You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
5.3 KiB
195 lines
5.3 KiB
5 months ago
|
from mpmath.matrices.matrices import _matrix
|
||
|
|
||
|
from sympy.core import Basic, Dict, Tuple
|
||
|
from sympy.core.numbers import Integer
|
||
|
from sympy.core.cache import cacheit
|
||
|
from sympy.core.sympify import _sympy_converter as sympify_converter, _sympify
|
||
|
from sympy.matrices.dense import DenseMatrix
|
||
|
from sympy.matrices.expressions import MatrixExpr
|
||
|
from sympy.matrices.matrices import MatrixBase
|
||
|
from sympy.matrices.repmatrix import RepMatrix
|
||
|
from sympy.matrices.sparse import SparseRepMatrix
|
||
|
from sympy.multipledispatch import dispatch
|
||
|
|
||
|
|
||
|
def sympify_matrix(arg):
|
||
|
return arg.as_immutable()
|
||
|
|
||
|
|
||
|
sympify_converter[MatrixBase] = sympify_matrix
|
||
|
|
||
|
|
||
|
def sympify_mpmath_matrix(arg):
|
||
|
mat = [_sympify(x) for x in arg]
|
||
|
return ImmutableDenseMatrix(arg.rows, arg.cols, mat)
|
||
|
|
||
|
|
||
|
sympify_converter[_matrix] = sympify_mpmath_matrix
|
||
|
|
||
|
|
||
|
class ImmutableRepMatrix(RepMatrix, MatrixExpr): # type: ignore
|
||
|
"""Immutable matrix based on RepMatrix
|
||
|
|
||
|
Uses DomainMAtrix as the internal representation.
|
||
|
"""
|
||
|
|
||
|
#
|
||
|
# This is a subclass of RepMatrix that adds/overrides some methods to make
|
||
|
# the instances Basic and immutable. ImmutableRepMatrix is a superclass for
|
||
|
# both ImmutableDenseMatrix and ImmutableSparseMatrix.
|
||
|
#
|
||
|
|
||
|
def __new__(cls, *args, **kwargs):
|
||
|
return cls._new(*args, **kwargs)
|
||
|
|
||
|
__hash__ = MatrixExpr.__hash__
|
||
|
|
||
|
def copy(self):
|
||
|
return self
|
||
|
|
||
|
@property
|
||
|
def cols(self):
|
||
|
return self._cols
|
||
|
|
||
|
@property
|
||
|
def rows(self):
|
||
|
return self._rows
|
||
|
|
||
|
@property
|
||
|
def shape(self):
|
||
|
return self._rows, self._cols
|
||
|
|
||
|
def as_immutable(self):
|
||
|
return self
|
||
|
|
||
|
def _entry(self, i, j, **kwargs):
|
||
|
return self[i, j]
|
||
|
|
||
|
def __setitem__(self, *args):
|
||
|
raise TypeError("Cannot set values of {}".format(self.__class__))
|
||
|
|
||
|
def is_diagonalizable(self, reals_only=False, **kwargs):
|
||
|
return super().is_diagonalizable(
|
||
|
reals_only=reals_only, **kwargs)
|
||
|
|
||
|
is_diagonalizable.__doc__ = SparseRepMatrix.is_diagonalizable.__doc__
|
||
|
is_diagonalizable = cacheit(is_diagonalizable)
|
||
|
|
||
|
|
||
|
|
||
|
class ImmutableDenseMatrix(DenseMatrix, ImmutableRepMatrix): # type: ignore
|
||
|
"""Create an immutable version of a matrix.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import eye, ImmutableMatrix
|
||
|
>>> ImmutableMatrix(eye(3))
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[0, 1, 0],
|
||
|
[0, 0, 1]])
|
||
|
>>> _[0, 0] = 42
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
TypeError: Cannot set values of ImmutableDenseMatrix
|
||
|
"""
|
||
|
|
||
|
# MatrixExpr is set as NotIterable, but we want explicit matrices to be
|
||
|
# iterable
|
||
|
_iterable = True
|
||
|
_class_priority = 8
|
||
|
_op_priority = 10.001
|
||
|
|
||
|
@classmethod
|
||
|
def _new(cls, *args, **kwargs):
|
||
|
if len(args) == 1 and isinstance(args[0], ImmutableDenseMatrix):
|
||
|
return args[0]
|
||
|
if kwargs.get('copy', True) is False:
|
||
|
if len(args) != 3:
|
||
|
raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]")
|
||
|
rows, cols, flat_list = args
|
||
|
else:
|
||
|
rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs)
|
||
|
flat_list = list(flat_list) # create a shallow copy
|
||
|
|
||
|
rep = cls._flat_list_to_DomainMatrix(rows, cols, flat_list)
|
||
|
|
||
|
return cls._fromrep(rep)
|
||
|
|
||
|
@classmethod
|
||
|
def _fromrep(cls, rep):
|
||
|
rows, cols = rep.shape
|
||
|
flat_list = rep.to_sympy().to_list_flat()
|
||
|
obj = Basic.__new__(cls,
|
||
|
Integer(rows),
|
||
|
Integer(cols),
|
||
|
Tuple(*flat_list, sympify=False))
|
||
|
obj._rows = rows
|
||
|
obj._cols = cols
|
||
|
obj._rep = rep
|
||
|
return obj
|
||
|
|
||
|
|
||
|
# make sure ImmutableDenseMatrix is aliased as ImmutableMatrix
|
||
|
ImmutableMatrix = ImmutableDenseMatrix
|
||
|
|
||
|
|
||
|
class ImmutableSparseMatrix(SparseRepMatrix, ImmutableRepMatrix): # type:ignore
|
||
|
"""Create an immutable version of a sparse matrix.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import eye, ImmutableSparseMatrix
|
||
|
>>> ImmutableSparseMatrix(1, 1, {})
|
||
|
Matrix([[0]])
|
||
|
>>> ImmutableSparseMatrix(eye(3))
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[0, 1, 0],
|
||
|
[0, 0, 1]])
|
||
|
>>> _[0, 0] = 42
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
TypeError: Cannot set values of ImmutableSparseMatrix
|
||
|
>>> _.shape
|
||
|
(3, 3)
|
||
|
"""
|
||
|
is_Matrix = True
|
||
|
_class_priority = 9
|
||
|
|
||
|
@classmethod
|
||
|
def _new(cls, *args, **kwargs):
|
||
|
rows, cols, smat = cls._handle_creation_inputs(*args, **kwargs)
|
||
|
|
||
|
rep = cls._smat_to_DomainMatrix(rows, cols, smat)
|
||
|
|
||
|
return cls._fromrep(rep)
|
||
|
|
||
|
@classmethod
|
||
|
def _fromrep(cls, rep):
|
||
|
rows, cols = rep.shape
|
||
|
smat = rep.to_sympy().to_dok()
|
||
|
obj = Basic.__new__(cls, Integer(rows), Integer(cols), Dict(smat))
|
||
|
obj._rows = rows
|
||
|
obj._cols = cols
|
||
|
obj._rep = rep
|
||
|
return obj
|
||
|
|
||
|
|
||
|
@dispatch(ImmutableDenseMatrix, ImmutableDenseMatrix)
|
||
|
def _eval_is_eq(lhs, rhs): # noqa:F811
|
||
|
"""Helper method for Equality with matrices.sympy.
|
||
|
|
||
|
Relational automatically converts matrices to ImmutableDenseMatrix
|
||
|
instances, so this method only applies here. Returns True if the
|
||
|
matrices are definitively the same, False if they are definitively
|
||
|
different, and None if undetermined (e.g. if they contain Symbols).
|
||
|
Returning None triggers default handling of Equalities.
|
||
|
|
||
|
"""
|
||
|
if lhs.shape != rhs.shape:
|
||
|
return False
|
||
|
return (lhs - rhs).is_zero_matrix
|