You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1258 lines
42 KiB
1258 lines
42 KiB
5 months ago
|
"""Transform a string with Python-like source code into SymPy expression. """
|
||
|
|
||
|
from tokenize import (generate_tokens, untokenize, TokenError,
|
||
|
NUMBER, STRING, NAME, OP, ENDMARKER, ERRORTOKEN, NEWLINE)
|
||
|
|
||
|
from keyword import iskeyword
|
||
|
|
||
|
import ast
|
||
|
import unicodedata
|
||
|
from io import StringIO
|
||
|
import builtins
|
||
|
import types
|
||
|
from typing import Tuple as tTuple, Dict as tDict, Any, Callable, \
|
||
|
List, Optional, Union as tUnion
|
||
|
|
||
|
from sympy.assumptions.ask import AssumptionKeys
|
||
|
from sympy.core.basic import Basic
|
||
|
from sympy.core import Symbol
|
||
|
from sympy.core.function import Function
|
||
|
from sympy.utilities.misc import func_name
|
||
|
from sympy.functions.elementary.miscellaneous import Max, Min
|
||
|
|
||
|
|
||
|
null = ''
|
||
|
|
||
|
TOKEN = tTuple[int, str]
|
||
|
DICT = tDict[str, Any]
|
||
|
TRANS = Callable[[List[TOKEN], DICT, DICT], List[TOKEN]]
|
||
|
|
||
|
def _token_splittable(token_name: str) -> bool:
|
||
|
"""
|
||
|
Predicate for whether a token name can be split into multiple tokens.
|
||
|
|
||
|
A token is splittable if it does not contain an underscore character and
|
||
|
it is not the name of a Greek letter. This is used to implicitly convert
|
||
|
expressions like 'xyz' into 'x*y*z'.
|
||
|
"""
|
||
|
if '_' in token_name:
|
||
|
return False
|
||
|
try:
|
||
|
return not unicodedata.lookup('GREEK SMALL LETTER ' + token_name)
|
||
|
except KeyError:
|
||
|
return len(token_name) > 1
|
||
|
|
||
|
|
||
|
def _token_callable(token: TOKEN, local_dict: DICT, global_dict: DICT, nextToken=None):
|
||
|
"""
|
||
|
Predicate for whether a token name represents a callable function.
|
||
|
|
||
|
Essentially wraps ``callable``, but looks up the token name in the
|
||
|
locals and globals.
|
||
|
"""
|
||
|
func = local_dict.get(token[1])
|
||
|
if not func:
|
||
|
func = global_dict.get(token[1])
|
||
|
return callable(func) and not isinstance(func, Symbol)
|
||
|
|
||
|
|
||
|
def _add_factorial_tokens(name: str, result: List[TOKEN]) -> List[TOKEN]:
|
||
|
if result == [] or result[-1][1] == '(':
|
||
|
raise TokenError()
|
||
|
|
||
|
beginning = [(NAME, name), (OP, '(')]
|
||
|
end = [(OP, ')')]
|
||
|
|
||
|
diff = 0
|
||
|
length = len(result)
|
||
|
|
||
|
for index, token in enumerate(result[::-1]):
|
||
|
toknum, tokval = token
|
||
|
i = length - index - 1
|
||
|
|
||
|
if tokval == ')':
|
||
|
diff += 1
|
||
|
elif tokval == '(':
|
||
|
diff -= 1
|
||
|
|
||
|
if diff == 0:
|
||
|
if i - 1 >= 0 and result[i - 1][0] == NAME:
|
||
|
return result[:i - 1] + beginning + result[i - 1:] + end
|
||
|
else:
|
||
|
return result[:i] + beginning + result[i:] + end
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
class ParenthesisGroup(List[TOKEN]):
|
||
|
"""List of tokens representing an expression in parentheses."""
|
||
|
pass
|
||
|
|
||
|
|
||
|
class AppliedFunction:
|
||
|
"""
|
||
|
A group of tokens representing a function and its arguments.
|
||
|
|
||
|
`exponent` is for handling the shorthand sin^2, ln^2, etc.
|
||
|
"""
|
||
|
def __init__(self, function: TOKEN, args: ParenthesisGroup, exponent=None):
|
||
|
if exponent is None:
|
||
|
exponent = []
|
||
|
self.function = function
|
||
|
self.args = args
|
||
|
self.exponent = exponent
|
||
|
self.items = ['function', 'args', 'exponent']
|
||
|
|
||
|
def expand(self) -> List[TOKEN]:
|
||
|
"""Return a list of tokens representing the function"""
|
||
|
return [self.function, *self.args]
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
return getattr(self, self.items[index])
|
||
|
|
||
|
def __repr__(self):
|
||
|
return "AppliedFunction(%s, %s, %s)" % (self.function, self.args,
|
||
|
self.exponent)
|
||
|
|
||
|
|
||
|
def _flatten(result: List[tUnion[TOKEN, AppliedFunction]]):
|
||
|
result2: List[TOKEN] = []
|
||
|
for tok in result:
|
||
|
if isinstance(tok, AppliedFunction):
|
||
|
result2.extend(tok.expand())
|
||
|
else:
|
||
|
result2.append(tok)
|
||
|
return result2
|
||
|
|
||
|
|
||
|
def _group_parentheses(recursor: TRANS):
|
||
|
def _inner(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
|
||
|
"""Group tokens between parentheses with ParenthesisGroup.
|
||
|
|
||
|
Also processes those tokens recursively.
|
||
|
|
||
|
"""
|
||
|
result: List[tUnion[TOKEN, ParenthesisGroup]] = []
|
||
|
stacks: List[ParenthesisGroup] = []
|
||
|
stacklevel = 0
|
||
|
for token in tokens:
|
||
|
if token[0] == OP:
|
||
|
if token[1] == '(':
|
||
|
stacks.append(ParenthesisGroup([]))
|
||
|
stacklevel += 1
|
||
|
elif token[1] == ')':
|
||
|
stacks[-1].append(token)
|
||
|
stack = stacks.pop()
|
||
|
|
||
|
if len(stacks) > 0:
|
||
|
# We don't recurse here since the upper-level stack
|
||
|
# would reprocess these tokens
|
||
|
stacks[-1].extend(stack)
|
||
|
else:
|
||
|
# Recurse here to handle nested parentheses
|
||
|
# Strip off the outer parentheses to avoid an infinite loop
|
||
|
inner = stack[1:-1]
|
||
|
inner = recursor(inner,
|
||
|
local_dict,
|
||
|
global_dict)
|
||
|
parenGroup = [stack[0]] + inner + [stack[-1]]
|
||
|
result.append(ParenthesisGroup(parenGroup))
|
||
|
stacklevel -= 1
|
||
|
continue
|
||
|
if stacklevel:
|
||
|
stacks[-1].append(token)
|
||
|
else:
|
||
|
result.append(token)
|
||
|
if stacklevel:
|
||
|
raise TokenError("Mismatched parentheses")
|
||
|
return result
|
||
|
return _inner
|
||
|
|
||
|
|
||
|
def _apply_functions(tokens: List[tUnion[TOKEN, ParenthesisGroup]], local_dict: DICT, global_dict: DICT):
|
||
|
"""Convert a NAME token + ParenthesisGroup into an AppliedFunction.
|
||
|
|
||
|
Note that ParenthesisGroups, if not applied to any function, are
|
||
|
converted back into lists of tokens.
|
||
|
|
||
|
"""
|
||
|
result: List[tUnion[TOKEN, AppliedFunction]] = []
|
||
|
symbol = None
|
||
|
for tok in tokens:
|
||
|
if isinstance(tok, ParenthesisGroup):
|
||
|
if symbol and _token_callable(symbol, local_dict, global_dict):
|
||
|
result[-1] = AppliedFunction(symbol, tok)
|
||
|
symbol = None
|
||
|
else:
|
||
|
result.extend(tok)
|
||
|
elif tok[0] == NAME:
|
||
|
symbol = tok
|
||
|
result.append(tok)
|
||
|
else:
|
||
|
symbol = None
|
||
|
result.append(tok)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _implicit_multiplication(tokens: List[tUnion[TOKEN, AppliedFunction]], local_dict: DICT, global_dict: DICT):
|
||
|
"""Implicitly adds '*' tokens.
|
||
|
|
||
|
Cases:
|
||
|
|
||
|
- Two AppliedFunctions next to each other ("sin(x)cos(x)")
|
||
|
|
||
|
- AppliedFunction next to an open parenthesis ("sin x (cos x + 1)")
|
||
|
|
||
|
- A close parenthesis next to an AppliedFunction ("(x+2)sin x")\
|
||
|
|
||
|
- A close parenthesis next to an open parenthesis ("(x+2)(x+3)")
|
||
|
|
||
|
- AppliedFunction next to an implicitly applied function ("sin(x)cos x")
|
||
|
|
||
|
"""
|
||
|
result: List[tUnion[TOKEN, AppliedFunction]] = []
|
||
|
skip = False
|
||
|
for tok, nextTok in zip(tokens, tokens[1:]):
|
||
|
result.append(tok)
|
||
|
if skip:
|
||
|
skip = False
|
||
|
continue
|
||
|
if tok[0] == OP and tok[1] == '.' and nextTok[0] == NAME:
|
||
|
# Dotted name. Do not do implicit multiplication
|
||
|
skip = True
|
||
|
continue
|
||
|
if isinstance(tok, AppliedFunction):
|
||
|
if isinstance(nextTok, AppliedFunction):
|
||
|
result.append((OP, '*'))
|
||
|
elif nextTok == (OP, '('):
|
||
|
# Applied function followed by an open parenthesis
|
||
|
if tok.function[1] == "Function":
|
||
|
tok.function = (tok.function[0], 'Symbol')
|
||
|
result.append((OP, '*'))
|
||
|
elif nextTok[0] == NAME:
|
||
|
# Applied function followed by implicitly applied function
|
||
|
result.append((OP, '*'))
|
||
|
else:
|
||
|
if tok == (OP, ')'):
|
||
|
if isinstance(nextTok, AppliedFunction):
|
||
|
# Close parenthesis followed by an applied function
|
||
|
result.append((OP, '*'))
|
||
|
elif nextTok[0] == NAME:
|
||
|
# Close parenthesis followed by an implicitly applied function
|
||
|
result.append((OP, '*'))
|
||
|
elif nextTok == (OP, '('):
|
||
|
# Close parenthesis followed by an open parenthesis
|
||
|
result.append((OP, '*'))
|
||
|
elif tok[0] == NAME and not _token_callable(tok, local_dict, global_dict):
|
||
|
if isinstance(nextTok, AppliedFunction) or \
|
||
|
(nextTok[0] == NAME and _token_callable(nextTok, local_dict, global_dict)):
|
||
|
# Constant followed by (implicitly applied) function
|
||
|
result.append((OP, '*'))
|
||
|
elif nextTok == (OP, '('):
|
||
|
# Constant followed by parenthesis
|
||
|
result.append((OP, '*'))
|
||
|
elif nextTok[0] == NAME:
|
||
|
# Constant followed by constant
|
||
|
result.append((OP, '*'))
|
||
|
if tokens:
|
||
|
result.append(tokens[-1])
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _implicit_application(tokens: List[tUnion[TOKEN, AppliedFunction]], local_dict: DICT, global_dict: DICT):
|
||
|
"""Adds parentheses as needed after functions."""
|
||
|
result: List[tUnion[TOKEN, AppliedFunction]] = []
|
||
|
appendParen = 0 # number of closing parentheses to add
|
||
|
skip = 0 # number of tokens to delay before adding a ')' (to
|
||
|
# capture **, ^, etc.)
|
||
|
exponentSkip = False # skipping tokens before inserting parentheses to
|
||
|
# work with function exponentiation
|
||
|
for tok, nextTok in zip(tokens, tokens[1:]):
|
||
|
result.append(tok)
|
||
|
if (tok[0] == NAME and nextTok[0] not in [OP, ENDMARKER, NEWLINE]):
|
||
|
if _token_callable(tok, local_dict, global_dict, nextTok): # type: ignore
|
||
|
result.append((OP, '('))
|
||
|
appendParen += 1
|
||
|
# name followed by exponent - function exponentiation
|
||
|
elif (tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**'):
|
||
|
if _token_callable(tok, local_dict, global_dict): # type: ignore
|
||
|
exponentSkip = True
|
||
|
elif exponentSkip:
|
||
|
# if the last token added was an applied function (i.e. the
|
||
|
# power of the function exponent) OR a multiplication (as
|
||
|
# implicit multiplication would have added an extraneous
|
||
|
# multiplication)
|
||
|
if (isinstance(tok, AppliedFunction)
|
||
|
or (tok[0] == OP and tok[1] == '*')):
|
||
|
# don't add anything if the next token is a multiplication
|
||
|
# or if there's already a parenthesis (if parenthesis, still
|
||
|
# stop skipping tokens)
|
||
|
if not (nextTok[0] == OP and nextTok[1] == '*'):
|
||
|
if not(nextTok[0] == OP and nextTok[1] == '('):
|
||
|
result.append((OP, '('))
|
||
|
appendParen += 1
|
||
|
exponentSkip = False
|
||
|
elif appendParen:
|
||
|
if nextTok[0] == OP and nextTok[1] in ('^', '**', '*'):
|
||
|
skip = 1
|
||
|
continue
|
||
|
if skip:
|
||
|
skip -= 1
|
||
|
continue
|
||
|
result.append((OP, ')'))
|
||
|
appendParen -= 1
|
||
|
|
||
|
if tokens:
|
||
|
result.append(tokens[-1])
|
||
|
|
||
|
if appendParen:
|
||
|
result.extend([(OP, ')')] * appendParen)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def function_exponentiation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
|
||
|
"""Allows functions to be exponentiated, e.g. ``cos**2(x)``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.parsing.sympy_parser import (parse_expr,
|
||
|
... standard_transformations, function_exponentiation)
|
||
|
>>> transformations = standard_transformations + (function_exponentiation,)
|
||
|
>>> parse_expr('sin**4(x)', transformations=transformations)
|
||
|
sin(x)**4
|
||
|
"""
|
||
|
result: List[TOKEN] = []
|
||
|
exponent: List[TOKEN] = []
|
||
|
consuming_exponent = False
|
||
|
level = 0
|
||
|
for tok, nextTok in zip(tokens, tokens[1:]):
|
||
|
if tok[0] == NAME and nextTok[0] == OP and nextTok[1] == '**':
|
||
|
if _token_callable(tok, local_dict, global_dict):
|
||
|
consuming_exponent = True
|
||
|
elif consuming_exponent:
|
||
|
if tok[0] == NAME and tok[1] == 'Function':
|
||
|
tok = (NAME, 'Symbol')
|
||
|
exponent.append(tok)
|
||
|
|
||
|
# only want to stop after hitting )
|
||
|
if tok[0] == nextTok[0] == OP and tok[1] == ')' and nextTok[1] == '(':
|
||
|
consuming_exponent = False
|
||
|
# if implicit multiplication was used, we may have )*( instead
|
||
|
if tok[0] == nextTok[0] == OP and tok[1] == '*' and nextTok[1] == '(':
|
||
|
consuming_exponent = False
|
||
|
del exponent[-1]
|
||
|
continue
|
||
|
elif exponent and not consuming_exponent:
|
||
|
if tok[0] == OP:
|
||
|
if tok[1] == '(':
|
||
|
level += 1
|
||
|
elif tok[1] == ')':
|
||
|
level -= 1
|
||
|
if level == 0:
|
||
|
result.append(tok)
|
||
|
result.extend(exponent)
|
||
|
exponent = []
|
||
|
continue
|
||
|
result.append(tok)
|
||
|
if tokens:
|
||
|
result.append(tokens[-1])
|
||
|
if exponent:
|
||
|
result.extend(exponent)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def split_symbols_custom(predicate: Callable[[str], bool]):
|
||
|
"""Creates a transformation that splits symbol names.
|
||
|
|
||
|
``predicate`` should return True if the symbol name is to be split.
|
||
|
|
||
|
For instance, to retain the default behavior but avoid splitting certain
|
||
|
symbol names, a predicate like this would work:
|
||
|
|
||
|
|
||
|
>>> from sympy.parsing.sympy_parser import (parse_expr, _token_splittable,
|
||
|
... standard_transformations, implicit_multiplication,
|
||
|
... split_symbols_custom)
|
||
|
>>> def can_split(symbol):
|
||
|
... if symbol not in ('list', 'of', 'unsplittable', 'names'):
|
||
|
... return _token_splittable(symbol)
|
||
|
... return False
|
||
|
...
|
||
|
>>> transformation = split_symbols_custom(can_split)
|
||
|
>>> parse_expr('unsplittable', transformations=standard_transformations +
|
||
|
... (transformation, implicit_multiplication))
|
||
|
unsplittable
|
||
|
"""
|
||
|
def _split_symbols(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
|
||
|
result: List[TOKEN] = []
|
||
|
split = False
|
||
|
split_previous=False
|
||
|
|
||
|
for tok in tokens:
|
||
|
if split_previous:
|
||
|
# throw out closing parenthesis of Symbol that was split
|
||
|
split_previous=False
|
||
|
continue
|
||
|
split_previous=False
|
||
|
|
||
|
if tok[0] == NAME and tok[1] in ['Symbol', 'Function']:
|
||
|
split = True
|
||
|
|
||
|
elif split and tok[0] == NAME:
|
||
|
symbol = tok[1][1:-1]
|
||
|
|
||
|
if predicate(symbol):
|
||
|
tok_type = result[-2][1] # Symbol or Function
|
||
|
del result[-2:] # Get rid of the call to Symbol
|
||
|
|
||
|
i = 0
|
||
|
while i < len(symbol):
|
||
|
char = symbol[i]
|
||
|
if char in local_dict or char in global_dict:
|
||
|
result.append((NAME, "%s" % char))
|
||
|
elif char.isdigit():
|
||
|
chars = [char]
|
||
|
for i in range(i + 1, len(symbol)):
|
||
|
if not symbol[i].isdigit():
|
||
|
i -= 1
|
||
|
break
|
||
|
chars.append(symbol[i])
|
||
|
char = ''.join(chars)
|
||
|
result.extend([(NAME, 'Number'), (OP, '('),
|
||
|
(NAME, "'%s'" % char), (OP, ')')])
|
||
|
else:
|
||
|
use = tok_type if i == len(symbol) else 'Symbol'
|
||
|
result.extend([(NAME, use), (OP, '('),
|
||
|
(NAME, "'%s'" % char), (OP, ')')])
|
||
|
i += 1
|
||
|
|
||
|
# Set split_previous=True so will skip
|
||
|
# the closing parenthesis of the original Symbol
|
||
|
split = False
|
||
|
split_previous = True
|
||
|
continue
|
||
|
|
||
|
else:
|
||
|
split = False
|
||
|
|
||
|
result.append(tok)
|
||
|
|
||
|
return result
|
||
|
|
||
|
return _split_symbols
|
||
|
|
||
|
|
||
|
#: Splits symbol names for implicit multiplication.
|
||
|
#:
|
||
|
#: Intended to let expressions like ``xyz`` be parsed as ``x*y*z``. Does not
|
||
|
#: split Greek character names, so ``theta`` will *not* become
|
||
|
#: ``t*h*e*t*a``. Generally this should be used with
|
||
|
#: ``implicit_multiplication``.
|
||
|
split_symbols = split_symbols_custom(_token_splittable)
|
||
|
|
||
|
|
||
|
def implicit_multiplication(tokens: List[TOKEN], local_dict: DICT,
|
||
|
global_dict: DICT) -> List[TOKEN]:
|
||
|
"""Makes the multiplication operator optional in most cases.
|
||
|
|
||
|
Use this before :func:`implicit_application`, otherwise expressions like
|
||
|
``sin 2x`` will be parsed as ``x * sin(2)`` rather than ``sin(2*x)``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.parsing.sympy_parser import (parse_expr,
|
||
|
... standard_transformations, implicit_multiplication)
|
||
|
>>> transformations = standard_transformations + (implicit_multiplication,)
|
||
|
>>> parse_expr('3 x y', transformations=transformations)
|
||
|
3*x*y
|
||
|
"""
|
||
|
# These are interdependent steps, so we don't expose them separately
|
||
|
res1 = _group_parentheses(implicit_multiplication)(tokens, local_dict, global_dict)
|
||
|
res2 = _apply_functions(res1, local_dict, global_dict)
|
||
|
res3 = _implicit_multiplication(res2, local_dict, global_dict)
|
||
|
result = _flatten(res3)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def implicit_application(tokens: List[TOKEN], local_dict: DICT,
|
||
|
global_dict: DICT) -> List[TOKEN]:
|
||
|
"""Makes parentheses optional in some cases for function calls.
|
||
|
|
||
|
Use this after :func:`implicit_multiplication`, otherwise expressions
|
||
|
like ``sin 2x`` will be parsed as ``x * sin(2)`` rather than
|
||
|
``sin(2*x)``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.parsing.sympy_parser import (parse_expr,
|
||
|
... standard_transformations, implicit_application)
|
||
|
>>> transformations = standard_transformations + (implicit_application,)
|
||
|
>>> parse_expr('cot z + csc z', transformations=transformations)
|
||
|
cot(z) + csc(z)
|
||
|
"""
|
||
|
res1 = _group_parentheses(implicit_application)(tokens, local_dict, global_dict)
|
||
|
res2 = _apply_functions(res1, local_dict, global_dict)
|
||
|
res3 = _implicit_application(res2, local_dict, global_dict)
|
||
|
result = _flatten(res3)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def implicit_multiplication_application(result: List[TOKEN], local_dict: DICT,
|
||
|
global_dict: DICT) -> List[TOKEN]:
|
||
|
"""Allows a slightly relaxed syntax.
|
||
|
|
||
|
- Parentheses for single-argument method calls are optional.
|
||
|
|
||
|
- Multiplication is implicit.
|
||
|
|
||
|
- Symbol names can be split (i.e. spaces are not needed between
|
||
|
symbols).
|
||
|
|
||
|
- Functions can be exponentiated.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.parsing.sympy_parser import (parse_expr,
|
||
|
... standard_transformations, implicit_multiplication_application)
|
||
|
>>> parse_expr("10sin**2 x**2 + 3xyz + tan theta",
|
||
|
... transformations=(standard_transformations +
|
||
|
... (implicit_multiplication_application,)))
|
||
|
3*x*y*z + 10*sin(x**2)**2 + tan(theta)
|
||
|
|
||
|
"""
|
||
|
for step in (split_symbols, implicit_multiplication,
|
||
|
implicit_application, function_exponentiation):
|
||
|
result = step(result, local_dict, global_dict)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def auto_symbol(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
|
||
|
"""Inserts calls to ``Symbol``/``Function`` for undefined variables."""
|
||
|
result: List[TOKEN] = []
|
||
|
prevTok = (-1, '')
|
||
|
|
||
|
tokens.append((-1, '')) # so zip traverses all tokens
|
||
|
for tok, nextTok in zip(tokens, tokens[1:]):
|
||
|
tokNum, tokVal = tok
|
||
|
nextTokNum, nextTokVal = nextTok
|
||
|
if tokNum == NAME:
|
||
|
name = tokVal
|
||
|
|
||
|
if (name in ['True', 'False', 'None']
|
||
|
or iskeyword(name)
|
||
|
# Don't convert attribute access
|
||
|
or (prevTok[0] == OP and prevTok[1] == '.')
|
||
|
# Don't convert keyword arguments
|
||
|
or (prevTok[0] == OP and prevTok[1] in ('(', ',')
|
||
|
and nextTokNum == OP and nextTokVal == '=')
|
||
|
# the name has already been defined
|
||
|
or name in local_dict and local_dict[name] is not null):
|
||
|
result.append((NAME, name))
|
||
|
continue
|
||
|
elif name in local_dict:
|
||
|
local_dict.setdefault(null, set()).add(name)
|
||
|
if nextTokVal == '(':
|
||
|
local_dict[name] = Function(name)
|
||
|
else:
|
||
|
local_dict[name] = Symbol(name)
|
||
|
result.append((NAME, name))
|
||
|
continue
|
||
|
elif name in global_dict:
|
||
|
obj = global_dict[name]
|
||
|
if isinstance(obj, (AssumptionKeys, Basic, type)) or callable(obj):
|
||
|
result.append((NAME, name))
|
||
|
continue
|
||
|
|
||
|
result.extend([
|
||
|
(NAME, 'Symbol' if nextTokVal != '(' else 'Function'),
|
||
|
(OP, '('),
|
||
|
(NAME, repr(str(name))),
|
||
|
(OP, ')'),
|
||
|
])
|
||
|
else:
|
||
|
result.append((tokNum, tokVal))
|
||
|
|
||
|
prevTok = (tokNum, tokVal)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def lambda_notation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
|
||
|
"""Substitutes "lambda" with its SymPy equivalent Lambda().
|
||
|
However, the conversion does not take place if only "lambda"
|
||
|
is passed because that is a syntax error.
|
||
|
|
||
|
"""
|
||
|
result: List[TOKEN] = []
|
||
|
flag = False
|
||
|
toknum, tokval = tokens[0]
|
||
|
tokLen = len(tokens)
|
||
|
|
||
|
if toknum == NAME and tokval == 'lambda':
|
||
|
if tokLen == 2 or tokLen == 3 and tokens[1][0] == NEWLINE:
|
||
|
# In Python 3.6.7+, inputs without a newline get NEWLINE added to
|
||
|
# the tokens
|
||
|
result.extend(tokens)
|
||
|
elif tokLen > 2:
|
||
|
result.extend([
|
||
|
(NAME, 'Lambda'),
|
||
|
(OP, '('),
|
||
|
(OP, '('),
|
||
|
(OP, ')'),
|
||
|
(OP, ')'),
|
||
|
])
|
||
|
for tokNum, tokVal in tokens[1:]:
|
||
|
if tokNum == OP and tokVal == ':':
|
||
|
tokVal = ','
|
||
|
flag = True
|
||
|
if not flag and tokNum == OP and tokVal in ('*', '**'):
|
||
|
raise TokenError("Starred arguments in lambda not supported")
|
||
|
if flag:
|
||
|
result.insert(-1, (tokNum, tokVal))
|
||
|
else:
|
||
|
result.insert(-2, (tokNum, tokVal))
|
||
|
else:
|
||
|
result.extend(tokens)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def factorial_notation(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
|
||
|
"""Allows standard notation for factorial."""
|
||
|
result: List[TOKEN] = []
|
||
|
nfactorial = 0
|
||
|
for toknum, tokval in tokens:
|
||
|
if toknum == OP and tokval == "!":
|
||
|
# In Python 3.12 "!" are OP instead of ERRORTOKEN
|
||
|
nfactorial += 1
|
||
|
elif toknum == ERRORTOKEN:
|
||
|
op = tokval
|
||
|
if op == '!':
|
||
|
nfactorial += 1
|
||
|
else:
|
||
|
nfactorial = 0
|
||
|
result.append((OP, op))
|
||
|
else:
|
||
|
if nfactorial == 1:
|
||
|
result = _add_factorial_tokens('factorial', result)
|
||
|
elif nfactorial == 2:
|
||
|
result = _add_factorial_tokens('factorial2', result)
|
||
|
elif nfactorial > 2:
|
||
|
raise TokenError
|
||
|
nfactorial = 0
|
||
|
result.append((toknum, tokval))
|
||
|
return result
|
||
|
|
||
|
|
||
|
def convert_xor(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
|
||
|
"""Treats XOR, ``^``, as exponentiation, ``**``."""
|
||
|
result: List[TOKEN] = []
|
||
|
for toknum, tokval in tokens:
|
||
|
if toknum == OP:
|
||
|
if tokval == '^':
|
||
|
result.append((OP, '**'))
|
||
|
else:
|
||
|
result.append((toknum, tokval))
|
||
|
else:
|
||
|
result.append((toknum, tokval))
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def repeated_decimals(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
|
||
|
"""
|
||
|
Allows 0.2[1] notation to represent the repeated decimal 0.2111... (19/90)
|
||
|
|
||
|
Run this before auto_number.
|
||
|
|
||
|
"""
|
||
|
result: List[TOKEN] = []
|
||
|
|
||
|
def is_digit(s):
|
||
|
return all(i in '0123456789_' for i in s)
|
||
|
|
||
|
# num will running match any DECIMAL [ INTEGER ]
|
||
|
num: List[TOKEN] = []
|
||
|
for toknum, tokval in tokens:
|
||
|
if toknum == NUMBER:
|
||
|
if (not num and '.' in tokval and 'e' not in tokval.lower() and
|
||
|
'j' not in tokval.lower()):
|
||
|
num.append((toknum, tokval))
|
||
|
elif is_digit(tokval)and len(num) == 2:
|
||
|
num.append((toknum, tokval))
|
||
|
elif is_digit(tokval) and len(num) == 3 and is_digit(num[-1][1]):
|
||
|
# Python 2 tokenizes 00123 as '00', '123'
|
||
|
# Python 3 tokenizes 01289 as '012', '89'
|
||
|
num.append((toknum, tokval))
|
||
|
else:
|
||
|
num = []
|
||
|
elif toknum == OP:
|
||
|
if tokval == '[' and len(num) == 1:
|
||
|
num.append((OP, tokval))
|
||
|
elif tokval == ']' and len(num) >= 3:
|
||
|
num.append((OP, tokval))
|
||
|
elif tokval == '.' and not num:
|
||
|
# handle .[1]
|
||
|
num.append((NUMBER, '0.'))
|
||
|
else:
|
||
|
num = []
|
||
|
else:
|
||
|
num = []
|
||
|
|
||
|
result.append((toknum, tokval))
|
||
|
|
||
|
if num and num[-1][1] == ']':
|
||
|
# pre.post[repetend] = a + b/c + d/e where a = pre, b/c = post,
|
||
|
# and d/e = repetend
|
||
|
result = result[:-len(num)]
|
||
|
pre, post = num[0][1].split('.')
|
||
|
repetend = num[2][1]
|
||
|
if len(num) == 5:
|
||
|
repetend += num[3][1]
|
||
|
|
||
|
pre = pre.replace('_', '')
|
||
|
post = post.replace('_', '')
|
||
|
repetend = repetend.replace('_', '')
|
||
|
|
||
|
zeros = '0'*len(post)
|
||
|
post, repetends = [w.lstrip('0') for w in [post, repetend]]
|
||
|
# or else interpreted as octal
|
||
|
|
||
|
a = pre or '0'
|
||
|
b, c = post or '0', '1' + zeros
|
||
|
d, e = repetends, ('9'*len(repetend)) + zeros
|
||
|
|
||
|
seq = [
|
||
|
(OP, '('),
|
||
|
(NAME, 'Integer'),
|
||
|
(OP, '('),
|
||
|
(NUMBER, a),
|
||
|
(OP, ')'),
|
||
|
(OP, '+'),
|
||
|
(NAME, 'Rational'),
|
||
|
(OP, '('),
|
||
|
(NUMBER, b),
|
||
|
(OP, ','),
|
||
|
(NUMBER, c),
|
||
|
(OP, ')'),
|
||
|
(OP, '+'),
|
||
|
(NAME, 'Rational'),
|
||
|
(OP, '('),
|
||
|
(NUMBER, d),
|
||
|
(OP, ','),
|
||
|
(NUMBER, e),
|
||
|
(OP, ')'),
|
||
|
(OP, ')'),
|
||
|
]
|
||
|
result.extend(seq)
|
||
|
num = []
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def auto_number(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
|
||
|
"""
|
||
|
Converts numeric literals to use SymPy equivalents.
|
||
|
|
||
|
Complex numbers use ``I``, integer literals use ``Integer``, and float
|
||
|
literals use ``Float``.
|
||
|
|
||
|
"""
|
||
|
result: List[TOKEN] = []
|
||
|
|
||
|
for toknum, tokval in tokens:
|
||
|
if toknum == NUMBER:
|
||
|
number = tokval
|
||
|
postfix = []
|
||
|
|
||
|
if number.endswith('j') or number.endswith('J'):
|
||
|
number = number[:-1]
|
||
|
postfix = [(OP, '*'), (NAME, 'I')]
|
||
|
|
||
|
if '.' in number or (('e' in number or 'E' in number) and
|
||
|
not (number.startswith('0x') or number.startswith('0X'))):
|
||
|
seq = [(NAME, 'Float'), (OP, '('),
|
||
|
(NUMBER, repr(str(number))), (OP, ')')]
|
||
|
else:
|
||
|
seq = [(NAME, 'Integer'), (OP, '('), (
|
||
|
NUMBER, number), (OP, ')')]
|
||
|
|
||
|
result.extend(seq + postfix)
|
||
|
else:
|
||
|
result.append((toknum, tokval))
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def rationalize(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
|
||
|
"""Converts floats into ``Rational``. Run AFTER ``auto_number``."""
|
||
|
result: List[TOKEN] = []
|
||
|
passed_float = False
|
||
|
for toknum, tokval in tokens:
|
||
|
if toknum == NAME:
|
||
|
if tokval == 'Float':
|
||
|
passed_float = True
|
||
|
tokval = 'Rational'
|
||
|
result.append((toknum, tokval))
|
||
|
elif passed_float == True and toknum == NUMBER:
|
||
|
passed_float = False
|
||
|
result.append((STRING, tokval))
|
||
|
else:
|
||
|
result.append((toknum, tokval))
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _transform_equals_sign(tokens: List[TOKEN], local_dict: DICT, global_dict: DICT):
|
||
|
"""Transforms the equals sign ``=`` to instances of Eq.
|
||
|
|
||
|
This is a helper function for ``convert_equals_signs``.
|
||
|
Works with expressions containing one equals sign and no
|
||
|
nesting. Expressions like ``(1=2)=False`` will not work with this
|
||
|
and should be used with ``convert_equals_signs``.
|
||
|
|
||
|
Examples: 1=2 to Eq(1,2)
|
||
|
1*2=x to Eq(1*2, x)
|
||
|
|
||
|
This does not deal with function arguments yet.
|
||
|
|
||
|
"""
|
||
|
result: List[TOKEN] = []
|
||
|
if (OP, "=") in tokens:
|
||
|
result.append((NAME, "Eq"))
|
||
|
result.append((OP, "("))
|
||
|
for token in tokens:
|
||
|
if token == (OP, "="):
|
||
|
result.append((OP, ","))
|
||
|
continue
|
||
|
result.append(token)
|
||
|
result.append((OP, ")"))
|
||
|
else:
|
||
|
result = tokens
|
||
|
return result
|
||
|
|
||
|
|
||
|
def convert_equals_signs(tokens: List[TOKEN], local_dict: DICT,
|
||
|
global_dict: DICT) -> List[TOKEN]:
|
||
|
""" Transforms all the equals signs ``=`` to instances of Eq.
|
||
|
|
||
|
Parses the equals signs in the expression and replaces them with
|
||
|
appropriate Eq instances. Also works with nested equals signs.
|
||
|
|
||
|
Does not yet play well with function arguments.
|
||
|
For example, the expression ``(x=y)`` is ambiguous and can be interpreted
|
||
|
as x being an argument to a function and ``convert_equals_signs`` will not
|
||
|
work for this.
|
||
|
|
||
|
See also
|
||
|
========
|
||
|
convert_equality_operators
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.parsing.sympy_parser import (parse_expr,
|
||
|
... standard_transformations, convert_equals_signs)
|
||
|
>>> parse_expr("1*2=x", transformations=(
|
||
|
... standard_transformations + (convert_equals_signs,)))
|
||
|
Eq(2, x)
|
||
|
>>> parse_expr("(1*2=x)=False", transformations=(
|
||
|
... standard_transformations + (convert_equals_signs,)))
|
||
|
Eq(Eq(2, x), False)
|
||
|
|
||
|
"""
|
||
|
res1 = _group_parentheses(convert_equals_signs)(tokens, local_dict, global_dict)
|
||
|
res2 = _apply_functions(res1, local_dict, global_dict)
|
||
|
res3 = _transform_equals_sign(res2, local_dict, global_dict)
|
||
|
result = _flatten(res3)
|
||
|
return result
|
||
|
|
||
|
|
||
|
#: Standard transformations for :func:`parse_expr`.
|
||
|
#: Inserts calls to :class:`~.Symbol`, :class:`~.Integer`, and other SymPy
|
||
|
#: datatypes and allows the use of standard factorial notation (e.g. ``x!``).
|
||
|
standard_transformations: tTuple[TRANS, ...] \
|
||
|
= (lambda_notation, auto_symbol, repeated_decimals, auto_number,
|
||
|
factorial_notation)
|
||
|
|
||
|
|
||
|
def stringify_expr(s: str, local_dict: DICT, global_dict: DICT,
|
||
|
transformations: tTuple[TRANS, ...]) -> str:
|
||
|
"""
|
||
|
Converts the string ``s`` to Python code, in ``local_dict``
|
||
|
|
||
|
Generally, ``parse_expr`` should be used.
|
||
|
"""
|
||
|
|
||
|
tokens = []
|
||
|
input_code = StringIO(s.strip())
|
||
|
for toknum, tokval, _, _, _ in generate_tokens(input_code.readline):
|
||
|
tokens.append((toknum, tokval))
|
||
|
|
||
|
for transform in transformations:
|
||
|
tokens = transform(tokens, local_dict, global_dict)
|
||
|
|
||
|
return untokenize(tokens)
|
||
|
|
||
|
|
||
|
def eval_expr(code, local_dict: DICT, global_dict: DICT):
|
||
|
"""
|
||
|
Evaluate Python code generated by ``stringify_expr``.
|
||
|
|
||
|
Generally, ``parse_expr`` should be used.
|
||
|
"""
|
||
|
expr = eval(
|
||
|
code, global_dict, local_dict) # take local objects in preference
|
||
|
return expr
|
||
|
|
||
|
|
||
|
def parse_expr(s: str, local_dict: Optional[DICT] = None,
|
||
|
transformations: tUnion[tTuple[TRANS, ...], str] \
|
||
|
= standard_transformations,
|
||
|
global_dict: Optional[DICT] = None, evaluate=True):
|
||
|
"""Converts the string ``s`` to a SymPy expression, in ``local_dict``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
s : str
|
||
|
The string to parse.
|
||
|
|
||
|
local_dict : dict, optional
|
||
|
A dictionary of local variables to use when parsing.
|
||
|
|
||
|
global_dict : dict, optional
|
||
|
A dictionary of global variables. By default, this is initialized
|
||
|
with ``from sympy import *``; provide this parameter to override
|
||
|
this behavior (for instance, to parse ``"Q & S"``).
|
||
|
|
||
|
transformations : tuple or str
|
||
|
A tuple of transformation functions used to modify the tokens of the
|
||
|
parsed expression before evaluation. The default transformations
|
||
|
convert numeric literals into their SymPy equivalents, convert
|
||
|
undefined variables into SymPy symbols, and allow the use of standard
|
||
|
mathematical factorial notation (e.g. ``x!``). Selection via
|
||
|
string is available (see below).
|
||
|
|
||
|
evaluate : bool, optional
|
||
|
When False, the order of the arguments will remain as they were in the
|
||
|
string and automatic simplification that would normally occur is
|
||
|
suppressed. (see examples)
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.parsing.sympy_parser import parse_expr
|
||
|
>>> parse_expr("1/2")
|
||
|
1/2
|
||
|
>>> type(_)
|
||
|
<class 'sympy.core.numbers.Half'>
|
||
|
>>> from sympy.parsing.sympy_parser import standard_transformations,\\
|
||
|
... implicit_multiplication_application
|
||
|
>>> transformations = (standard_transformations +
|
||
|
... (implicit_multiplication_application,))
|
||
|
>>> parse_expr("2x", transformations=transformations)
|
||
|
2*x
|
||
|
|
||
|
When evaluate=False, some automatic simplifications will not occur:
|
||
|
|
||
|
>>> parse_expr("2**3"), parse_expr("2**3", evaluate=False)
|
||
|
(8, 2**3)
|
||
|
|
||
|
In addition the order of the arguments will not be made canonical.
|
||
|
This feature allows one to tell exactly how the expression was entered:
|
||
|
|
||
|
>>> a = parse_expr('1 + x', evaluate=False)
|
||
|
>>> b = parse_expr('x + 1', evaluate=0)
|
||
|
>>> a == b
|
||
|
False
|
||
|
>>> a.args
|
||
|
(1, x)
|
||
|
>>> b.args
|
||
|
(x, 1)
|
||
|
|
||
|
Note, however, that when these expressions are printed they will
|
||
|
appear the same:
|
||
|
|
||
|
>>> assert str(a) == str(b)
|
||
|
|
||
|
As a convenience, transformations can be seen by printing ``transformations``:
|
||
|
|
||
|
>>> from sympy.parsing.sympy_parser import transformations
|
||
|
|
||
|
>>> print(transformations)
|
||
|
0: lambda_notation
|
||
|
1: auto_symbol
|
||
|
2: repeated_decimals
|
||
|
3: auto_number
|
||
|
4: factorial_notation
|
||
|
5: implicit_multiplication_application
|
||
|
6: convert_xor
|
||
|
7: implicit_application
|
||
|
8: implicit_multiplication
|
||
|
9: convert_equals_signs
|
||
|
10: function_exponentiation
|
||
|
11: rationalize
|
||
|
|
||
|
The ``T`` object provides a way to select these transformations:
|
||
|
|
||
|
>>> from sympy.parsing.sympy_parser import T
|
||
|
|
||
|
If you print it, you will see the same list as shown above.
|
||
|
|
||
|
>>> str(T) == str(transformations)
|
||
|
True
|
||
|
|
||
|
Standard slicing will return a tuple of transformations:
|
||
|
|
||
|
>>> T[:5] == standard_transformations
|
||
|
True
|
||
|
|
||
|
So ``T`` can be used to specify the parsing transformations:
|
||
|
|
||
|
>>> parse_expr("2x", transformations=T[:5])
|
||
|
Traceback (most recent call last):
|
||
|
...
|
||
|
SyntaxError: invalid syntax
|
||
|
>>> parse_expr("2x", transformations=T[:6])
|
||
|
2*x
|
||
|
>>> parse_expr('.3', transformations=T[3, 11])
|
||
|
3/10
|
||
|
>>> parse_expr('.3x', transformations=T[:])
|
||
|
3*x/10
|
||
|
|
||
|
As a further convenience, strings 'implicit' and 'all' can be used
|
||
|
to select 0-5 and all the transformations, respectively.
|
||
|
|
||
|
>>> parse_expr('.3x', transformations='all')
|
||
|
3*x/10
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
stringify_expr, eval_expr, standard_transformations,
|
||
|
implicit_multiplication_application
|
||
|
|
||
|
"""
|
||
|
|
||
|
if local_dict is None:
|
||
|
local_dict = {}
|
||
|
elif not isinstance(local_dict, dict):
|
||
|
raise TypeError('expecting local_dict to be a dict')
|
||
|
elif null in local_dict:
|
||
|
raise ValueError('cannot use "" in local_dict')
|
||
|
|
||
|
if global_dict is None:
|
||
|
global_dict = {}
|
||
|
exec('from sympy import *', global_dict)
|
||
|
|
||
|
builtins_dict = vars(builtins)
|
||
|
for name, obj in builtins_dict.items():
|
||
|
if isinstance(obj, types.BuiltinFunctionType):
|
||
|
global_dict[name] = obj
|
||
|
global_dict['max'] = Max
|
||
|
global_dict['min'] = Min
|
||
|
|
||
|
elif not isinstance(global_dict, dict):
|
||
|
raise TypeError('expecting global_dict to be a dict')
|
||
|
|
||
|
transformations = transformations or ()
|
||
|
if isinstance(transformations, str):
|
||
|
if transformations == 'all':
|
||
|
_transformations = T[:]
|
||
|
elif transformations == 'implicit':
|
||
|
_transformations = T[:6]
|
||
|
else:
|
||
|
raise ValueError('unknown transformation group name')
|
||
|
else:
|
||
|
_transformations = transformations
|
||
|
|
||
|
code = stringify_expr(s, local_dict, global_dict, _transformations)
|
||
|
|
||
|
if not evaluate:
|
||
|
code = compile(evaluateFalse(code), '<string>', 'eval') # type: ignore
|
||
|
|
||
|
try:
|
||
|
rv = eval_expr(code, local_dict, global_dict)
|
||
|
# restore neutral definitions for names
|
||
|
for i in local_dict.pop(null, ()):
|
||
|
local_dict[i] = null
|
||
|
return rv
|
||
|
except Exception as e:
|
||
|
# restore neutral definitions for names
|
||
|
for i in local_dict.pop(null, ()):
|
||
|
local_dict[i] = null
|
||
|
raise e from ValueError(f"Error from parse_expr with transformed code: {code!r}")
|
||
|
|
||
|
|
||
|
def evaluateFalse(s: str):
|
||
|
"""
|
||
|
Replaces operators with the SymPy equivalent and sets evaluate=False.
|
||
|
"""
|
||
|
node = ast.parse(s)
|
||
|
transformed_node = EvaluateFalseTransformer().visit(node)
|
||
|
# node is a Module, we want an Expression
|
||
|
transformed_node = ast.Expression(transformed_node.body[0].value)
|
||
|
|
||
|
return ast.fix_missing_locations(transformed_node)
|
||
|
|
||
|
|
||
|
class EvaluateFalseTransformer(ast.NodeTransformer):
|
||
|
operators = {
|
||
|
ast.Add: 'Add',
|
||
|
ast.Mult: 'Mul',
|
||
|
ast.Pow: 'Pow',
|
||
|
ast.Sub: 'Add',
|
||
|
ast.Div: 'Mul',
|
||
|
ast.BitOr: 'Or',
|
||
|
ast.BitAnd: 'And',
|
||
|
ast.BitXor: 'Not',
|
||
|
}
|
||
|
functions = (
|
||
|
'Abs', 'im', 're', 'sign', 'arg', 'conjugate',
|
||
|
'acos', 'acot', 'acsc', 'asec', 'asin', 'atan',
|
||
|
'acosh', 'acoth', 'acsch', 'asech', 'asinh', 'atanh',
|
||
|
'cos', 'cot', 'csc', 'sec', 'sin', 'tan',
|
||
|
'cosh', 'coth', 'csch', 'sech', 'sinh', 'tanh',
|
||
|
'exp', 'ln', 'log', 'sqrt', 'cbrt',
|
||
|
)
|
||
|
|
||
|
relational_operators = {
|
||
|
ast.NotEq: 'Ne',
|
||
|
ast.Lt: 'Lt',
|
||
|
ast.LtE: 'Le',
|
||
|
ast.Gt: 'Gt',
|
||
|
ast.GtE: 'Ge',
|
||
|
ast.Eq: 'Eq'
|
||
|
}
|
||
|
def visit_Compare(self, node):
|
||
|
if node.ops[0].__class__ in self.relational_operators:
|
||
|
sympy_class = self.relational_operators[node.ops[0].__class__]
|
||
|
right = self.visit(node.comparators[0])
|
||
|
left = self.visit(node.left)
|
||
|
new_node = ast.Call(
|
||
|
func=ast.Name(id=sympy_class, ctx=ast.Load()),
|
||
|
args=[left, right],
|
||
|
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
|
||
|
)
|
||
|
return new_node
|
||
|
return node
|
||
|
|
||
|
def flatten(self, args, func):
|
||
|
result = []
|
||
|
for arg in args:
|
||
|
if isinstance(arg, ast.Call):
|
||
|
arg_func = arg.func
|
||
|
if isinstance(arg_func, ast.Call):
|
||
|
arg_func = arg_func.func
|
||
|
if arg_func.id == func:
|
||
|
result.extend(self.flatten(arg.args, func))
|
||
|
else:
|
||
|
result.append(arg)
|
||
|
else:
|
||
|
result.append(arg)
|
||
|
return result
|
||
|
|
||
|
def visit_BinOp(self, node):
|
||
|
if node.op.__class__ in self.operators:
|
||
|
sympy_class = self.operators[node.op.__class__]
|
||
|
right = self.visit(node.right)
|
||
|
left = self.visit(node.left)
|
||
|
|
||
|
rev = False
|
||
|
if isinstance(node.op, ast.Sub):
|
||
|
right = ast.Call(
|
||
|
func=ast.Name(id='Mul', ctx=ast.Load()),
|
||
|
args=[ast.UnaryOp(op=ast.USub(), operand=ast.Constant(1)), right],
|
||
|
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
|
||
|
)
|
||
|
elif isinstance(node.op, ast.Div):
|
||
|
if isinstance(node.left, ast.UnaryOp):
|
||
|
left, right = right, left
|
||
|
rev = True
|
||
|
left = ast.Call(
|
||
|
func=ast.Name(id='Pow', ctx=ast.Load()),
|
||
|
args=[left, ast.UnaryOp(op=ast.USub(), operand=ast.Constant(1))],
|
||
|
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
|
||
|
)
|
||
|
else:
|
||
|
right = ast.Call(
|
||
|
func=ast.Name(id='Pow', ctx=ast.Load()),
|
||
|
args=[right, ast.UnaryOp(op=ast.USub(), operand=ast.Constant(1))],
|
||
|
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
|
||
|
)
|
||
|
|
||
|
if rev: # undo reversal
|
||
|
left, right = right, left
|
||
|
new_node = ast.Call(
|
||
|
func=ast.Name(id=sympy_class, ctx=ast.Load()),
|
||
|
args=[left, right],
|
||
|
keywords=[ast.keyword(arg='evaluate', value=ast.Constant(value=False))]
|
||
|
)
|
||
|
|
||
|
if sympy_class in ('Add', 'Mul'):
|
||
|
# Denest Add or Mul as appropriate
|
||
|
new_node.args = self.flatten(new_node.args, sympy_class)
|
||
|
|
||
|
return new_node
|
||
|
return node
|
||
|
|
||
|
def visit_Call(self, node):
|
||
|
new_node = self.generic_visit(node)
|
||
|
if isinstance(node.func, ast.Name) and node.func.id in self.functions:
|
||
|
new_node.keywords.append(ast.keyword(arg='evaluate', value=ast.Constant(value=False)))
|
||
|
return new_node
|
||
|
|
||
|
|
||
|
_transformation = { # items can be added but never re-ordered
|
||
|
0: lambda_notation,
|
||
|
1: auto_symbol,
|
||
|
2: repeated_decimals,
|
||
|
3: auto_number,
|
||
|
4: factorial_notation,
|
||
|
5: implicit_multiplication_application,
|
||
|
6: convert_xor,
|
||
|
7: implicit_application,
|
||
|
8: implicit_multiplication,
|
||
|
9: convert_equals_signs,
|
||
|
10: function_exponentiation,
|
||
|
11: rationalize}
|
||
|
|
||
|
transformations = '\n'.join('%s: %s' % (i, func_name(f)) for i, f in _transformation.items())
|
||
|
|
||
|
|
||
|
class _T():
|
||
|
"""class to retrieve transformations from a given slice
|
||
|
|
||
|
EXAMPLES
|
||
|
========
|
||
|
|
||
|
>>> from sympy.parsing.sympy_parser import T, standard_transformations
|
||
|
>>> assert T[:5] == standard_transformations
|
||
|
"""
|
||
|
def __init__(self):
|
||
|
self.N = len(_transformation)
|
||
|
|
||
|
def __str__(self):
|
||
|
return transformations
|
||
|
|
||
|
def __getitem__(self, t):
|
||
|
if not type(t) is tuple:
|
||
|
t = (t,)
|
||
|
i = []
|
||
|
for ti in t:
|
||
|
if type(ti) is int:
|
||
|
i.append(range(self.N)[ti])
|
||
|
elif type(ti) is slice:
|
||
|
i.extend(range(*ti.indices(self.N)))
|
||
|
else:
|
||
|
raise TypeError('unexpected slice arg')
|
||
|
return tuple([_transformation[_] for _ in i])
|
||
|
|
||
|
T = _T()
|