You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

152 lines
4.5 KiB

5 months ago
"""Implementation of :class:`ComplexField` class. """
from sympy.core.numbers import Float, I
from sympy.polys.domains.characteristiczero import CharacteristicZero
from sympy.polys.domains.field import Field
from sympy.polys.domains.mpelements import MPContext
from sympy.polys.domains.simpledomain import SimpleDomain
from sympy.polys.polyerrors import DomainError, CoercionFailed
from sympy.utilities import public
@public
class ComplexField(Field, CharacteristicZero, SimpleDomain):
"""Complex numbers up to the given precision. """
rep = 'CC'
is_ComplexField = is_CC = True
is_Exact = False
is_Numerical = True
has_assoc_Ring = False
has_assoc_Field = True
_default_precision = 53
@property
def has_default_precision(self):
return self.precision == self._default_precision
@property
def precision(self):
return self._context.prec
@property
def dps(self):
return self._context.dps
@property
def tolerance(self):
return self._context.tolerance
def __init__(self, prec=_default_precision, dps=None, tol=None):
context = MPContext(prec, dps, tol, False)
context._parent = self
self._context = context
self.dtype = context.mpc
self.zero = self.dtype(0)
self.one = self.dtype(1)
def __eq__(self, other):
return (isinstance(other, ComplexField)
and self.precision == other.precision
and self.tolerance == other.tolerance)
def __hash__(self):
return hash((self.__class__.__name__, self.dtype, self.precision, self.tolerance))
def to_sympy(self, element):
"""Convert ``element`` to SymPy number. """
return Float(element.real, self.dps) + I*Float(element.imag, self.dps)
def from_sympy(self, expr):
"""Convert SymPy's number to ``dtype``. """
number = expr.evalf(n=self.dps)
real, imag = number.as_real_imag()
if real.is_Number and imag.is_Number:
return self.dtype(real, imag)
else:
raise CoercionFailed("expected complex number, got %s" % expr)
def from_ZZ(self, element, base):
return self.dtype(element)
def from_QQ(self, element, base):
return self.dtype(int(element.numerator)) / int(element.denominator)
def from_ZZ_python(self, element, base):
return self.dtype(element)
def from_QQ_python(self, element, base):
return self.dtype(element.numerator) / element.denominator
def from_ZZ_gmpy(self, element, base):
return self.dtype(int(element))
def from_QQ_gmpy(self, element, base):
return self.dtype(int(element.numerator)) / int(element.denominator)
def from_GaussianIntegerRing(self, element, base):
return self.dtype(int(element.x), int(element.y))
def from_GaussianRationalField(self, element, base):
x = element.x
y = element.y
return (self.dtype(int(x.numerator)) / int(x.denominator) +
self.dtype(0, int(y.numerator)) / int(y.denominator))
def from_AlgebraicField(self, element, base):
return self.from_sympy(base.to_sympy(element).evalf(self.dps))
def from_RealField(self, element, base):
return self.dtype(element)
def from_ComplexField(self, element, base):
if self == base:
return element
else:
return self.dtype(element)
def get_ring(self):
"""Returns a ring associated with ``self``. """
raise DomainError("there is no ring associated with %s" % self)
def get_exact(self):
"""Returns an exact domain associated with ``self``. """
raise DomainError("there is no exact domain associated with %s" % self)
def is_negative(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def is_positive(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def is_nonnegative(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def is_nonpositive(self, element):
"""Returns ``False`` for any ``ComplexElement``. """
return False
def gcd(self, a, b):
"""Returns GCD of ``a`` and ``b``. """
return self.one
def lcm(self, a, b):
"""Returns LCM of ``a`` and ``b``. """
return a*b
def almosteq(self, a, b, tolerance=None):
"""Check if ``a`` and ``b`` are almost equal. """
return self._context.almosteq(a, b, tolerance)
CC = ComplexField()