You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
760 lines
21 KiB
760 lines
21 KiB
5 months ago
|
from collections import defaultdict
|
||
|
|
||
|
from operator import index as index_
|
||
|
|
||
|
from sympy.core.expr import Expr
|
||
|
from sympy.core.kind import Kind, NumberKind, UndefinedKind
|
||
|
from sympy.core.numbers import Integer, Rational
|
||
|
from sympy.core.sympify import _sympify, SympifyError
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.polys.domains import ZZ, QQ, EXRAW
|
||
|
from sympy.polys.matrices import DomainMatrix
|
||
|
from sympy.utilities.exceptions import sympy_deprecation_warning
|
||
|
from sympy.utilities.iterables import is_sequence
|
||
|
from sympy.utilities.misc import filldedent
|
||
|
|
||
|
from .common import classof
|
||
|
from .matrices import MatrixBase, MatrixKind, ShapeError
|
||
|
|
||
|
|
||
|
class RepMatrix(MatrixBase):
|
||
|
"""Matrix implementation based on DomainMatrix as an internal representation.
|
||
|
|
||
|
The RepMatrix class is a superclass for Matrix, ImmutableMatrix,
|
||
|
SparseMatrix and ImmutableSparseMatrix which are the main usable matrix
|
||
|
classes in SymPy. Most methods on this class are simply forwarded to
|
||
|
DomainMatrix.
|
||
|
"""
|
||
|
|
||
|
#
|
||
|
# MatrixBase is the common superclass for all of the usable explicit matrix
|
||
|
# classes in SymPy. The idea is that MatrixBase is an abstract class though
|
||
|
# and that subclasses will implement the lower-level methods.
|
||
|
#
|
||
|
# RepMatrix is a subclass of MatrixBase that uses DomainMatrix as an
|
||
|
# internal representation and delegates lower-level methods to
|
||
|
# DomainMatrix. All of SymPy's standard explicit matrix classes subclass
|
||
|
# RepMatrix and so use DomainMatrix internally.
|
||
|
#
|
||
|
# A RepMatrix uses an internal DomainMatrix with the domain set to ZZ, QQ
|
||
|
# or EXRAW. The EXRAW domain is equivalent to the previous implementation
|
||
|
# of Matrix that used Expr for the elements. The ZZ and QQ domains are used
|
||
|
# when applicable just because they are compatible with the previous
|
||
|
# implementation but are much more efficient. Other domains such as QQ[x]
|
||
|
# are not used because they differ from Expr in some way (e.g. automatic
|
||
|
# expansion of powers and products).
|
||
|
#
|
||
|
|
||
|
_rep: DomainMatrix
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
# Skip sympify for mutable matrices...
|
||
|
if not isinstance(other, RepMatrix):
|
||
|
try:
|
||
|
other = _sympify(other)
|
||
|
except SympifyError:
|
||
|
return NotImplemented
|
||
|
if not isinstance(other, RepMatrix):
|
||
|
return NotImplemented
|
||
|
|
||
|
return self._rep.unify_eq(other._rep)
|
||
|
|
||
|
@classmethod
|
||
|
def _unify_element_sympy(cls, rep, element):
|
||
|
domain = rep.domain
|
||
|
element = _sympify(element)
|
||
|
|
||
|
if domain != EXRAW:
|
||
|
# The domain can only be ZZ, QQ or EXRAW
|
||
|
if element.is_Integer:
|
||
|
new_domain = domain
|
||
|
elif element.is_Rational:
|
||
|
new_domain = QQ
|
||
|
else:
|
||
|
new_domain = EXRAW
|
||
|
|
||
|
# XXX: This converts the domain for all elements in the matrix
|
||
|
# which can be slow. This happens e.g. if __setitem__ changes one
|
||
|
# element to something that does not fit in the domain
|
||
|
if new_domain != domain:
|
||
|
rep = rep.convert_to(new_domain)
|
||
|
domain = new_domain
|
||
|
|
||
|
if domain != EXRAW:
|
||
|
element = new_domain.from_sympy(element)
|
||
|
|
||
|
if domain == EXRAW and not isinstance(element, Expr):
|
||
|
sympy_deprecation_warning(
|
||
|
"""
|
||
|
non-Expr objects in a Matrix is deprecated. Matrix represents
|
||
|
a mathematical matrix. To represent a container of non-numeric
|
||
|
entities, Use a list of lists, TableForm, NumPy array, or some
|
||
|
other data structure instead.
|
||
|
""",
|
||
|
deprecated_since_version="1.9",
|
||
|
active_deprecations_target="deprecated-non-expr-in-matrix",
|
||
|
stacklevel=4,
|
||
|
)
|
||
|
|
||
|
return rep, element
|
||
|
|
||
|
@classmethod
|
||
|
def _dod_to_DomainMatrix(cls, rows, cols, dod, types):
|
||
|
|
||
|
if not all(issubclass(typ, Expr) for typ in types):
|
||
|
sympy_deprecation_warning(
|
||
|
"""
|
||
|
non-Expr objects in a Matrix is deprecated. Matrix represents
|
||
|
a mathematical matrix. To represent a container of non-numeric
|
||
|
entities, Use a list of lists, TableForm, NumPy array, or some
|
||
|
other data structure instead.
|
||
|
""",
|
||
|
deprecated_since_version="1.9",
|
||
|
active_deprecations_target="deprecated-non-expr-in-matrix",
|
||
|
stacklevel=6,
|
||
|
)
|
||
|
|
||
|
rep = DomainMatrix(dod, (rows, cols), EXRAW)
|
||
|
|
||
|
if all(issubclass(typ, Rational) for typ in types):
|
||
|
if all(issubclass(typ, Integer) for typ in types):
|
||
|
rep = rep.convert_to(ZZ)
|
||
|
else:
|
||
|
rep = rep.convert_to(QQ)
|
||
|
|
||
|
return rep
|
||
|
|
||
|
@classmethod
|
||
|
def _flat_list_to_DomainMatrix(cls, rows, cols, flat_list):
|
||
|
|
||
|
elements_dod = defaultdict(dict)
|
||
|
for n, element in enumerate(flat_list):
|
||
|
if element != 0:
|
||
|
i, j = divmod(n, cols)
|
||
|
elements_dod[i][j] = element
|
||
|
|
||
|
types = set(map(type, flat_list))
|
||
|
|
||
|
rep = cls._dod_to_DomainMatrix(rows, cols, elements_dod, types)
|
||
|
return rep
|
||
|
|
||
|
@classmethod
|
||
|
def _smat_to_DomainMatrix(cls, rows, cols, smat):
|
||
|
|
||
|
elements_dod = defaultdict(dict)
|
||
|
for (i, j), element in smat.items():
|
||
|
if element != 0:
|
||
|
elements_dod[i][j] = element
|
||
|
|
||
|
types = set(map(type, smat.values()))
|
||
|
|
||
|
rep = cls._dod_to_DomainMatrix(rows, cols, elements_dod, types)
|
||
|
return rep
|
||
|
|
||
|
def flat(self):
|
||
|
return self._rep.to_sympy().to_list_flat()
|
||
|
|
||
|
def _eval_tolist(self):
|
||
|
return self._rep.to_sympy().to_list()
|
||
|
|
||
|
def _eval_todok(self):
|
||
|
return self._rep.to_sympy().to_dok()
|
||
|
|
||
|
def _eval_values(self):
|
||
|
return list(self.todok().values())
|
||
|
|
||
|
def copy(self):
|
||
|
return self._fromrep(self._rep.copy())
|
||
|
|
||
|
@property
|
||
|
def kind(self) -> MatrixKind:
|
||
|
domain = self._rep.domain
|
||
|
element_kind: Kind
|
||
|
if domain in (ZZ, QQ):
|
||
|
element_kind = NumberKind
|
||
|
elif domain == EXRAW:
|
||
|
kinds = {e.kind for e in self.values()}
|
||
|
if len(kinds) == 1:
|
||
|
[element_kind] = kinds
|
||
|
else:
|
||
|
element_kind = UndefinedKind
|
||
|
else: # pragma: no cover
|
||
|
raise RuntimeError("Domain should only be ZZ, QQ or EXRAW")
|
||
|
return MatrixKind(element_kind)
|
||
|
|
||
|
def _eval_has(self, *patterns):
|
||
|
# if the matrix has any zeros, see if S.Zero
|
||
|
# has the pattern. If _smat is full length,
|
||
|
# the matrix has no zeros.
|
||
|
zhas = False
|
||
|
dok = self.todok()
|
||
|
if len(dok) != self.rows*self.cols:
|
||
|
zhas = S.Zero.has(*patterns)
|
||
|
return zhas or any(value.has(*patterns) for value in dok.values())
|
||
|
|
||
|
def _eval_is_Identity(self):
|
||
|
if not all(self[i, i] == 1 for i in range(self.rows)):
|
||
|
return False
|
||
|
return len(self.todok()) == self.rows
|
||
|
|
||
|
def _eval_is_symmetric(self, simpfunc):
|
||
|
diff = (self - self.T).applyfunc(simpfunc)
|
||
|
return len(diff.values()) == 0
|
||
|
|
||
|
def _eval_transpose(self):
|
||
|
"""Returns the transposed SparseMatrix of this SparseMatrix.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import SparseMatrix
|
||
|
>>> a = SparseMatrix(((1, 2), (3, 4)))
|
||
|
>>> a
|
||
|
Matrix([
|
||
|
[1, 2],
|
||
|
[3, 4]])
|
||
|
>>> a.T
|
||
|
Matrix([
|
||
|
[1, 3],
|
||
|
[2, 4]])
|
||
|
"""
|
||
|
return self._fromrep(self._rep.transpose())
|
||
|
|
||
|
def _eval_col_join(self, other):
|
||
|
return self._fromrep(self._rep.vstack(other._rep))
|
||
|
|
||
|
def _eval_row_join(self, other):
|
||
|
return self._fromrep(self._rep.hstack(other._rep))
|
||
|
|
||
|
def _eval_extract(self, rowsList, colsList):
|
||
|
return self._fromrep(self._rep.extract(rowsList, colsList))
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
return _getitem_RepMatrix(self, key)
|
||
|
|
||
|
@classmethod
|
||
|
def _eval_zeros(cls, rows, cols):
|
||
|
rep = DomainMatrix.zeros((rows, cols), ZZ)
|
||
|
return cls._fromrep(rep)
|
||
|
|
||
|
@classmethod
|
||
|
def _eval_eye(cls, rows, cols):
|
||
|
rep = DomainMatrix.eye((rows, cols), ZZ)
|
||
|
return cls._fromrep(rep)
|
||
|
|
||
|
def _eval_add(self, other):
|
||
|
return classof(self, other)._fromrep(self._rep + other._rep)
|
||
|
|
||
|
def _eval_matrix_mul(self, other):
|
||
|
return classof(self, other)._fromrep(self._rep * other._rep)
|
||
|
|
||
|
def _eval_matrix_mul_elementwise(self, other):
|
||
|
selfrep, otherrep = self._rep.unify(other._rep)
|
||
|
newrep = selfrep.mul_elementwise(otherrep)
|
||
|
return classof(self, other)._fromrep(newrep)
|
||
|
|
||
|
def _eval_scalar_mul(self, other):
|
||
|
rep, other = self._unify_element_sympy(self._rep, other)
|
||
|
return self._fromrep(rep.scalarmul(other))
|
||
|
|
||
|
def _eval_scalar_rmul(self, other):
|
||
|
rep, other = self._unify_element_sympy(self._rep, other)
|
||
|
return self._fromrep(rep.rscalarmul(other))
|
||
|
|
||
|
def _eval_Abs(self):
|
||
|
return self._fromrep(self._rep.applyfunc(abs))
|
||
|
|
||
|
def _eval_conjugate(self):
|
||
|
rep = self._rep
|
||
|
domain = rep.domain
|
||
|
if domain in (ZZ, QQ):
|
||
|
return self.copy()
|
||
|
else:
|
||
|
return self._fromrep(rep.applyfunc(lambda e: e.conjugate()))
|
||
|
|
||
|
def equals(self, other, failing_expression=False):
|
||
|
"""Applies ``equals`` to corresponding elements of the matrices,
|
||
|
trying to prove that the elements are equivalent, returning True
|
||
|
if they are, False if any pair is not, and None (or the first
|
||
|
failing expression if failing_expression is True) if it cannot
|
||
|
be decided if the expressions are equivalent or not. This is, in
|
||
|
general, an expensive operation.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Matrix
|
||
|
>>> from sympy.abc import x
|
||
|
>>> A = Matrix([x*(x - 1), 0])
|
||
|
>>> B = Matrix([x**2 - x, 0])
|
||
|
>>> A == B
|
||
|
False
|
||
|
>>> A.simplify() == B.simplify()
|
||
|
True
|
||
|
>>> A.equals(B)
|
||
|
True
|
||
|
>>> A.equals(2)
|
||
|
False
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
sympy.core.expr.Expr.equals
|
||
|
"""
|
||
|
if self.shape != getattr(other, 'shape', None):
|
||
|
return False
|
||
|
|
||
|
rv = True
|
||
|
for i in range(self.rows):
|
||
|
for j in range(self.cols):
|
||
|
ans = self[i, j].equals(other[i, j], failing_expression)
|
||
|
if ans is False:
|
||
|
return False
|
||
|
elif ans is not True and rv is True:
|
||
|
rv = ans
|
||
|
return rv
|
||
|
|
||
|
|
||
|
class MutableRepMatrix(RepMatrix):
|
||
|
"""Mutable matrix based on DomainMatrix as the internal representation"""
|
||
|
|
||
|
#
|
||
|
# MutableRepMatrix is a subclass of RepMatrix that adds/overrides methods
|
||
|
# to make the instances mutable. MutableRepMatrix is a superclass for both
|
||
|
# MutableDenseMatrix and MutableSparseMatrix.
|
||
|
#
|
||
|
|
||
|
is_zero = False
|
||
|
|
||
|
def __new__(cls, *args, **kwargs):
|
||
|
return cls._new(*args, **kwargs)
|
||
|
|
||
|
@classmethod
|
||
|
def _new(cls, *args, copy=True, **kwargs):
|
||
|
if copy is False:
|
||
|
# The input was rows, cols, [list].
|
||
|
# It should be used directly without creating a copy.
|
||
|
if len(args) != 3:
|
||
|
raise TypeError("'copy=False' requires a matrix be initialized as rows,cols,[list]")
|
||
|
rows, cols, flat_list = args
|
||
|
else:
|
||
|
rows, cols, flat_list = cls._handle_creation_inputs(*args, **kwargs)
|
||
|
flat_list = list(flat_list) # create a shallow copy
|
||
|
|
||
|
rep = cls._flat_list_to_DomainMatrix(rows, cols, flat_list)
|
||
|
|
||
|
return cls._fromrep(rep)
|
||
|
|
||
|
@classmethod
|
||
|
def _fromrep(cls, rep):
|
||
|
obj = super().__new__(cls)
|
||
|
obj.rows, obj.cols = rep.shape
|
||
|
obj._rep = rep
|
||
|
return obj
|
||
|
|
||
|
def copy(self):
|
||
|
return self._fromrep(self._rep.copy())
|
||
|
|
||
|
def as_mutable(self):
|
||
|
return self.copy()
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
"""
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Matrix, I, zeros, ones
|
||
|
>>> m = Matrix(((1, 2+I), (3, 4)))
|
||
|
>>> m
|
||
|
Matrix([
|
||
|
[1, 2 + I],
|
||
|
[3, 4]])
|
||
|
>>> m[1, 0] = 9
|
||
|
>>> m
|
||
|
Matrix([
|
||
|
[1, 2 + I],
|
||
|
[9, 4]])
|
||
|
>>> m[1, 0] = [[0, 1]]
|
||
|
|
||
|
To replace row r you assign to position r*m where m
|
||
|
is the number of columns:
|
||
|
|
||
|
>>> M = zeros(4)
|
||
|
>>> m = M.cols
|
||
|
>>> M[3*m] = ones(1, m)*2; M
|
||
|
Matrix([
|
||
|
[0, 0, 0, 0],
|
||
|
[0, 0, 0, 0],
|
||
|
[0, 0, 0, 0],
|
||
|
[2, 2, 2, 2]])
|
||
|
|
||
|
And to replace column c you can assign to position c:
|
||
|
|
||
|
>>> M[2] = ones(m, 1)*4; M
|
||
|
Matrix([
|
||
|
[0, 0, 4, 0],
|
||
|
[0, 0, 4, 0],
|
||
|
[0, 0, 4, 0],
|
||
|
[2, 2, 4, 2]])
|
||
|
"""
|
||
|
rv = self._setitem(key, value)
|
||
|
if rv is not None:
|
||
|
i, j, value = rv
|
||
|
self._rep, value = self._unify_element_sympy(self._rep, value)
|
||
|
self._rep.rep.setitem(i, j, value)
|
||
|
|
||
|
def _eval_col_del(self, col):
|
||
|
self._rep = DomainMatrix.hstack(self._rep[:,:col], self._rep[:,col+1:])
|
||
|
self.cols -= 1
|
||
|
|
||
|
def _eval_row_del(self, row):
|
||
|
self._rep = DomainMatrix.vstack(self._rep[:row,:], self._rep[row+1:, :])
|
||
|
self.rows -= 1
|
||
|
|
||
|
def _eval_col_insert(self, col, other):
|
||
|
other = self._new(other)
|
||
|
return self.hstack(self[:,:col], other, self[:,col:])
|
||
|
|
||
|
def _eval_row_insert(self, row, other):
|
||
|
other = self._new(other)
|
||
|
return self.vstack(self[:row,:], other, self[row:,:])
|
||
|
|
||
|
def col_op(self, j, f):
|
||
|
"""In-place operation on col j using two-arg functor whose args are
|
||
|
interpreted as (self[i, j], i).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import eye
|
||
|
>>> M = eye(3)
|
||
|
>>> M.col_op(1, lambda v, i: v + 2*M[i, 0]); M
|
||
|
Matrix([
|
||
|
[1, 2, 0],
|
||
|
[0, 1, 0],
|
||
|
[0, 0, 1]])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
col
|
||
|
row_op
|
||
|
"""
|
||
|
for i in range(self.rows):
|
||
|
self[i, j] = f(self[i, j], i)
|
||
|
|
||
|
def col_swap(self, i, j):
|
||
|
"""Swap the two given columns of the matrix in-place.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Matrix
|
||
|
>>> M = Matrix([[1, 0], [1, 0]])
|
||
|
>>> M
|
||
|
Matrix([
|
||
|
[1, 0],
|
||
|
[1, 0]])
|
||
|
>>> M.col_swap(0, 1)
|
||
|
>>> M
|
||
|
Matrix([
|
||
|
[0, 1],
|
||
|
[0, 1]])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
col
|
||
|
row_swap
|
||
|
"""
|
||
|
for k in range(0, self.rows):
|
||
|
self[k, i], self[k, j] = self[k, j], self[k, i]
|
||
|
|
||
|
def row_op(self, i, f):
|
||
|
"""In-place operation on row ``i`` using two-arg functor whose args are
|
||
|
interpreted as ``(self[i, j], j)``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import eye
|
||
|
>>> M = eye(3)
|
||
|
>>> M.row_op(1, lambda v, j: v + 2*M[0, j]); M
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[2, 1, 0],
|
||
|
[0, 0, 1]])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
row
|
||
|
zip_row_op
|
||
|
col_op
|
||
|
|
||
|
"""
|
||
|
for j in range(self.cols):
|
||
|
self[i, j] = f(self[i, j], j)
|
||
|
|
||
|
def row_swap(self, i, j):
|
||
|
"""Swap the two given rows of the matrix in-place.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Matrix
|
||
|
>>> M = Matrix([[0, 1], [1, 0]])
|
||
|
>>> M
|
||
|
Matrix([
|
||
|
[0, 1],
|
||
|
[1, 0]])
|
||
|
>>> M.row_swap(0, 1)
|
||
|
>>> M
|
||
|
Matrix([
|
||
|
[1, 0],
|
||
|
[0, 1]])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
row
|
||
|
col_swap
|
||
|
"""
|
||
|
for k in range(0, self.cols):
|
||
|
self[i, k], self[j, k] = self[j, k], self[i, k]
|
||
|
|
||
|
def zip_row_op(self, i, k, f):
|
||
|
"""In-place operation on row ``i`` using two-arg functor whose args are
|
||
|
interpreted as ``(self[i, j], self[k, j])``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import eye
|
||
|
>>> M = eye(3)
|
||
|
>>> M.zip_row_op(1, 0, lambda v, u: v + 2*u); M
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[2, 1, 0],
|
||
|
[0, 0, 1]])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
row
|
||
|
row_op
|
||
|
col_op
|
||
|
|
||
|
"""
|
||
|
for j in range(self.cols):
|
||
|
self[i, j] = f(self[i, j], self[k, j])
|
||
|
|
||
|
def copyin_list(self, key, value):
|
||
|
"""Copy in elements from a list.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
key : slice
|
||
|
The section of this matrix to replace.
|
||
|
value : iterable
|
||
|
The iterable to copy values from.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import eye
|
||
|
>>> I = eye(3)
|
||
|
>>> I[:2, 0] = [1, 2] # col
|
||
|
>>> I
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[2, 1, 0],
|
||
|
[0, 0, 1]])
|
||
|
>>> I[1, :2] = [[3, 4]]
|
||
|
>>> I
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[3, 4, 0],
|
||
|
[0, 0, 1]])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
copyin_matrix
|
||
|
"""
|
||
|
if not is_sequence(value):
|
||
|
raise TypeError("`value` must be an ordered iterable, not %s." % type(value))
|
||
|
return self.copyin_matrix(key, type(self)(value))
|
||
|
|
||
|
def copyin_matrix(self, key, value):
|
||
|
"""Copy in values from a matrix into the given bounds.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
key : slice
|
||
|
The section of this matrix to replace.
|
||
|
value : Matrix
|
||
|
The matrix to copy values from.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Matrix, eye
|
||
|
>>> M = Matrix([[0, 1], [2, 3], [4, 5]])
|
||
|
>>> I = eye(3)
|
||
|
>>> I[:3, :2] = M
|
||
|
>>> I
|
||
|
Matrix([
|
||
|
[0, 1, 0],
|
||
|
[2, 3, 0],
|
||
|
[4, 5, 1]])
|
||
|
>>> I[0, 1] = M
|
||
|
>>> I
|
||
|
Matrix([
|
||
|
[0, 0, 1],
|
||
|
[2, 2, 3],
|
||
|
[4, 4, 5]])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
copyin_list
|
||
|
"""
|
||
|
rlo, rhi, clo, chi = self.key2bounds(key)
|
||
|
shape = value.shape
|
||
|
dr, dc = rhi - rlo, chi - clo
|
||
|
if shape != (dr, dc):
|
||
|
raise ShapeError(filldedent("The Matrix `value` doesn't have the "
|
||
|
"same dimensions "
|
||
|
"as the in sub-Matrix given by `key`."))
|
||
|
|
||
|
for i in range(value.rows):
|
||
|
for j in range(value.cols):
|
||
|
self[i + rlo, j + clo] = value[i, j]
|
||
|
|
||
|
def fill(self, value):
|
||
|
"""Fill self with the given value.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Unless many values are going to be deleted (i.e. set to zero)
|
||
|
this will create a matrix that is slower than a dense matrix in
|
||
|
operations.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import SparseMatrix
|
||
|
>>> M = SparseMatrix.zeros(3); M
|
||
|
Matrix([
|
||
|
[0, 0, 0],
|
||
|
[0, 0, 0],
|
||
|
[0, 0, 0]])
|
||
|
>>> M.fill(1); M
|
||
|
Matrix([
|
||
|
[1, 1, 1],
|
||
|
[1, 1, 1],
|
||
|
[1, 1, 1]])
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
zeros
|
||
|
ones
|
||
|
"""
|
||
|
value = _sympify(value)
|
||
|
if not value:
|
||
|
self._rep = DomainMatrix.zeros(self.shape, EXRAW)
|
||
|
else:
|
||
|
elements_dod = {i: {j: value for j in range(self.cols)} for i in range(self.rows)}
|
||
|
self._rep = DomainMatrix(elements_dod, self.shape, EXRAW)
|
||
|
|
||
|
|
||
|
def _getitem_RepMatrix(self, key):
|
||
|
"""Return portion of self defined by key. If the key involves a slice
|
||
|
then a list will be returned (if key is a single slice) or a matrix
|
||
|
(if key was a tuple involving a slice).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Matrix, I
|
||
|
>>> m = Matrix([
|
||
|
... [1, 2 + I],
|
||
|
... [3, 4 ]])
|
||
|
|
||
|
If the key is a tuple that does not involve a slice then that element
|
||
|
is returned:
|
||
|
|
||
|
>>> m[1, 0]
|
||
|
3
|
||
|
|
||
|
When a tuple key involves a slice, a matrix is returned. Here, the
|
||
|
first column is selected (all rows, column 0):
|
||
|
|
||
|
>>> m[:, 0]
|
||
|
Matrix([
|
||
|
[1],
|
||
|
[3]])
|
||
|
|
||
|
If the slice is not a tuple then it selects from the underlying
|
||
|
list of elements that are arranged in row order and a list is
|
||
|
returned if a slice is involved:
|
||
|
|
||
|
>>> m[0]
|
||
|
1
|
||
|
>>> m[::2]
|
||
|
[1, 3]
|
||
|
"""
|
||
|
if isinstance(key, tuple):
|
||
|
i, j = key
|
||
|
try:
|
||
|
return self._rep.getitem_sympy(index_(i), index_(j))
|
||
|
except (TypeError, IndexError):
|
||
|
if (isinstance(i, Expr) and not i.is_number) or (isinstance(j, Expr) and not j.is_number):
|
||
|
if ((j < 0) is True) or ((j >= self.shape[1]) is True) or\
|
||
|
((i < 0) is True) or ((i >= self.shape[0]) is True):
|
||
|
raise ValueError("index out of boundary")
|
||
|
from sympy.matrices.expressions.matexpr import MatrixElement
|
||
|
return MatrixElement(self, i, j)
|
||
|
|
||
|
if isinstance(i, slice):
|
||
|
i = range(self.rows)[i]
|
||
|
elif is_sequence(i):
|
||
|
pass
|
||
|
else:
|
||
|
i = [i]
|
||
|
if isinstance(j, slice):
|
||
|
j = range(self.cols)[j]
|
||
|
elif is_sequence(j):
|
||
|
pass
|
||
|
else:
|
||
|
j = [j]
|
||
|
return self.extract(i, j)
|
||
|
|
||
|
else:
|
||
|
# Index/slice like a flattened list
|
||
|
rows, cols = self.shape
|
||
|
|
||
|
# Raise the appropriate exception:
|
||
|
if not rows * cols:
|
||
|
return [][key]
|
||
|
|
||
|
rep = self._rep.rep
|
||
|
domain = rep.domain
|
||
|
is_slice = isinstance(key, slice)
|
||
|
|
||
|
if is_slice:
|
||
|
values = [rep.getitem(*divmod(n, cols)) for n in range(rows * cols)[key]]
|
||
|
else:
|
||
|
values = [rep.getitem(*divmod(index_(key), cols))]
|
||
|
|
||
|
if domain != EXRAW:
|
||
|
to_sympy = domain.to_sympy
|
||
|
values = [to_sympy(val) for val in values]
|
||
|
|
||
|
if is_slice:
|
||
|
return values
|
||
|
else:
|
||
|
return values[0]
|