You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
772 lines
26 KiB
772 lines
26 KiB
5 months ago
|
from __future__ import annotations
|
||
|
|
||
|
from itertools import permutations
|
||
|
from functools import reduce
|
||
|
|
||
|
from sympy.core.add import Add
|
||
|
from sympy.core.basic import Basic
|
||
|
from sympy.core.mul import Mul
|
||
|
from sympy.core.symbol import Wild, Dummy, Symbol
|
||
|
from sympy.core.basic import sympify
|
||
|
from sympy.core.numbers import Rational, pi, I
|
||
|
from sympy.core.relational import Eq, Ne
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.sorting import ordered
|
||
|
from sympy.core.traversal import iterfreeargs
|
||
|
|
||
|
from sympy.functions import exp, sin, cos, tan, cot, asin, atan
|
||
|
from sympy.functions import log, sinh, cosh, tanh, coth, asinh
|
||
|
from sympy.functions import sqrt, erf, erfi, li, Ei
|
||
|
from sympy.functions import besselj, bessely, besseli, besselk
|
||
|
from sympy.functions import hankel1, hankel2, jn, yn
|
||
|
from sympy.functions.elementary.complexes import Abs, re, im, sign, arg
|
||
|
from sympy.functions.elementary.exponential import LambertW
|
||
|
from sympy.functions.elementary.integers import floor, ceiling
|
||
|
from sympy.functions.elementary.piecewise import Piecewise
|
||
|
from sympy.functions.special.delta_functions import Heaviside, DiracDelta
|
||
|
|
||
|
from sympy.simplify.radsimp import collect
|
||
|
|
||
|
from sympy.logic.boolalg import And, Or
|
||
|
from sympy.utilities.iterables import uniq
|
||
|
|
||
|
from sympy.polys import quo, gcd, lcm, factor_list, cancel, PolynomialError
|
||
|
from sympy.polys.monomials import itermonomials
|
||
|
from sympy.polys.polyroots import root_factors
|
||
|
|
||
|
from sympy.polys.rings import PolyRing
|
||
|
from sympy.polys.solvers import solve_lin_sys
|
||
|
from sympy.polys.constructor import construct_domain
|
||
|
|
||
|
from sympy.integrals.integrals import integrate
|
||
|
|
||
|
|
||
|
def components(f, x):
|
||
|
"""
|
||
|
Returns a set of all functional components of the given expression
|
||
|
which includes symbols, function applications and compositions and
|
||
|
non-integer powers. Fractional powers are collected with
|
||
|
minimal, positive exponents.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import cos, sin
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.integrals.heurisch import components
|
||
|
|
||
|
>>> components(sin(x)*cos(x)**2, x)
|
||
|
{x, sin(x), cos(x)}
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
heurisch
|
||
|
"""
|
||
|
result = set()
|
||
|
|
||
|
if f.has_free(x):
|
||
|
if f.is_symbol and f.is_commutative:
|
||
|
result.add(f)
|
||
|
elif f.is_Function or f.is_Derivative:
|
||
|
for g in f.args:
|
||
|
result |= components(g, x)
|
||
|
|
||
|
result.add(f)
|
||
|
elif f.is_Pow:
|
||
|
result |= components(f.base, x)
|
||
|
|
||
|
if not f.exp.is_Integer:
|
||
|
if f.exp.is_Rational:
|
||
|
result.add(f.base**Rational(1, f.exp.q))
|
||
|
else:
|
||
|
result |= components(f.exp, x) | {f}
|
||
|
else:
|
||
|
for g in f.args:
|
||
|
result |= components(g, x)
|
||
|
|
||
|
return result
|
||
|
|
||
|
# name -> [] of symbols
|
||
|
_symbols_cache: dict[str, list[Dummy]] = {}
|
||
|
|
||
|
|
||
|
# NB @cacheit is not convenient here
|
||
|
def _symbols(name, n):
|
||
|
"""get vector of symbols local to this module"""
|
||
|
try:
|
||
|
lsyms = _symbols_cache[name]
|
||
|
except KeyError:
|
||
|
lsyms = []
|
||
|
_symbols_cache[name] = lsyms
|
||
|
|
||
|
while len(lsyms) < n:
|
||
|
lsyms.append( Dummy('%s%i' % (name, len(lsyms))) )
|
||
|
|
||
|
return lsyms[:n]
|
||
|
|
||
|
|
||
|
def heurisch_wrapper(f, x, rewrite=False, hints=None, mappings=None, retries=3,
|
||
|
degree_offset=0, unnecessary_permutations=None,
|
||
|
_try_heurisch=None):
|
||
|
"""
|
||
|
A wrapper around the heurisch integration algorithm.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This method takes the result from heurisch and checks for poles in the
|
||
|
denominator. For each of these poles, the integral is reevaluated, and
|
||
|
the final integration result is given in terms of a Piecewise.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import cos, symbols
|
||
|
>>> from sympy.integrals.heurisch import heurisch, heurisch_wrapper
|
||
|
>>> n, x = symbols('n x')
|
||
|
>>> heurisch(cos(n*x), x)
|
||
|
sin(n*x)/n
|
||
|
>>> heurisch_wrapper(cos(n*x), x)
|
||
|
Piecewise((sin(n*x)/n, Ne(n, 0)), (x, True))
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
heurisch
|
||
|
"""
|
||
|
from sympy.solvers.solvers import solve, denoms
|
||
|
f = sympify(f)
|
||
|
if not f.has_free(x):
|
||
|
return f*x
|
||
|
|
||
|
res = heurisch(f, x, rewrite, hints, mappings, retries, degree_offset,
|
||
|
unnecessary_permutations, _try_heurisch)
|
||
|
if not isinstance(res, Basic):
|
||
|
return res
|
||
|
|
||
|
# We consider each denominator in the expression, and try to find
|
||
|
# cases where one or more symbolic denominator might be zero. The
|
||
|
# conditions for these cases are stored in the list slns.
|
||
|
#
|
||
|
# Since denoms returns a set we use ordered. This is important because the
|
||
|
# ordering of slns determines the order of the resulting Piecewise so we
|
||
|
# need a deterministic order here to make the output deterministic.
|
||
|
slns = []
|
||
|
for d in ordered(denoms(res)):
|
||
|
try:
|
||
|
slns += solve([d], dict=True, exclude=(x,))
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
if not slns:
|
||
|
return res
|
||
|
slns = list(uniq(slns))
|
||
|
# Remove the solutions corresponding to poles in the original expression.
|
||
|
slns0 = []
|
||
|
for d in denoms(f):
|
||
|
try:
|
||
|
slns0 += solve([d], dict=True, exclude=(x,))
|
||
|
except NotImplementedError:
|
||
|
pass
|
||
|
slns = [s for s in slns if s not in slns0]
|
||
|
if not slns:
|
||
|
return res
|
||
|
if len(slns) > 1:
|
||
|
eqs = []
|
||
|
for sub_dict in slns:
|
||
|
eqs.extend([Eq(key, value) for key, value in sub_dict.items()])
|
||
|
slns = solve(eqs, dict=True, exclude=(x,)) + slns
|
||
|
# For each case listed in the list slns, we reevaluate the integral.
|
||
|
pairs = []
|
||
|
for sub_dict in slns:
|
||
|
expr = heurisch(f.subs(sub_dict), x, rewrite, hints, mappings, retries,
|
||
|
degree_offset, unnecessary_permutations,
|
||
|
_try_heurisch)
|
||
|
cond = And(*[Eq(key, value) for key, value in sub_dict.items()])
|
||
|
generic = Or(*[Ne(key, value) for key, value in sub_dict.items()])
|
||
|
if expr is None:
|
||
|
expr = integrate(f.subs(sub_dict),x)
|
||
|
pairs.append((expr, cond))
|
||
|
# If there is one condition, put the generic case first. Otherwise,
|
||
|
# doing so may lead to longer Piecewise formulas
|
||
|
if len(pairs) == 1:
|
||
|
pairs = [(heurisch(f, x, rewrite, hints, mappings, retries,
|
||
|
degree_offset, unnecessary_permutations,
|
||
|
_try_heurisch),
|
||
|
generic),
|
||
|
(pairs[0][0], True)]
|
||
|
else:
|
||
|
pairs.append((heurisch(f, x, rewrite, hints, mappings, retries,
|
||
|
degree_offset, unnecessary_permutations,
|
||
|
_try_heurisch),
|
||
|
True))
|
||
|
return Piecewise(*pairs)
|
||
|
|
||
|
class BesselTable:
|
||
|
"""
|
||
|
Derivatives of Bessel functions of orders n and n-1
|
||
|
in terms of each other.
|
||
|
|
||
|
See the docstring of DiffCache.
|
||
|
"""
|
||
|
|
||
|
def __init__(self):
|
||
|
self.table = {}
|
||
|
self.n = Dummy('n')
|
||
|
self.z = Dummy('z')
|
||
|
self._create_table()
|
||
|
|
||
|
def _create_table(t):
|
||
|
table, n, z = t.table, t.n, t.z
|
||
|
for f in (besselj, bessely, hankel1, hankel2):
|
||
|
table[f] = (f(n-1, z) - n*f(n, z)/z,
|
||
|
(n-1)*f(n-1, z)/z - f(n, z))
|
||
|
|
||
|
f = besseli
|
||
|
table[f] = (f(n-1, z) - n*f(n, z)/z,
|
||
|
(n-1)*f(n-1, z)/z + f(n, z))
|
||
|
f = besselk
|
||
|
table[f] = (-f(n-1, z) - n*f(n, z)/z,
|
||
|
(n-1)*f(n-1, z)/z - f(n, z))
|
||
|
|
||
|
for f in (jn, yn):
|
||
|
table[f] = (f(n-1, z) - (n+1)*f(n, z)/z,
|
||
|
(n-1)*f(n-1, z)/z - f(n, z))
|
||
|
|
||
|
def diffs(t, f, n, z):
|
||
|
if f in t.table:
|
||
|
diff0, diff1 = t.table[f]
|
||
|
repl = [(t.n, n), (t.z, z)]
|
||
|
return (diff0.subs(repl), diff1.subs(repl))
|
||
|
|
||
|
def has(t, f):
|
||
|
return f in t.table
|
||
|
|
||
|
_bessel_table = None
|
||
|
|
||
|
class DiffCache:
|
||
|
"""
|
||
|
Store for derivatives of expressions.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The standard form of the derivative of a Bessel function of order n
|
||
|
contains two Bessel functions of orders n-1 and n+1, respectively.
|
||
|
Such forms cannot be used in parallel Risch algorithm, because
|
||
|
there is a linear recurrence relation between the three functions
|
||
|
while the algorithm expects that functions and derivatives are
|
||
|
represented in terms of algebraically independent transcendentals.
|
||
|
|
||
|
The solution is to take two of the functions, e.g., those of orders
|
||
|
n and n-1, and to express the derivatives in terms of the pair.
|
||
|
To guarantee that the proper form is used the two derivatives are
|
||
|
cached as soon as one is encountered.
|
||
|
|
||
|
Derivatives of other functions are also cached at no extra cost.
|
||
|
All derivatives are with respect to the same variable `x`.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, x):
|
||
|
self.cache = {}
|
||
|
self.x = x
|
||
|
|
||
|
global _bessel_table
|
||
|
if not _bessel_table:
|
||
|
_bessel_table = BesselTable()
|
||
|
|
||
|
def get_diff(self, f):
|
||
|
cache = self.cache
|
||
|
|
||
|
if f in cache:
|
||
|
pass
|
||
|
elif (not hasattr(f, 'func') or
|
||
|
not _bessel_table.has(f.func)):
|
||
|
cache[f] = cancel(f.diff(self.x))
|
||
|
else:
|
||
|
n, z = f.args
|
||
|
d0, d1 = _bessel_table.diffs(f.func, n, z)
|
||
|
dz = self.get_diff(z)
|
||
|
cache[f] = d0*dz
|
||
|
cache[f.func(n-1, z)] = d1*dz
|
||
|
|
||
|
return cache[f]
|
||
|
|
||
|
def heurisch(f, x, rewrite=False, hints=None, mappings=None, retries=3,
|
||
|
degree_offset=0, unnecessary_permutations=None,
|
||
|
_try_heurisch=None):
|
||
|
"""
|
||
|
Compute indefinite integral using heuristic Risch algorithm.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This is a heuristic approach to indefinite integration in finite
|
||
|
terms using the extended heuristic (parallel) Risch algorithm, based
|
||
|
on Manuel Bronstein's "Poor Man's Integrator".
|
||
|
|
||
|
The algorithm supports various classes of functions including
|
||
|
transcendental elementary or special functions like Airy,
|
||
|
Bessel, Whittaker and Lambert.
|
||
|
|
||
|
Note that this algorithm is not a decision procedure. If it isn't
|
||
|
able to compute the antiderivative for a given function, then this is
|
||
|
not a proof that such a functions does not exist. One should use
|
||
|
recursive Risch algorithm in such case. It's an open question if
|
||
|
this algorithm can be made a full decision procedure.
|
||
|
|
||
|
This is an internal integrator procedure. You should use top level
|
||
|
'integrate' function in most cases, as this procedure needs some
|
||
|
preprocessing steps and otherwise may fail.
|
||
|
|
||
|
Specification
|
||
|
=============
|
||
|
|
||
|
heurisch(f, x, rewrite=False, hints=None)
|
||
|
|
||
|
where
|
||
|
f : expression
|
||
|
x : symbol
|
||
|
|
||
|
rewrite -> force rewrite 'f' in terms of 'tan' and 'tanh'
|
||
|
hints -> a list of functions that may appear in anti-derivate
|
||
|
|
||
|
- hints = None --> no suggestions at all
|
||
|
- hints = [ ] --> try to figure out
|
||
|
- hints = [f1, ..., fn] --> we know better
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import tan
|
||
|
>>> from sympy.integrals.heurisch import heurisch
|
||
|
>>> from sympy.abc import x, y
|
||
|
|
||
|
>>> heurisch(y*tan(x), x)
|
||
|
y*log(tan(x)**2 + 1)/2
|
||
|
|
||
|
See Manuel Bronstein's "Poor Man's Integrator":
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://www-sop.inria.fr/cafe/Manuel.Bronstein/pmint/index.html
|
||
|
|
||
|
For more information on the implemented algorithm refer to:
|
||
|
|
||
|
.. [2] K. Geddes, L. Stefanus, On the Risch-Norman Integration
|
||
|
Method and its Implementation in Maple, Proceedings of
|
||
|
ISSAC'89, ACM Press, 212-217.
|
||
|
|
||
|
.. [3] J. H. Davenport, On the Parallel Risch Algorithm (I),
|
||
|
Proceedings of EUROCAM'82, LNCS 144, Springer, 144-157.
|
||
|
|
||
|
.. [4] J. H. Davenport, On the Parallel Risch Algorithm (III):
|
||
|
Use of Tangents, SIGSAM Bulletin 16 (1982), 3-6.
|
||
|
|
||
|
.. [5] J. H. Davenport, B. M. Trager, On the Parallel Risch
|
||
|
Algorithm (II), ACM Transactions on Mathematical
|
||
|
Software 11 (1985), 356-362.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.integrals.integrals.Integral.doit
|
||
|
sympy.integrals.integrals.Integral
|
||
|
sympy.integrals.heurisch.components
|
||
|
"""
|
||
|
f = sympify(f)
|
||
|
|
||
|
# There are some functions that Heurisch cannot currently handle,
|
||
|
# so do not even try.
|
||
|
# Set _try_heurisch=True to skip this check
|
||
|
if _try_heurisch is not True:
|
||
|
if f.has(Abs, re, im, sign, Heaviside, DiracDelta, floor, ceiling, arg):
|
||
|
return
|
||
|
|
||
|
if not f.has_free(x):
|
||
|
return f*x
|
||
|
|
||
|
if not f.is_Add:
|
||
|
indep, f = f.as_independent(x)
|
||
|
else:
|
||
|
indep = S.One
|
||
|
|
||
|
rewritables = {
|
||
|
(sin, cos, cot): tan,
|
||
|
(sinh, cosh, coth): tanh,
|
||
|
}
|
||
|
|
||
|
if rewrite:
|
||
|
for candidates, rule in rewritables.items():
|
||
|
f = f.rewrite(candidates, rule)
|
||
|
else:
|
||
|
for candidates in rewritables.keys():
|
||
|
if f.has(*candidates):
|
||
|
break
|
||
|
else:
|
||
|
rewrite = True
|
||
|
|
||
|
terms = components(f, x)
|
||
|
dcache = DiffCache(x)
|
||
|
|
||
|
if hints is not None:
|
||
|
if not hints:
|
||
|
a = Wild('a', exclude=[x])
|
||
|
b = Wild('b', exclude=[x])
|
||
|
c = Wild('c', exclude=[x])
|
||
|
|
||
|
for g in set(terms): # using copy of terms
|
||
|
if g.is_Function:
|
||
|
if isinstance(g, li):
|
||
|
M = g.args[0].match(a*x**b)
|
||
|
|
||
|
if M is not None:
|
||
|
terms.add( x*(li(M[a]*x**M[b]) - (M[a]*x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
|
||
|
#terms.add( x*(li(M[a]*x**M[b]) - (x**M[b])**(-1/M[b])*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
|
||
|
#terms.add( x*(li(M[a]*x**M[b]) - x*Ei((M[b]+1)*log(M[a]*x**M[b])/M[b])) )
|
||
|
#terms.add( li(M[a]*x**M[b]) - Ei((M[b]+1)*log(M[a]*x**M[b])/M[b]) )
|
||
|
|
||
|
elif isinstance(g, exp):
|
||
|
M = g.args[0].match(a*x**2)
|
||
|
|
||
|
if M is not None:
|
||
|
if M[a].is_positive:
|
||
|
terms.add(erfi(sqrt(M[a])*x))
|
||
|
else: # M[a].is_negative or unknown
|
||
|
terms.add(erf(sqrt(-M[a])*x))
|
||
|
|
||
|
M = g.args[0].match(a*x**2 + b*x + c)
|
||
|
|
||
|
if M is not None:
|
||
|
if M[a].is_positive:
|
||
|
terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
|
||
|
erfi(sqrt(M[a])*x + M[b]/(2*sqrt(M[a]))))
|
||
|
elif M[a].is_negative:
|
||
|
terms.add(sqrt(pi/4*(-M[a]))*exp(M[c] - M[b]**2/(4*M[a]))*
|
||
|
erf(sqrt(-M[a])*x - M[b]/(2*sqrt(-M[a]))))
|
||
|
|
||
|
M = g.args[0].match(a*log(x)**2)
|
||
|
|
||
|
if M is not None:
|
||
|
if M[a].is_positive:
|
||
|
terms.add(erfi(sqrt(M[a])*log(x) + 1/(2*sqrt(M[a]))))
|
||
|
if M[a].is_negative:
|
||
|
terms.add(erf(sqrt(-M[a])*log(x) - 1/(2*sqrt(-M[a]))))
|
||
|
|
||
|
elif g.is_Pow:
|
||
|
if g.exp.is_Rational and g.exp.q == 2:
|
||
|
M = g.base.match(a*x**2 + b)
|
||
|
|
||
|
if M is not None and M[b].is_positive:
|
||
|
if M[a].is_positive:
|
||
|
terms.add(asinh(sqrt(M[a]/M[b])*x))
|
||
|
elif M[a].is_negative:
|
||
|
terms.add(asin(sqrt(-M[a]/M[b])*x))
|
||
|
|
||
|
M = g.base.match(a*x**2 - b)
|
||
|
|
||
|
if M is not None and M[b].is_positive:
|
||
|
if M[a].is_positive:
|
||
|
dF = 1/sqrt(M[a]*x**2 - M[b])
|
||
|
F = log(2*sqrt(M[a])*sqrt(M[a]*x**2 - M[b]) + 2*M[a]*x)/sqrt(M[a])
|
||
|
dcache.cache[F] = dF # hack: F.diff(x) doesn't automatically simplify to f
|
||
|
terms.add(F)
|
||
|
elif M[a].is_negative:
|
||
|
terms.add(-M[b]/2*sqrt(-M[a])*
|
||
|
atan(sqrt(-M[a])*x/sqrt(M[a]*x**2 - M[b])))
|
||
|
|
||
|
else:
|
||
|
terms |= set(hints)
|
||
|
|
||
|
for g in set(terms): # using copy of terms
|
||
|
terms |= components(dcache.get_diff(g), x)
|
||
|
|
||
|
# XXX: The commented line below makes heurisch more deterministic wrt
|
||
|
# PYTHONHASHSEED and the iteration order of sets. There are other places
|
||
|
# where sets are iterated over but this one is possibly the most important.
|
||
|
# Theoretically the order here should not matter but different orderings
|
||
|
# can expose potential bugs in the different code paths so potentially it
|
||
|
# is better to keep the non-determinism.
|
||
|
#
|
||
|
# terms = list(ordered(terms))
|
||
|
|
||
|
# TODO: caching is significant factor for why permutations work at all. Change this.
|
||
|
V = _symbols('x', len(terms))
|
||
|
|
||
|
|
||
|
# sort mapping expressions from largest to smallest (last is always x).
|
||
|
mapping = list(reversed(list(zip(*ordered( #
|
||
|
[(a[0].as_independent(x)[1], a) for a in zip(terms, V)])))[1])) #
|
||
|
rev_mapping = {v: k for k, v in mapping} #
|
||
|
if mappings is None: #
|
||
|
# optimizing the number of permutations of mapping #
|
||
|
assert mapping[-1][0] == x # if not, find it and correct this comment
|
||
|
unnecessary_permutations = [mapping.pop(-1)]
|
||
|
mappings = permutations(mapping)
|
||
|
else:
|
||
|
unnecessary_permutations = unnecessary_permutations or []
|
||
|
|
||
|
def _substitute(expr):
|
||
|
return expr.subs(mapping)
|
||
|
|
||
|
for mapping in mappings:
|
||
|
mapping = list(mapping)
|
||
|
mapping = mapping + unnecessary_permutations
|
||
|
diffs = [ _substitute(dcache.get_diff(g)) for g in terms ]
|
||
|
denoms = [ g.as_numer_denom()[1] for g in diffs ]
|
||
|
if all(h.is_polynomial(*V) for h in denoms) and _substitute(f).is_rational_function(*V):
|
||
|
denom = reduce(lambda p, q: lcm(p, q, *V), denoms)
|
||
|
break
|
||
|
else:
|
||
|
if not rewrite:
|
||
|
result = heurisch(f, x, rewrite=True, hints=hints,
|
||
|
unnecessary_permutations=unnecessary_permutations)
|
||
|
|
||
|
if result is not None:
|
||
|
return indep*result
|
||
|
return None
|
||
|
|
||
|
numers = [ cancel(denom*g) for g in diffs ]
|
||
|
def _derivation(h):
|
||
|
return Add(*[ d * h.diff(v) for d, v in zip(numers, V) ])
|
||
|
|
||
|
def _deflation(p):
|
||
|
for y in V:
|
||
|
if not p.has(y):
|
||
|
continue
|
||
|
|
||
|
if _derivation(p) is not S.Zero:
|
||
|
c, q = p.as_poly(y).primitive()
|
||
|
return _deflation(c)*gcd(q, q.diff(y)).as_expr()
|
||
|
|
||
|
return p
|
||
|
|
||
|
def _splitter(p):
|
||
|
for y in V:
|
||
|
if not p.has(y):
|
||
|
continue
|
||
|
|
||
|
if _derivation(y) is not S.Zero:
|
||
|
c, q = p.as_poly(y).primitive()
|
||
|
|
||
|
q = q.as_expr()
|
||
|
|
||
|
h = gcd(q, _derivation(q), y)
|
||
|
s = quo(h, gcd(q, q.diff(y), y), y)
|
||
|
|
||
|
c_split = _splitter(c)
|
||
|
|
||
|
if s.as_poly(y).degree() == 0:
|
||
|
return (c_split[0], q * c_split[1])
|
||
|
|
||
|
q_split = _splitter(cancel(q / s))
|
||
|
|
||
|
return (c_split[0]*q_split[0]*s, c_split[1]*q_split[1])
|
||
|
|
||
|
return (S.One, p)
|
||
|
|
||
|
special = {}
|
||
|
|
||
|
for term in terms:
|
||
|
if term.is_Function:
|
||
|
if isinstance(term, tan):
|
||
|
special[1 + _substitute(term)**2] = False
|
||
|
elif isinstance(term, tanh):
|
||
|
special[1 + _substitute(term)] = False
|
||
|
special[1 - _substitute(term)] = False
|
||
|
elif isinstance(term, LambertW):
|
||
|
special[_substitute(term)] = True
|
||
|
|
||
|
F = _substitute(f)
|
||
|
|
||
|
P, Q = F.as_numer_denom()
|
||
|
|
||
|
u_split = _splitter(denom)
|
||
|
v_split = _splitter(Q)
|
||
|
|
||
|
polys = set(list(v_split) + [ u_split[0] ] + list(special.keys()))
|
||
|
|
||
|
s = u_split[0] * Mul(*[ k for k, v in special.items() if v ])
|
||
|
polified = [ p.as_poly(*V) for p in [s, P, Q] ]
|
||
|
|
||
|
if None in polified:
|
||
|
return None
|
||
|
|
||
|
#--- definitions for _integrate
|
||
|
a, b, c = [ p.total_degree() for p in polified ]
|
||
|
|
||
|
poly_denom = (s * v_split[0] * _deflation(v_split[1])).as_expr()
|
||
|
|
||
|
def _exponent(g):
|
||
|
if g.is_Pow:
|
||
|
if g.exp.is_Rational and g.exp.q != 1:
|
||
|
if g.exp.p > 0:
|
||
|
return g.exp.p + g.exp.q - 1
|
||
|
else:
|
||
|
return abs(g.exp.p + g.exp.q)
|
||
|
else:
|
||
|
return 1
|
||
|
elif not g.is_Atom and g.args:
|
||
|
return max([ _exponent(h) for h in g.args ])
|
||
|
else:
|
||
|
return 1
|
||
|
|
||
|
A, B = _exponent(f), a + max(b, c)
|
||
|
|
||
|
if A > 1 and B > 1:
|
||
|
monoms = tuple(ordered(itermonomials(V, A + B - 1 + degree_offset)))
|
||
|
else:
|
||
|
monoms = tuple(ordered(itermonomials(V, A + B + degree_offset)))
|
||
|
|
||
|
poly_coeffs = _symbols('A', len(monoms))
|
||
|
|
||
|
poly_part = Add(*[ poly_coeffs[i]*monomial
|
||
|
for i, monomial in enumerate(monoms) ])
|
||
|
|
||
|
reducibles = set()
|
||
|
|
||
|
for poly in ordered(polys):
|
||
|
coeff, factors = factor_list(poly, *V)
|
||
|
reducibles.add(coeff)
|
||
|
for fact, mul in factors:
|
||
|
reducibles.add(fact)
|
||
|
|
||
|
def _integrate(field=None):
|
||
|
atans = set()
|
||
|
pairs = set()
|
||
|
|
||
|
if field == 'Q':
|
||
|
irreducibles = set(reducibles)
|
||
|
else:
|
||
|
setV = set(V)
|
||
|
irreducibles = set()
|
||
|
for poly in ordered(reducibles):
|
||
|
zV = setV & set(iterfreeargs(poly))
|
||
|
for z in ordered(zV):
|
||
|
s = set(root_factors(poly, z, filter=field))
|
||
|
irreducibles |= s
|
||
|
break
|
||
|
|
||
|
log_part, atan_part = [], []
|
||
|
|
||
|
for poly in ordered(irreducibles):
|
||
|
m = collect(poly, I, evaluate=False)
|
||
|
y = m.get(I, S.Zero)
|
||
|
if y:
|
||
|
x = m.get(S.One, S.Zero)
|
||
|
if x.has(I) or y.has(I):
|
||
|
continue # nontrivial x + I*y
|
||
|
pairs.add((x, y))
|
||
|
irreducibles.remove(poly)
|
||
|
|
||
|
while pairs:
|
||
|
x, y = pairs.pop()
|
||
|
if (x, -y) in pairs:
|
||
|
pairs.remove((x, -y))
|
||
|
# Choosing b with no minus sign
|
||
|
if y.could_extract_minus_sign():
|
||
|
y = -y
|
||
|
irreducibles.add(x*x + y*y)
|
||
|
atans.add(atan(x/y))
|
||
|
else:
|
||
|
irreducibles.add(x + I*y)
|
||
|
|
||
|
|
||
|
B = _symbols('B', len(irreducibles))
|
||
|
C = _symbols('C', len(atans))
|
||
|
|
||
|
# Note: the ordering matters here
|
||
|
for poly, b in reversed(list(zip(ordered(irreducibles), B))):
|
||
|
if poly.has(*V):
|
||
|
poly_coeffs.append(b)
|
||
|
log_part.append(b * log(poly))
|
||
|
|
||
|
for poly, c in reversed(list(zip(ordered(atans), C))):
|
||
|
if poly.has(*V):
|
||
|
poly_coeffs.append(c)
|
||
|
atan_part.append(c * poly)
|
||
|
|
||
|
# TODO: Currently it's better to use symbolic expressions here instead
|
||
|
# of rational functions, because it's simpler and FracElement doesn't
|
||
|
# give big speed improvement yet. This is because cancellation is slow
|
||
|
# due to slow polynomial GCD algorithms. If this gets improved then
|
||
|
# revise this code.
|
||
|
candidate = poly_part/poly_denom + Add(*log_part) + Add(*atan_part)
|
||
|
h = F - _derivation(candidate) / denom
|
||
|
raw_numer = h.as_numer_denom()[0]
|
||
|
|
||
|
# Rewrite raw_numer as a polynomial in K[coeffs][V] where K is a field
|
||
|
# that we have to determine. We can't use simply atoms() because log(3),
|
||
|
# sqrt(y) and similar expressions can appear, leading to non-trivial
|
||
|
# domains.
|
||
|
syms = set(poly_coeffs) | set(V)
|
||
|
non_syms = set()
|
||
|
|
||
|
def find_non_syms(expr):
|
||
|
if expr.is_Integer or expr.is_Rational:
|
||
|
pass # ignore trivial numbers
|
||
|
elif expr in syms:
|
||
|
pass # ignore variables
|
||
|
elif not expr.has_free(*syms):
|
||
|
non_syms.add(expr)
|
||
|
elif expr.is_Add or expr.is_Mul or expr.is_Pow:
|
||
|
list(map(find_non_syms, expr.args))
|
||
|
else:
|
||
|
# TODO: Non-polynomial expression. This should have been
|
||
|
# filtered out at an earlier stage.
|
||
|
raise PolynomialError
|
||
|
|
||
|
try:
|
||
|
find_non_syms(raw_numer)
|
||
|
except PolynomialError:
|
||
|
return None
|
||
|
else:
|
||
|
ground, _ = construct_domain(non_syms, field=True)
|
||
|
|
||
|
coeff_ring = PolyRing(poly_coeffs, ground)
|
||
|
ring = PolyRing(V, coeff_ring)
|
||
|
try:
|
||
|
numer = ring.from_expr(raw_numer)
|
||
|
except ValueError:
|
||
|
raise PolynomialError
|
||
|
solution = solve_lin_sys(numer.coeffs(), coeff_ring, _raw=False)
|
||
|
|
||
|
if solution is None:
|
||
|
return None
|
||
|
else:
|
||
|
return candidate.xreplace(solution).xreplace(
|
||
|
dict(zip(poly_coeffs, [S.Zero]*len(poly_coeffs))))
|
||
|
|
||
|
if all(isinstance(_, Symbol) for _ in V):
|
||
|
more_free = F.free_symbols - set(V)
|
||
|
else:
|
||
|
Fd = F.as_dummy()
|
||
|
more_free = Fd.xreplace(dict(zip(V, (Dummy() for _ in V)))
|
||
|
).free_symbols & Fd.free_symbols
|
||
|
if not more_free:
|
||
|
# all free generators are identified in V
|
||
|
solution = _integrate('Q')
|
||
|
|
||
|
if solution is None:
|
||
|
solution = _integrate()
|
||
|
else:
|
||
|
solution = _integrate()
|
||
|
|
||
|
if solution is not None:
|
||
|
antideriv = solution.subs(rev_mapping)
|
||
|
antideriv = cancel(antideriv).expand()
|
||
|
|
||
|
if antideriv.is_Add:
|
||
|
antideriv = antideriv.as_independent(x)[1]
|
||
|
|
||
|
return indep*antideriv
|
||
|
else:
|
||
|
if retries >= 0:
|
||
|
result = heurisch(f, x, mappings=mappings, rewrite=rewrite, hints=hints, retries=retries - 1, unnecessary_permutations=unnecessary_permutations)
|
||
|
|
||
|
if result is not None:
|
||
|
return indep*result
|
||
|
|
||
|
return None
|