
|
||
|
return RealPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def extended_real(self):
|
||
|
from .handlers.sets import ExtendedRealPredicate
|
||
|
return ExtendedRealPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def imaginary(self):
|
||
|
from .handlers.sets import ImaginaryPredicate
|
||
|
return ImaginaryPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def complex(self):
|
||
|
from .handlers.sets import ComplexPredicate
|
||
|
return ComplexPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def algebraic(self):
|
||
|
from .handlers.sets import AlgebraicPredicate
|
||
|
return AlgebraicPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def transcendental(self):
|
||
|
from .predicates.sets import TranscendentalPredicate
|
||
|
return TranscendentalPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def integer(self):
|
||
|
from .handlers.sets import IntegerPredicate
|
||
|
return IntegerPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def rational(self):
|
||
|
from .handlers.sets import RationalPredicate
|
||
|
return RationalPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def irrational(self):
|
||
|
from .handlers.sets import IrrationalPredicate
|
||
|
return IrrationalPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def finite(self):
|
||
|
from .handlers.calculus import FinitePredicate
|
||
|
return FinitePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def infinite(self):
|
||
|
from .handlers.calculus import InfinitePredicate
|
||
|
return InfinitePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def positive_infinite(self):
|
||
|
from .handlers.calculus import PositiveInfinitePredicate
|
||
|
return PositiveInfinitePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def negative_infinite(self):
|
||
|
from .handlers.calculus import NegativeInfinitePredicate
|
||
|
return NegativeInfinitePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def positive(self):
|
||
|
from .handlers.order import PositivePredicate
|
||
|
return PositivePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def negative(self):
|
||
|
from .handlers.order import NegativePredicate
|
||
|
return NegativePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def zero(self):
|
||
|
from .handlers.order import ZeroPredicate
|
||
|
return ZeroPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def extended_positive(self):
|
||
|
from .handlers.order import ExtendedPositivePredicate
|
||
|
return ExtendedPositivePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def extended_negative(self):
|
||
|
from .handlers.order import ExtendedNegativePredicate
|
||
|
return ExtendedNegativePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def nonzero(self):
|
||
|
from .handlers.order import NonZeroPredicate
|
||
|
return NonZeroPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def nonpositive(self):
|
||
|
from .handlers.order import NonPositivePredicate
|
||
|
return NonPositivePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def nonnegative(self):
|
||
|
from .handlers.order import NonNegativePredicate
|
||
|
return NonNegativePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def extended_nonzero(self):
|
||
|
from .handlers.order import ExtendedNonZeroPredicate
|
||
|
return ExtendedNonZeroPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def extended_nonpositive(self):
|
||
|
from .handlers.order import ExtendedNonPositivePredicate
|
||
|
return ExtendedNonPositivePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def extended_nonnegative(self):
|
||
|
from .handlers.order import ExtendedNonNegativePredicate
|
||
|
return ExtendedNonNegativePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def even(self):
|
||
|
from .handlers.ntheory import EvenPredicate
|
||
|
return EvenPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def odd(self):
|
||
|
from .handlers.ntheory import OddPredicate
|
||
|
return OddPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def prime(self):
|
||
|
from .handlers.ntheory import PrimePredicate
|
||
|
return PrimePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def composite(self):
|
||
|
from .handlers.ntheory import CompositePredicate
|
||
|
return CompositePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def commutative(self):
|
||
|
from .handlers.common import CommutativePredicate
|
||
|
return CommutativePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def is_true(self):
|
||
|
from .handlers.common import IsTruePredicate
|
||
|
return IsTruePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def symmetric(self):
|
||
|
from .handlers.matrices import SymmetricPredicate
|
||
|
return SymmetricPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def invertible(self):
|
||
|
from .handlers.matrices import InvertiblePredicate
|
||
|
return InvertiblePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def orthogonal(self):
|
||
|
from .handlers.matrices import OrthogonalPredicate
|
||
|
return OrthogonalPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def unitary(self):
|
||
|
from .handlers.matrices import UnitaryPredicate
|
||
|
return UnitaryPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def positive_definite(self):
|
||
|
from .handlers.matrices import PositiveDefinitePredicate
|
||
|
return PositiveDefinitePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def upper_triangular(self):
|
||
|
from .handlers.matrices import UpperTriangularPredicate
|
||
|
return UpperTriangularPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def lower_triangular(self):
|
||
|
from .handlers.matrices import LowerTriangularPredicate
|
||
|
return LowerTriangularPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def diagonal(self):
|
||
|
from .handlers.matrices import DiagonalPredicate
|
||
|
return DiagonalPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def fullrank(self):
|
||
|
from .handlers.matrices import FullRankPredicate
|
||
|
return FullRankPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def square(self):
|
||
|
from .handlers.matrices import SquarePredicate
|
||
|
return SquarePredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def integer_elements(self):
|
||
|
from .handlers.matrices import IntegerElementsPredicate
|
||
|
return IntegerElementsPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def real_elements(self):
|
||
|
from .handlers.matrices import RealElementsPredicate
|
||
|
return RealElementsPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def complex_elements(self):
|
||
|
from .handlers.matrices import ComplexElementsPredicate
|
||
|
return ComplexElementsPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def singular(self):
|
||
|
from .predicates.matrices import SingularPredicate
|
||
|
return SingularPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def normal(self):
|
||
|
from .predicates.matrices import NormalPredicate
|
||
|
return NormalPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def triangular(self):
|
||
|
from .predicates.matrices import TriangularPredicate
|
||
|
return TriangularPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def unit_triangular(self):
|
||
|
from .predicates.matrices import UnitTriangularPredicate
|
||
|
return UnitTriangularPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def eq(self):
|
||
|
from .relation.equality import EqualityPredicate
|
||
|
return EqualityPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def ne(self):
|
||
|
from .relation.equality import UnequalityPredicate
|
||
|
return UnequalityPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def gt(self):
|
||
|
from .relation.equality import StrictGreaterThanPredicate
|
||
|
return StrictGreaterThanPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def ge(self):
|
||
|
from .relation.equality import GreaterThanPredicate
|
||
|
return GreaterThanPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def lt(self):
|
||
|
from .relation.equality import StrictLessThanPredicate
|
||
|
return StrictLessThanPredicate()
|
||
|
|
||
|
@memoize_property
|
||
|
def le(self):
|
||
|
from .relation.equality import LessThanPredicate
|
||
|
return LessThanPredicate()
|
||
|
|
||
|
|
||
|
Q = AssumptionKeys()
|
||
|
|
||
|
def _extract_all_facts(assump, exprs):
|
||
|
"""
|
||
|
Extract all relevant assumptions from *assump* with respect to given *exprs*.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
assump : sympy.assumptions.cnf.CNF
|
||
|
|
||
|
exprs : tuple of expressions
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
sympy.assumptions.cnf.CNF
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Q
|
||
|
>>> from sympy.assumptions.cnf import CNF
|
||
|
>>> from sympy.assumptions.ask import _extract_all_facts
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> assump = CNF.from_prop(Q.positive(x) & Q.integer(y))
|
||
|
>>> exprs = (x,)
|
||
|
>>> cnf = _extract_all_facts(assump, exprs)
|
||
|
>>> cnf.clauses
|
||
|
{frozenset({Literal(Q.positive, False)})}
|
||
|
|
||
|
"""
|
||
|
facts = set()
|
||
|
|
||
|
for clause in assump.clauses:
|
||
|
args = []
|
||
|
for literal in clause:
|
||
|
if isinstance(literal.lit, AppliedPredicate) and len(literal.lit.arguments) == 1:
|
||
|
if literal.lit.arg in exprs:
|
||
|
# Add literal if it has matching in it
|
||
|
args.append(Literal(literal.lit.function, literal.is_Not))
|
||
|
else:
|
||
|
# If any of the literals doesn't have matching expr don't add the whole clause.
|
||
|
break
|
||
|
else:
|
||
|
if args:
|
||
|
facts.add(frozenset(args))
|
||
|
return CNF(facts)
|
||
|
|
||
|
|
||
|
def ask(proposition, assumptions=True, context=global_assumptions):
|
||
|
"""
|
||
|
Function to evaluate the proposition with assumptions.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This function evaluates the proposition to ``True`` or ``False`` if
|
||
|
the truth value can be determined. If not, it returns ``None``.
|
||
|
|
||
|
It should be discerned from :func:`~.refine()` which, when applied to a
|
||
|
proposition, simplifies the argument to symbolic ``Boolean`` instead of
|
||
|
Python built-in ``True``, ``False`` or ``None``.
|
||
|
|
||
|
**Syntax**
|
||
|
|
||
|
* ask(proposition)
|
||
|
Evaluate the *proposition* in global assumption context.
|
||
|
|
||
|
* ask(proposition, assumptions)
|
||
|
Evaluate the *proposition* with respect to *assumptions* in
|
||
|
global assumption context.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
proposition : Boolean
|
||
|
Proposition which will be evaluated to boolean value. If this is
|
||
|
not ``AppliedPredicate``, it will be wrapped by ``Q.is_true``.
|
||
|
|
||
|
assumptions : Boolean, optional
|
||
|
Local assumptions to evaluate the *proposition*.
|
||
|
|
||
|
context : AssumptionsContext, optional
|
||
|
Default assumptions to evaluate the *proposition*. By default,
|
||
|
this is ``sympy.assumptions.global_assumptions`` variable.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
``True``, ``False``, or ``None``
|
||
|
|
||
|
Raises
|
||
|
======
|
||
|
|
||
|
TypeError : *proposition* or *assumptions* is not valid logical expression.
|
||
|
|
||
|
ValueError : assumptions are inconsistent.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import ask, Q, pi
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> ask(Q.rational(pi))
|
||
|
False
|
||
|
>>> ask(Q.even(x*y), Q.even(x) & Q.integer(y))
|
||
|
True
|
||
|
>>> ask(Q.prime(4*x), Q.integer(x))
|
||
|
False
|
||
|
|
||
|
If the truth value cannot be determined, ``None`` will be returned.
|
||
|
|
||
|
>>> print(ask(Q.odd(3*x))) # cannot determine unless we know x
|
||
|
None
|
||
|
|
||
|
``ValueError`` is raised if assumptions are inconsistent.
|
||
|
|
||
|
>>> ask(Q.integer(x), Q.even(x) & Q.odd(x))
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
ValueError: inconsistent assumptions Q.even(x) & Q.odd(x)
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Relations in assumptions are not implemented (yet), so the following
|
||
|
will not give a meaningful result.
|
||
|
|
||
|
>>> ask(Q.positive(x), x > 0)
|
||
|
|
||
|
It is however a work in progress.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.assumptions.refine.refine : Simplification using assumptions.
|
||
|
Proposition is not reduced to ``None`` if the truth value cannot
|
||
|
be determined.
|
||
|
"""
|
||
|
from sympy.assumptions.satask import satask
|
||
|
|
||
|
proposition = sympify(proposition)
|
||
|
assumptions = sympify(assumptions)
|
||
|
|
||
|
if isinstance(proposition, Predicate) or proposition.kind is not BooleanKind:
|
||
|
raise TypeError("proposition must be a valid logical expression")
|
||
|
|
||
|
if isinstance(assumptions, Predicate) or assumptions.kind is not BooleanKind:
|
||
|
raise TypeError("assumptions must be a valid logical expression")
|
||
|
|
||
|
binrelpreds = {Eq: Q.eq, Ne: Q.ne, Gt: Q.gt, Lt: Q.lt, Ge: Q.ge, Le: Q.le}
|
||
|
if isinstance(proposition, AppliedPredicate):
|
||
|
key, args = proposition.function, proposition.arguments
|
||
|
elif proposition.func in binrelpreds:
|
||
|
key, args = binrelpreds[type(proposition)], proposition.args
|
||
|
else:
|
||
|
key, args = Q.is_true, (proposition,)
|
||
|
|
||
|
# convert local and global assumptions to CNF
|
||
|
assump_cnf = CNF.from_prop(assumptions)
|
||
|
assump_cnf.extend(context)
|
||
|
|
||
|
# extract the relevant facts from assumptions with respect to args
|
||
|
local_facts = _extract_all_facts(assump_cnf, args)
|
||
|
|
||
|
# convert default facts and assumed facts to encoded CNF
|
||
|
known_facts_cnf = get_all_known_facts()
|
||
|
enc_cnf = EncodedCNF()
|
||
|
enc_cnf.from_cnf(CNF(known_facts_cnf))
|
||
|
enc_cnf.add_from_cnf(local_facts)
|
||
|
|
||
|
# check the satisfiability of given assumptions
|
||
|
if local_facts.clauses and satisfiable(enc_cnf) is False:
|
||
|
raise ValueError("inconsistent assumptions %s" % assumptions)
|
||
|
|
||
|
# quick computation for single fact
|
||
|
res = _ask_single_fact(key, local_facts)
|
||
|
if res is not None:
|
||
|
return res
|
||
|
|
||
|
# direct resolution method, no logic
|
||
|
res = key(*args)._eval_ask(assumptions)
|
||
|
if res is not None:
|
||
|
return bool(res)
|
||
|
|
||
|
# using satask (still costly)
|
||
|
res = satask(proposition, assumptions=assumptions, context=context)
|
||
|
return res
|
||
|
|
||
|
|
||
|
def _ask_single_fact(key, local_facts):
|
||
|
"""
|
||
|
Compute the truth value of single predicate using assumptions.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
key : sympy.assumptions.assume.Predicate
|
||
|
Proposition predicate.
|
||
|
|
||
|
local_facts : sympy.assumptions.cnf.CNF
|
||
|
Local assumption in CNF form.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
``True``, ``False`` or ``None``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Q
|
||
|
>>> from sympy.assumptions.cnf import CNF
|
||
|
>>> from sympy.assumptions.ask import _ask_single_fact
|
||
|
|
||
|
If prerequisite of proposition is rejected by the assumption,
|
||
|
return ``False``.
|
||
|
|
||
|
>>> key, assump = Q.zero, ~Q.zero
|
||
|
>>> local_facts = CNF.from_prop(assump)
|
||
|
>>> _ask_single_fact(key, local_facts)
|
||
|
False
|
||
|
>>> key, assump = Q.zero, ~Q.even
|
||
|
>>> local_facts = CNF.from_prop(assump)
|
||
|
>>> _ask_single_fact(key, local_facts)
|
||
|
False
|
||
|
|
||
|
If assumption implies the proposition, return ``True``.
|
||
|
|
||
|
>>> key, assump = Q.even, Q.zero
|
||
|
>>> local_facts = CNF.from_prop(assump)
|
||
|
>>> _ask_single_fact(key, local_facts)
|
||
|
True
|
||
|
|
||
|
If proposition rejects the assumption, return ``False``.
|
||
|
|
||
|
>>> key, assump = Q.even, Q.odd
|
||
|
>>> local_facts = CNF.from_prop(assump)
|
||
|
>>> _ask_single_fact(key, local_facts)
|
||
|
False
|
||
|
"""
|
||
|
if local_facts.clauses:
|
||
|
|
||
|
known_facts_dict = get_known_facts_dict()
|
||
|
|
||
|
if len(local_facts.clauses) == 1:
|
||
|
cl, = local_facts.clauses
|
||
|
if len(cl) == 1:
|
||
|
f, = cl
|
||
|
prop_facts = known_facts_dict.get(key, None)
|
||
|
prop_req = prop_facts[0] if prop_facts is not None else set()
|
||
|
if f.is_Not and f.arg in prop_req:
|
||
|
# the prerequisite of proposition is rejected
|
||
|
return False
|
||
|
|
||
|
for clause in local_facts.clauses:
|
||
|
if len(clause) == 1:
|
||
|
f, = clause
|
||
|
prop_facts = known_facts_dict.get(f.arg, None) if not f.is_Not else None
|
||
|
if prop_facts is None:
|
||
|
continue
|
||
|
|
||
|
prop_req, prop_rej = prop_facts
|
||
|
if key in prop_req:
|
||
|
# assumption implies the proposition
|
||
|
return True
|
||
|
elif key in prop_rej:
|
||
|
# proposition rejects the assumption
|
||
|
return False
|
||
|
|
||
|
return None
|
||
|
|
||
|
|
||
|
def register_handler(key, handler):
|
||
|
"""
|
||
|
Register a handler in the ask system. key must be a string and handler a
|
||
|
class inheriting from AskHandler.
|
||
|
|
||
|
.. deprecated:: 1.8.
|
||
|
Use multipledispatch handler instead. See :obj:`~.Predicate`.
|
||
|
|
||
|
"""
|
||
|
sympy_deprecation_warning(
|
||
|
"""
|
||
|
The AskHandler system is deprecated. The register_handler() function
|
||
|
should be replaced with the multipledispatch handler of Predicate.
|
||
|
""",
|
||
|
deprecated_since_version="1.8",
|
||
|
active_deprecations_target='deprecated-askhandler',
|
||
|
)
|
||
|
if isinstance(key, Predicate):
|
||
|
key = key.name.name
|
||
|
Qkey = getattr(Q, key, None)
|
||
|
if Qkey is not None:
|
||
|
Qkey.add_handler(handler)
|
||
|
else:
|
||
|
setattr(Q, key, Predicate(key, handlers=[handler]))
|
||
|
|
||
|
|
||
|
def remove_handler(key, handler):
|
||
|
"""
|
||
|
Removes a handler from the ask system.
|
||
|
|
||
|
.. deprecated:: 1.8.
|
||
|
Use multipledispatch handler instead. See :obj:`~.Predicate`.
|
||
|
|
||
|
"""
|
||
|
sympy_deprecation_warning(
|
||
|
"""
|
||
|
The AskHandler system is deprecated. The remove_handler() function
|
||
|
should be replaced with the multipledispatch handler of Predicate.
|
||
|
""",
|
||
|
deprecated_since_version="1.8",
|
||
|
active_deprecations_target='deprecated-askhandler',
|
||
|
)
|
||
|
if isinstance(key, Predicate):
|
||
|
key = key.name.name
|
||
|
# Don't show the same warning again recursively
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
getattr(Q, key).remove_handler(handler)
|
||
|
|
||
|
|
||
|
from sympy.assumptions.ask_generated import (get_all_known_facts,
|
||
|
get_known_facts_dict)
|