You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
154 lines
4.2 KiB
154 lines
4.2 KiB
5 months ago
|
"""Implementation of matrix FGLM Groebner basis conversion algorithm. """
|
||
|
|
||
|
|
||
|
from sympy.polys.monomials import monomial_mul, monomial_div
|
||
|
|
||
|
def matrix_fglm(F, ring, O_to):
|
||
|
"""
|
||
|
Converts the reduced Groebner basis ``F`` of a zero-dimensional
|
||
|
ideal w.r.t. ``O_from`` to a reduced Groebner basis
|
||
|
w.r.t. ``O_to``.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] J.C. Faugere, P. Gianni, D. Lazard, T. Mora (1994). Efficient
|
||
|
Computation of Zero-dimensional Groebner Bases by Change of
|
||
|
Ordering
|
||
|
"""
|
||
|
domain = ring.domain
|
||
|
ngens = ring.ngens
|
||
|
|
||
|
ring_to = ring.clone(order=O_to)
|
||
|
|
||
|
old_basis = _basis(F, ring)
|
||
|
M = _representing_matrices(old_basis, F, ring)
|
||
|
|
||
|
# V contains the normalforms (wrt O_from) of S
|
||
|
S = [ring.zero_monom]
|
||
|
V = [[domain.one] + [domain.zero] * (len(old_basis) - 1)]
|
||
|
G = []
|
||
|
|
||
|
L = [(i, 0) for i in range(ngens)] # (i, j) corresponds to x_i * S[j]
|
||
|
L.sort(key=lambda k_l: O_to(_incr_k(S[k_l[1]], k_l[0])), reverse=True)
|
||
|
t = L.pop()
|
||
|
|
||
|
P = _identity_matrix(len(old_basis), domain)
|
||
|
|
||
|
while True:
|
||
|
s = len(S)
|
||
|
v = _matrix_mul(M[t[0]], V[t[1]])
|
||
|
_lambda = _matrix_mul(P, v)
|
||
|
|
||
|
if all(_lambda[i] == domain.zero for i in range(s, len(old_basis))):
|
||
|
# there is a linear combination of v by V
|
||
|
lt = ring.term_new(_incr_k(S[t[1]], t[0]), domain.one)
|
||
|
rest = ring.from_dict({S[i]: _lambda[i] for i in range(s)})
|
||
|
|
||
|
g = (lt - rest).set_ring(ring_to)
|
||
|
if g:
|
||
|
G.append(g)
|
||
|
else:
|
||
|
# v is linearly independent from V
|
||
|
P = _update(s, _lambda, P)
|
||
|
S.append(_incr_k(S[t[1]], t[0]))
|
||
|
V.append(v)
|
||
|
|
||
|
L.extend([(i, s) for i in range(ngens)])
|
||
|
L = list(set(L))
|
||
|
L.sort(key=lambda k_l: O_to(_incr_k(S[k_l[1]], k_l[0])), reverse=True)
|
||
|
|
||
|
L = [(k, l) for (k, l) in L if all(monomial_div(_incr_k(S[l], k), g.LM) is None for g in G)]
|
||
|
|
||
|
if not L:
|
||
|
G = [ g.monic() for g in G ]
|
||
|
return sorted(G, key=lambda g: O_to(g.LM), reverse=True)
|
||
|
|
||
|
t = L.pop()
|
||
|
|
||
|
|
||
|
def _incr_k(m, k):
|
||
|
return tuple(list(m[:k]) + [m[k] + 1] + list(m[k + 1:]))
|
||
|
|
||
|
|
||
|
def _identity_matrix(n, domain):
|
||
|
M = [[domain.zero]*n for _ in range(n)]
|
||
|
|
||
|
for i in range(n):
|
||
|
M[i][i] = domain.one
|
||
|
|
||
|
return M
|
||
|
|
||
|
|
||
|
def _matrix_mul(M, v):
|
||
|
return [sum([row[i] * v[i] for i in range(len(v))]) for row in M]
|
||
|
|
||
|
|
||
|
def _update(s, _lambda, P):
|
||
|
"""
|
||
|
Update ``P`` such that for the updated `P'` `P' v = e_{s}`.
|
||
|
"""
|
||
|
k = min([j for j in range(s, len(_lambda)) if _lambda[j] != 0])
|
||
|
|
||
|
for r in range(len(_lambda)):
|
||
|
if r != k:
|
||
|
P[r] = [P[r][j] - (P[k][j] * _lambda[r]) / _lambda[k] for j in range(len(P[r]))]
|
||
|
|
||
|
P[k] = [P[k][j] / _lambda[k] for j in range(len(P[k]))]
|
||
|
P[k], P[s] = P[s], P[k]
|
||
|
|
||
|
return P
|
||
|
|
||
|
|
||
|
def _representing_matrices(basis, G, ring):
|
||
|
r"""
|
||
|
Compute the matrices corresponding to the linear maps `m \mapsto
|
||
|
x_i m` for all variables `x_i`.
|
||
|
"""
|
||
|
domain = ring.domain
|
||
|
u = ring.ngens-1
|
||
|
|
||
|
def var(i):
|
||
|
return tuple([0] * i + [1] + [0] * (u - i))
|
||
|
|
||
|
def representing_matrix(m):
|
||
|
M = [[domain.zero] * len(basis) for _ in range(len(basis))]
|
||
|
|
||
|
for i, v in enumerate(basis):
|
||
|
r = ring.term_new(monomial_mul(m, v), domain.one).rem(G)
|
||
|
|
||
|
for monom, coeff in r.terms():
|
||
|
j = basis.index(monom)
|
||
|
M[j][i] = coeff
|
||
|
|
||
|
return M
|
||
|
|
||
|
return [representing_matrix(var(i)) for i in range(u + 1)]
|
||
|
|
||
|
|
||
|
def _basis(G, ring):
|
||
|
r"""
|
||
|
Computes a list of monomials which are not divisible by the leading
|
||
|
monomials wrt to ``O`` of ``G``. These monomials are a basis of
|
||
|
`K[X_1, \ldots, X_n]/(G)`.
|
||
|
"""
|
||
|
order = ring.order
|
||
|
|
||
|
leading_monomials = [g.LM for g in G]
|
||
|
candidates = [ring.zero_monom]
|
||
|
basis = []
|
||
|
|
||
|
while candidates:
|
||
|
t = candidates.pop()
|
||
|
basis.append(t)
|
||
|
|
||
|
new_candidates = [_incr_k(t, k) for k in range(ring.ngens)
|
||
|
if all(monomial_div(_incr_k(t, k), lmg) is None
|
||
|
for lmg in leading_monomials)]
|
||
|
candidates.extend(new_candidates)
|
||
|
candidates.sort(key=order, reverse=True)
|
||
|
|
||
|
basis = list(set(basis))
|
||
|
|
||
|
return sorted(basis, key=order)
|