You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
404 lines
14 KiB
404 lines
14 KiB
5 months ago
|
# -*- coding: utf-8 -*-
|
||
|
|
||
|
from .cartan_type import CartanType
|
||
|
from mpmath import fac
|
||
|
from sympy.core.backend import Matrix, eye, Rational, igcd
|
||
|
from sympy.core.basic import Atom
|
||
|
|
||
|
class WeylGroup(Atom):
|
||
|
|
||
|
"""
|
||
|
For each semisimple Lie group, we have a Weyl group. It is a subgroup of
|
||
|
the isometry group of the root system. Specifically, it's the subgroup
|
||
|
that is generated by reflections through the hyperplanes orthogonal to
|
||
|
the roots. Therefore, Weyl groups are reflection groups, and so a Weyl
|
||
|
group is a finite Coxeter group.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __new__(cls, cartantype):
|
||
|
obj = Atom.__new__(cls)
|
||
|
obj.cartan_type = CartanType(cartantype)
|
||
|
return obj
|
||
|
|
||
|
def generators(self):
|
||
|
"""
|
||
|
This method creates the generating reflections of the Weyl group for
|
||
|
a given Lie algebra. For a Lie algebra of rank n, there are n
|
||
|
different generating reflections. This function returns them as
|
||
|
a list.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.liealgebras.weyl_group import WeylGroup
|
||
|
>>> c = WeylGroup("F4")
|
||
|
>>> c.generators()
|
||
|
['r1', 'r2', 'r3', 'r4']
|
||
|
"""
|
||
|
n = self.cartan_type.rank()
|
||
|
generators = []
|
||
|
for i in range(1, n+1):
|
||
|
reflection = "r"+str(i)
|
||
|
generators.append(reflection)
|
||
|
return generators
|
||
|
|
||
|
def group_order(self):
|
||
|
"""
|
||
|
This method returns the order of the Weyl group.
|
||
|
For types A, B, C, D, and E the order depends on
|
||
|
the rank of the Lie algebra. For types F and G,
|
||
|
the order is fixed.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.liealgebras.weyl_group import WeylGroup
|
||
|
>>> c = WeylGroup("D4")
|
||
|
>>> c.group_order()
|
||
|
192.0
|
||
|
"""
|
||
|
n = self.cartan_type.rank()
|
||
|
if self.cartan_type.series == "A":
|
||
|
return fac(n+1)
|
||
|
|
||
|
if self.cartan_type.series in ("B", "C"):
|
||
|
return fac(n)*(2**n)
|
||
|
|
||
|
if self.cartan_type.series == "D":
|
||
|
return fac(n)*(2**(n-1))
|
||
|
|
||
|
if self.cartan_type.series == "E":
|
||
|
if n == 6:
|
||
|
return 51840
|
||
|
if n == 7:
|
||
|
return 2903040
|
||
|
if n == 8:
|
||
|
return 696729600
|
||
|
if self.cartan_type.series == "F":
|
||
|
return 1152
|
||
|
|
||
|
if self.cartan_type.series == "G":
|
||
|
return 12
|
||
|
|
||
|
def group_name(self):
|
||
|
"""
|
||
|
This method returns some general information about the Weyl group for
|
||
|
a given Lie algebra. It returns the name of the group and the elements
|
||
|
it acts on, if relevant.
|
||
|
"""
|
||
|
n = self.cartan_type.rank()
|
||
|
if self.cartan_type.series == "A":
|
||
|
return "S"+str(n+1) + ": the symmetric group acting on " + str(n+1) + " elements."
|
||
|
|
||
|
if self.cartan_type.series in ("B", "C"):
|
||
|
return "The hyperoctahedral group acting on " + str(2*n) + " elements."
|
||
|
|
||
|
if self.cartan_type.series == "D":
|
||
|
return "The symmetry group of the " + str(n) + "-dimensional demihypercube."
|
||
|
|
||
|
if self.cartan_type.series == "E":
|
||
|
if n == 6:
|
||
|
return "The symmetry group of the 6-polytope."
|
||
|
|
||
|
if n == 7:
|
||
|
return "The symmetry group of the 7-polytope."
|
||
|
|
||
|
if n == 8:
|
||
|
return "The symmetry group of the 8-polytope."
|
||
|
|
||
|
if self.cartan_type.series == "F":
|
||
|
return "The symmetry group of the 24-cell, or icositetrachoron."
|
||
|
|
||
|
if self.cartan_type.series == "G":
|
||
|
return "D6, the dihedral group of order 12, and symmetry group of the hexagon."
|
||
|
|
||
|
def element_order(self, weylelt):
|
||
|
"""
|
||
|
This method returns the order of a given Weyl group element, which should
|
||
|
be specified by the user in the form of products of the generating
|
||
|
reflections, i.e. of the form r1*r2 etc.
|
||
|
|
||
|
For types A-F, this method current works by taking the matrix form of
|
||
|
the specified element, and then finding what power of the matrix is the
|
||
|
identity. It then returns this power.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.liealgebras.weyl_group import WeylGroup
|
||
|
>>> b = WeylGroup("B4")
|
||
|
>>> b.element_order('r1*r4*r2')
|
||
|
4
|
||
|
"""
|
||
|
n = self.cartan_type.rank()
|
||
|
if self.cartan_type.series == "A":
|
||
|
a = self.matrix_form(weylelt)
|
||
|
order = 1
|
||
|
while a != eye(n+1):
|
||
|
a *= self.matrix_form(weylelt)
|
||
|
order += 1
|
||
|
return order
|
||
|
|
||
|
if self.cartan_type.series == "D":
|
||
|
a = self.matrix_form(weylelt)
|
||
|
order = 1
|
||
|
while a != eye(n):
|
||
|
a *= self.matrix_form(weylelt)
|
||
|
order += 1
|
||
|
return order
|
||
|
|
||
|
if self.cartan_type.series == "E":
|
||
|
a = self.matrix_form(weylelt)
|
||
|
order = 1
|
||
|
while a != eye(8):
|
||
|
a *= self.matrix_form(weylelt)
|
||
|
order += 1
|
||
|
return order
|
||
|
|
||
|
if self.cartan_type.series == "G":
|
||
|
elts = list(weylelt)
|
||
|
reflections = elts[1::3]
|
||
|
m = self.delete_doubles(reflections)
|
||
|
while self.delete_doubles(m) != m:
|
||
|
m = self.delete_doubles(m)
|
||
|
reflections = m
|
||
|
if len(reflections) % 2 == 1:
|
||
|
return 2
|
||
|
|
||
|
elif len(reflections) == 0:
|
||
|
return 1
|
||
|
|
||
|
else:
|
||
|
if len(reflections) == 1:
|
||
|
return 2
|
||
|
else:
|
||
|
m = len(reflections) // 2
|
||
|
lcm = (6 * m)/ igcd(m, 6)
|
||
|
order = lcm / m
|
||
|
return order
|
||
|
|
||
|
|
||
|
if self.cartan_type.series == 'F':
|
||
|
a = self.matrix_form(weylelt)
|
||
|
order = 1
|
||
|
while a != eye(4):
|
||
|
a *= self.matrix_form(weylelt)
|
||
|
order += 1
|
||
|
return order
|
||
|
|
||
|
|
||
|
if self.cartan_type.series in ("B", "C"):
|
||
|
a = self.matrix_form(weylelt)
|
||
|
order = 1
|
||
|
while a != eye(n):
|
||
|
a *= self.matrix_form(weylelt)
|
||
|
order += 1
|
||
|
return order
|
||
|
|
||
|
def delete_doubles(self, reflections):
|
||
|
"""
|
||
|
This is a helper method for determining the order of an element in the
|
||
|
Weyl group of G2. It takes a Weyl element and if repeated simple reflections
|
||
|
in it, it deletes them.
|
||
|
"""
|
||
|
counter = 0
|
||
|
copy = list(reflections)
|
||
|
for elt in copy:
|
||
|
if counter < len(copy)-1:
|
||
|
if copy[counter + 1] == elt:
|
||
|
del copy[counter]
|
||
|
del copy[counter]
|
||
|
counter += 1
|
||
|
|
||
|
|
||
|
return copy
|
||
|
|
||
|
|
||
|
def matrix_form(self, weylelt):
|
||
|
"""
|
||
|
This method takes input from the user in the form of products of the
|
||
|
generating reflections, and returns the matrix corresponding to the
|
||
|
element of the Weyl group. Since each element of the Weyl group is
|
||
|
a reflection of some type, there is a corresponding matrix representation.
|
||
|
This method uses the standard representation for all the generating
|
||
|
reflections.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.liealgebras.weyl_group import WeylGroup
|
||
|
>>> f = WeylGroup("F4")
|
||
|
>>> f.matrix_form('r2*r3')
|
||
|
Matrix([
|
||
|
[1, 0, 0, 0],
|
||
|
[0, 1, 0, 0],
|
||
|
[0, 0, 0, -1],
|
||
|
[0, 0, 1, 0]])
|
||
|
|
||
|
"""
|
||
|
elts = list(weylelt)
|
||
|
reflections = elts[1::3]
|
||
|
n = self.cartan_type.rank()
|
||
|
if self.cartan_type.series == 'A':
|
||
|
matrixform = eye(n+1)
|
||
|
for elt in reflections:
|
||
|
a = int(elt)
|
||
|
mat = eye(n+1)
|
||
|
mat[a-1, a-1] = 0
|
||
|
mat[a-1, a] = 1
|
||
|
mat[a, a-1] = 1
|
||
|
mat[a, a] = 0
|
||
|
matrixform *= mat
|
||
|
return matrixform
|
||
|
|
||
|
if self.cartan_type.series == 'D':
|
||
|
matrixform = eye(n)
|
||
|
for elt in reflections:
|
||
|
a = int(elt)
|
||
|
mat = eye(n)
|
||
|
if a < n:
|
||
|
mat[a-1, a-1] = 0
|
||
|
mat[a-1, a] = 1
|
||
|
mat[a, a-1] = 1
|
||
|
mat[a, a] = 0
|
||
|
matrixform *= mat
|
||
|
else:
|
||
|
mat[n-2, n-1] = -1
|
||
|
mat[n-2, n-2] = 0
|
||
|
mat[n-1, n-2] = -1
|
||
|
mat[n-1, n-1] = 0
|
||
|
matrixform *= mat
|
||
|
return matrixform
|
||
|
|
||
|
if self.cartan_type.series == 'G':
|
||
|
matrixform = eye(3)
|
||
|
for elt in reflections:
|
||
|
a = int(elt)
|
||
|
if a == 1:
|
||
|
gen1 = Matrix([[1, 0, 0], [0, 0, 1], [0, 1, 0]])
|
||
|
matrixform *= gen1
|
||
|
else:
|
||
|
gen2 = Matrix([[Rational(2, 3), Rational(2, 3), Rational(-1, 3)],
|
||
|
[Rational(2, 3), Rational(-1, 3), Rational(2, 3)],
|
||
|
[Rational(-1, 3), Rational(2, 3), Rational(2, 3)]])
|
||
|
matrixform *= gen2
|
||
|
return matrixform
|
||
|
|
||
|
if self.cartan_type.series == 'F':
|
||
|
matrixform = eye(4)
|
||
|
for elt in reflections:
|
||
|
a = int(elt)
|
||
|
if a == 1:
|
||
|
mat = Matrix([[1, 0, 0, 0], [0, 0, 1, 0], [0, 1, 0, 0], [0, 0, 0, 1]])
|
||
|
matrixform *= mat
|
||
|
elif a == 2:
|
||
|
mat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]])
|
||
|
matrixform *= mat
|
||
|
elif a == 3:
|
||
|
mat = Matrix([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, -1]])
|
||
|
matrixform *= mat
|
||
|
else:
|
||
|
|
||
|
mat = Matrix([[Rational(1, 2), Rational(1, 2), Rational(1, 2), Rational(1, 2)],
|
||
|
[Rational(1, 2), Rational(1, 2), Rational(-1, 2), Rational(-1, 2)],
|
||
|
[Rational(1, 2), Rational(-1, 2), Rational(1, 2), Rational(-1, 2)],
|
||
|
[Rational(1, 2), Rational(-1, 2), Rational(-1, 2), Rational(1, 2)]])
|
||
|
matrixform *= mat
|
||
|
return matrixform
|
||
|
|
||
|
if self.cartan_type.series == 'E':
|
||
|
matrixform = eye(8)
|
||
|
for elt in reflections:
|
||
|
a = int(elt)
|
||
|
if a == 1:
|
||
|
mat = Matrix([[Rational(3, 4), Rational(1, 4), Rational(1, 4), Rational(1, 4),
|
||
|
Rational(1, 4), Rational(1, 4), Rational(1, 4), Rational(-1, 4)],
|
||
|
[Rational(1, 4), Rational(3, 4), Rational(-1, 4), Rational(-1, 4),
|
||
|
Rational(-1, 4), Rational(-1, 4), Rational(1, 4), Rational(-1, 4)],
|
||
|
[Rational(1, 4), Rational(-1, 4), Rational(3, 4), Rational(-1, 4),
|
||
|
Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)],
|
||
|
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4),
|
||
|
Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)],
|
||
|
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
|
||
|
Rational(3, 4), Rational(-1, 4), Rational(-1, 4), Rational(1, 4)],
|
||
|
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
|
||
|
Rational(-1, 4), Rational(3, 4), Rational(-1, 4), Rational(1, 4)],
|
||
|
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
|
||
|
Rational(-1, 4), Rational(-1, 4), Rational(-3, 4), Rational(1, 4)],
|
||
|
[Rational(1, 4), Rational(-1, 4), Rational(-1, 4), Rational(-1, 4),
|
||
|
Rational(-1, 4), Rational(-1, 4), Rational(-1, 4), Rational(3, 4)]])
|
||
|
matrixform *= mat
|
||
|
elif a == 2:
|
||
|
mat = eye(8)
|
||
|
mat[0, 0] = 0
|
||
|
mat[0, 1] = -1
|
||
|
mat[1, 0] = -1
|
||
|
mat[1, 1] = 0
|
||
|
matrixform *= mat
|
||
|
else:
|
||
|
mat = eye(8)
|
||
|
mat[a-3, a-3] = 0
|
||
|
mat[a-3, a-2] = 1
|
||
|
mat[a-2, a-3] = 1
|
||
|
mat[a-2, a-2] = 0
|
||
|
matrixform *= mat
|
||
|
return matrixform
|
||
|
|
||
|
|
||
|
if self.cartan_type.series in ("B", "C"):
|
||
|
matrixform = eye(n)
|
||
|
for elt in reflections:
|
||
|
a = int(elt)
|
||
|
mat = eye(n)
|
||
|
if a == 1:
|
||
|
mat[0, 0] = -1
|
||
|
matrixform *= mat
|
||
|
else:
|
||
|
mat[a - 2, a - 2] = 0
|
||
|
mat[a-2, a-1] = 1
|
||
|
mat[a - 1, a - 2] = 1
|
||
|
mat[a -1, a - 1] = 0
|
||
|
matrixform *= mat
|
||
|
return matrixform
|
||
|
|
||
|
|
||
|
|
||
|
def coxeter_diagram(self):
|
||
|
"""
|
||
|
This method returns the Coxeter diagram corresponding to a Weyl group.
|
||
|
The Coxeter diagram can be obtained from a Lie algebra's Dynkin diagram
|
||
|
by deleting all arrows; the Coxeter diagram is the undirected graph.
|
||
|
The vertices of the Coxeter diagram represent the generating reflections
|
||
|
of the Weyl group, $s_i$. An edge is drawn between $s_i$ and $s_j$ if the order
|
||
|
$m(i, j)$ of $s_is_j$ is greater than two. If there is one edge, the order
|
||
|
$m(i, j)$ is 3. If there are two edges, the order $m(i, j)$ is 4, and if there
|
||
|
are three edges, the order $m(i, j)$ is 6.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.liealgebras.weyl_group import WeylGroup
|
||
|
>>> c = WeylGroup("B3")
|
||
|
>>> print(c.coxeter_diagram())
|
||
|
0---0===0
|
||
|
1 2 3
|
||
|
"""
|
||
|
n = self.cartan_type.rank()
|
||
|
if self.cartan_type.series in ("A", "D", "E"):
|
||
|
return self.cartan_type.dynkin_diagram()
|
||
|
|
||
|
if self.cartan_type.series in ("B", "C"):
|
||
|
diag = "---".join("0" for i in range(1, n)) + "===0\n"
|
||
|
diag += " ".join(str(i) for i in range(1, n+1))
|
||
|
return diag
|
||
|
|
||
|
if self.cartan_type.series == "F":
|
||
|
diag = "0---0===0---0\n"
|
||
|
diag += " ".join(str(i) for i in range(1, 5))
|
||
|
return diag
|
||
|
|
||
|
if self.cartan_type.series == "G":
|
||
|
diag = "0≡≡≡0\n1 2"
|
||
|
return diag
|