You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
884 lines
27 KiB
884 lines
27 KiB
5 months ago
|
"""Minimal polynomials for algebraic numbers."""
|
||
|
|
||
|
from functools import reduce
|
||
|
|
||
|
from sympy.core.add import Add
|
||
|
from sympy.core.exprtools import Factors
|
||
|
from sympy.core.function import expand_mul, expand_multinomial, _mexpand
|
||
|
from sympy.core.mul import Mul
|
||
|
from sympy.core.numbers import (I, Rational, pi, _illegal)
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import Dummy
|
||
|
from sympy.core.sympify import sympify
|
||
|
from sympy.core.traversal import preorder_traversal
|
||
|
from sympy.functions.elementary.exponential import exp
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt, cbrt
|
||
|
from sympy.functions.elementary.trigonometric import cos, sin, tan
|
||
|
from sympy.ntheory.factor_ import divisors
|
||
|
from sympy.utilities.iterables import subsets
|
||
|
|
||
|
from sympy.polys.domains import ZZ, QQ, FractionField
|
||
|
from sympy.polys.orthopolys import dup_chebyshevt
|
||
|
from sympy.polys.polyerrors import (
|
||
|
NotAlgebraic,
|
||
|
GeneratorsError,
|
||
|
)
|
||
|
from sympy.polys.polytools import (
|
||
|
Poly, PurePoly, invert, factor_list, groebner, resultant,
|
||
|
degree, poly_from_expr, parallel_poly_from_expr, lcm
|
||
|
)
|
||
|
from sympy.polys.polyutils import dict_from_expr, expr_from_dict
|
||
|
from sympy.polys.ring_series import rs_compose_add
|
||
|
from sympy.polys.rings import ring
|
||
|
from sympy.polys.rootoftools import CRootOf
|
||
|
from sympy.polys.specialpolys import cyclotomic_poly
|
||
|
from sympy.utilities import (
|
||
|
numbered_symbols, public, sift
|
||
|
)
|
||
|
|
||
|
|
||
|
def _choose_factor(factors, x, v, dom=QQ, prec=200, bound=5):
|
||
|
"""
|
||
|
Return a factor having root ``v``
|
||
|
It is assumed that one of the factors has root ``v``.
|
||
|
"""
|
||
|
|
||
|
if isinstance(factors[0], tuple):
|
||
|
factors = [f[0] for f in factors]
|
||
|
if len(factors) == 1:
|
||
|
return factors[0]
|
||
|
|
||
|
prec1 = 10
|
||
|
points = {}
|
||
|
symbols = dom.symbols if hasattr(dom, 'symbols') else []
|
||
|
while prec1 <= prec:
|
||
|
# when dealing with non-Rational numbers we usually evaluate
|
||
|
# with `subs` argument but we only need a ballpark evaluation
|
||
|
fe = [f.as_expr().xreplace({x:v}) for f in factors]
|
||
|
if v.is_number:
|
||
|
fe = [f.n(prec) for f in fe]
|
||
|
|
||
|
# assign integers [0, n) to symbols (if any)
|
||
|
for n in subsets(range(bound), k=len(symbols), repetition=True):
|
||
|
for s, i in zip(symbols, n):
|
||
|
points[s] = i
|
||
|
|
||
|
# evaluate the expression at these points
|
||
|
candidates = [(abs(f.subs(points).n(prec1)), i)
|
||
|
for i,f in enumerate(fe)]
|
||
|
|
||
|
# if we get invalid numbers (e.g. from division by zero)
|
||
|
# we try again
|
||
|
if any(i in _illegal for i, _ in candidates):
|
||
|
continue
|
||
|
|
||
|
# find the smallest two -- if they differ significantly
|
||
|
# then we assume we have found the factor that becomes
|
||
|
# 0 when v is substituted into it
|
||
|
can = sorted(candidates)
|
||
|
(a, ix), (b, _) = can[:2]
|
||
|
if b > a * 10**6: # XXX what to use?
|
||
|
return factors[ix]
|
||
|
|
||
|
prec1 *= 2
|
||
|
|
||
|
raise NotImplementedError("multiple candidates for the minimal polynomial of %s" % v)
|
||
|
|
||
|
|
||
|
def _is_sum_surds(p):
|
||
|
args = p.args if p.is_Add else [p]
|
||
|
for y in args:
|
||
|
if not ((y**2).is_Rational and y.is_extended_real):
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
def _separate_sq(p):
|
||
|
"""
|
||
|
helper function for ``_minimal_polynomial_sq``
|
||
|
|
||
|
It selects a rational ``g`` such that the polynomial ``p``
|
||
|
consists of a sum of terms whose surds squared have gcd equal to ``g``
|
||
|
and a sum of terms with surds squared prime with ``g``;
|
||
|
then it takes the field norm to eliminate ``sqrt(g)``
|
||
|
|
||
|
See simplify.simplify.split_surds and polytools.sqf_norm.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sqrt
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.polys.numberfields.minpoly import _separate_sq
|
||
|
>>> p= -x + sqrt(2) + sqrt(3) + sqrt(7)
|
||
|
>>> p = _separate_sq(p); p
|
||
|
-x**2 + 2*sqrt(3)*x + 2*sqrt(7)*x - 2*sqrt(21) - 8
|
||
|
>>> p = _separate_sq(p); p
|
||
|
-x**4 + 4*sqrt(7)*x**3 - 32*x**2 + 8*sqrt(7)*x + 20
|
||
|
>>> p = _separate_sq(p); p
|
||
|
-x**8 + 48*x**6 - 536*x**4 + 1728*x**2 - 400
|
||
|
|
||
|
"""
|
||
|
def is_sqrt(expr):
|
||
|
return expr.is_Pow and expr.exp is S.Half
|
||
|
# p = c1*sqrt(q1) + ... + cn*sqrt(qn) -> a = [(c1, q1), .., (cn, qn)]
|
||
|
a = []
|
||
|
for y in p.args:
|
||
|
if not y.is_Mul:
|
||
|
if is_sqrt(y):
|
||
|
a.append((S.One, y**2))
|
||
|
elif y.is_Atom:
|
||
|
a.append((y, S.One))
|
||
|
elif y.is_Pow and y.exp.is_integer:
|
||
|
a.append((y, S.One))
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
else:
|
||
|
T, F = sift(y.args, is_sqrt, binary=True)
|
||
|
a.append((Mul(*F), Mul(*T)**2))
|
||
|
a.sort(key=lambda z: z[1])
|
||
|
if a[-1][1] is S.One:
|
||
|
# there are no surds
|
||
|
return p
|
||
|
surds = [z for y, z in a]
|
||
|
for i in range(len(surds)):
|
||
|
if surds[i] != 1:
|
||
|
break
|
||
|
from sympy.simplify.radsimp import _split_gcd
|
||
|
g, b1, b2 = _split_gcd(*surds[i:])
|
||
|
a1 = []
|
||
|
a2 = []
|
||
|
for y, z in a:
|
||
|
if z in b1:
|
||
|
a1.append(y*z**S.Half)
|
||
|
else:
|
||
|
a2.append(y*z**S.Half)
|
||
|
p1 = Add(*a1)
|
||
|
p2 = Add(*a2)
|
||
|
p = _mexpand(p1**2) - _mexpand(p2**2)
|
||
|
return p
|
||
|
|
||
|
def _minimal_polynomial_sq(p, n, x):
|
||
|
"""
|
||
|
Returns the minimal polynomial for the ``nth-root`` of a sum of surds
|
||
|
or ``None`` if it fails.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
p : sum of surds
|
||
|
n : positive integer
|
||
|
x : variable of the returned polynomial
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.numberfields.minpoly import _minimal_polynomial_sq
|
||
|
>>> from sympy import sqrt
|
||
|
>>> from sympy.abc import x
|
||
|
>>> q = 1 + sqrt(2) + sqrt(3)
|
||
|
>>> _minimal_polynomial_sq(q, 3, x)
|
||
|
x**12 - 4*x**9 - 4*x**6 + 16*x**3 - 8
|
||
|
|
||
|
"""
|
||
|
p = sympify(p)
|
||
|
n = sympify(n)
|
||
|
if not n.is_Integer or not n > 0 or not _is_sum_surds(p):
|
||
|
return None
|
||
|
pn = p**Rational(1, n)
|
||
|
# eliminate the square roots
|
||
|
p -= x
|
||
|
while 1:
|
||
|
p1 = _separate_sq(p)
|
||
|
if p1 is p:
|
||
|
p = p1.subs({x:x**n})
|
||
|
break
|
||
|
else:
|
||
|
p = p1
|
||
|
|
||
|
# _separate_sq eliminates field extensions in a minimal way, so that
|
||
|
# if n = 1 then `p = constant*(minimal_polynomial(p))`
|
||
|
# if n > 1 it contains the minimal polynomial as a factor.
|
||
|
if n == 1:
|
||
|
p1 = Poly(p)
|
||
|
if p.coeff(x**p1.degree(x)) < 0:
|
||
|
p = -p
|
||
|
p = p.primitive()[1]
|
||
|
return p
|
||
|
# by construction `p` has root `pn`
|
||
|
# the minimal polynomial is the factor vanishing in x = pn
|
||
|
factors = factor_list(p)[1]
|
||
|
|
||
|
result = _choose_factor(factors, x, pn)
|
||
|
return result
|
||
|
|
||
|
def _minpoly_op_algebraic_element(op, ex1, ex2, x, dom, mp1=None, mp2=None):
|
||
|
"""
|
||
|
return the minimal polynomial for ``op(ex1, ex2)``
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
op : operation ``Add`` or ``Mul``
|
||
|
ex1, ex2 : expressions for the algebraic elements
|
||
|
x : indeterminate of the polynomials
|
||
|
dom: ground domain
|
||
|
mp1, mp2 : minimal polynomials for ``ex1`` and ``ex2`` or None
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sqrt, Add, Mul, QQ
|
||
|
>>> from sympy.polys.numberfields.minpoly import _minpoly_op_algebraic_element
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> p1 = sqrt(sqrt(2) + 1)
|
||
|
>>> p2 = sqrt(sqrt(2) - 1)
|
||
|
>>> _minpoly_op_algebraic_element(Mul, p1, p2, x, QQ)
|
||
|
x - 1
|
||
|
>>> q1 = sqrt(y)
|
||
|
>>> q2 = 1 / y
|
||
|
>>> _minpoly_op_algebraic_element(Add, q1, q2, x, QQ.frac_field(y))
|
||
|
x**2*y**2 - 2*x*y - y**3 + 1
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Resultant
|
||
|
.. [2] I.M. Isaacs, Proc. Amer. Math. Soc. 25 (1970), 638
|
||
|
"Degrees of sums in a separable field extension".
|
||
|
|
||
|
"""
|
||
|
y = Dummy(str(x))
|
||
|
if mp1 is None:
|
||
|
mp1 = _minpoly_compose(ex1, x, dom)
|
||
|
if mp2 is None:
|
||
|
mp2 = _minpoly_compose(ex2, y, dom)
|
||
|
else:
|
||
|
mp2 = mp2.subs({x: y})
|
||
|
|
||
|
if op is Add:
|
||
|
# mp1a = mp1.subs({x: x - y})
|
||
|
if dom == QQ:
|
||
|
R, X = ring('X', QQ)
|
||
|
p1 = R(dict_from_expr(mp1)[0])
|
||
|
p2 = R(dict_from_expr(mp2)[0])
|
||
|
else:
|
||
|
(p1, p2), _ = parallel_poly_from_expr((mp1, x - y), x, y)
|
||
|
r = p1.compose(p2)
|
||
|
mp1a = r.as_expr()
|
||
|
|
||
|
elif op is Mul:
|
||
|
mp1a = _muly(mp1, x, y)
|
||
|
else:
|
||
|
raise NotImplementedError('option not available')
|
||
|
|
||
|
if op is Mul or dom != QQ:
|
||
|
r = resultant(mp1a, mp2, gens=[y, x])
|
||
|
else:
|
||
|
r = rs_compose_add(p1, p2)
|
||
|
r = expr_from_dict(r.as_expr_dict(), x)
|
||
|
|
||
|
deg1 = degree(mp1, x)
|
||
|
deg2 = degree(mp2, y)
|
||
|
if op is Mul and deg1 == 1 or deg2 == 1:
|
||
|
# if deg1 = 1, then mp1 = x - a; mp1a = x - y - a;
|
||
|
# r = mp2(x - a), so that `r` is irreducible
|
||
|
return r
|
||
|
|
||
|
r = Poly(r, x, domain=dom)
|
||
|
_, factors = r.factor_list()
|
||
|
res = _choose_factor(factors, x, op(ex1, ex2), dom)
|
||
|
return res.as_expr()
|
||
|
|
||
|
|
||
|
def _invertx(p, x):
|
||
|
"""
|
||
|
Returns ``expand_mul(x**degree(p, x)*p.subs(x, 1/x))``
|
||
|
"""
|
||
|
p1 = poly_from_expr(p, x)[0]
|
||
|
|
||
|
n = degree(p1)
|
||
|
a = [c * x**(n - i) for (i,), c in p1.terms()]
|
||
|
return Add(*a)
|
||
|
|
||
|
|
||
|
def _muly(p, x, y):
|
||
|
"""
|
||
|
Returns ``_mexpand(y**deg*p.subs({x:x / y}))``
|
||
|
"""
|
||
|
p1 = poly_from_expr(p, x)[0]
|
||
|
|
||
|
n = degree(p1)
|
||
|
a = [c * x**i * y**(n - i) for (i,), c in p1.terms()]
|
||
|
return Add(*a)
|
||
|
|
||
|
|
||
|
def _minpoly_pow(ex, pw, x, dom, mp=None):
|
||
|
"""
|
||
|
Returns ``minpoly(ex**pw, x)``
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
ex : algebraic element
|
||
|
pw : rational number
|
||
|
x : indeterminate of the polynomial
|
||
|
dom: ground domain
|
||
|
mp : minimal polynomial of ``p``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import sqrt, QQ, Rational
|
||
|
>>> from sympy.polys.numberfields.minpoly import _minpoly_pow, minpoly
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> p = sqrt(1 + sqrt(2))
|
||
|
>>> _minpoly_pow(p, 2, x, QQ)
|
||
|
x**2 - 2*x - 1
|
||
|
>>> minpoly(p**2, x)
|
||
|
x**2 - 2*x - 1
|
||
|
>>> _minpoly_pow(y, Rational(1, 3), x, QQ.frac_field(y))
|
||
|
x**3 - y
|
||
|
>>> minpoly(y**Rational(1, 3), x)
|
||
|
x**3 - y
|
||
|
|
||
|
"""
|
||
|
pw = sympify(pw)
|
||
|
if not mp:
|
||
|
mp = _minpoly_compose(ex, x, dom)
|
||
|
if not pw.is_rational:
|
||
|
raise NotAlgebraic("%s does not seem to be an algebraic element" % ex)
|
||
|
if pw < 0:
|
||
|
if mp == x:
|
||
|
raise ZeroDivisionError('%s is zero' % ex)
|
||
|
mp = _invertx(mp, x)
|
||
|
if pw == -1:
|
||
|
return mp
|
||
|
pw = -pw
|
||
|
ex = 1/ex
|
||
|
|
||
|
y = Dummy(str(x))
|
||
|
mp = mp.subs({x: y})
|
||
|
n, d = pw.as_numer_denom()
|
||
|
res = Poly(resultant(mp, x**d - y**n, gens=[y]), x, domain=dom)
|
||
|
_, factors = res.factor_list()
|
||
|
res = _choose_factor(factors, x, ex**pw, dom)
|
||
|
return res.as_expr()
|
||
|
|
||
|
|
||
|
def _minpoly_add(x, dom, *a):
|
||
|
"""
|
||
|
returns ``minpoly(Add(*a), dom, x)``
|
||
|
"""
|
||
|
mp = _minpoly_op_algebraic_element(Add, a[0], a[1], x, dom)
|
||
|
p = a[0] + a[1]
|
||
|
for px in a[2:]:
|
||
|
mp = _minpoly_op_algebraic_element(Add, p, px, x, dom, mp1=mp)
|
||
|
p = p + px
|
||
|
return mp
|
||
|
|
||
|
|
||
|
def _minpoly_mul(x, dom, *a):
|
||
|
"""
|
||
|
returns ``minpoly(Mul(*a), dom, x)``
|
||
|
"""
|
||
|
mp = _minpoly_op_algebraic_element(Mul, a[0], a[1], x, dom)
|
||
|
p = a[0] * a[1]
|
||
|
for px in a[2:]:
|
||
|
mp = _minpoly_op_algebraic_element(Mul, p, px, x, dom, mp1=mp)
|
||
|
p = p * px
|
||
|
return mp
|
||
|
|
||
|
|
||
|
def _minpoly_sin(ex, x):
|
||
|
"""
|
||
|
Returns the minimal polynomial of ``sin(ex)``
|
||
|
see https://mathworld.wolfram.com/TrigonometryAngles.html
|
||
|
"""
|
||
|
c, a = ex.args[0].as_coeff_Mul()
|
||
|
if a is pi:
|
||
|
if c.is_rational:
|
||
|
n = c.q
|
||
|
q = sympify(n)
|
||
|
if q.is_prime:
|
||
|
# for a = pi*p/q with q odd prime, using chebyshevt
|
||
|
# write sin(q*a) = mp(sin(a))*sin(a);
|
||
|
# the roots of mp(x) are sin(pi*p/q) for p = 1,..., q - 1
|
||
|
a = dup_chebyshevt(n, ZZ)
|
||
|
return Add(*[x**(n - i - 1)*a[i] for i in range(n)])
|
||
|
if c.p == 1:
|
||
|
if q == 9:
|
||
|
return 64*x**6 - 96*x**4 + 36*x**2 - 3
|
||
|
|
||
|
if n % 2 == 1:
|
||
|
# for a = pi*p/q with q odd, use
|
||
|
# sin(q*a) = 0 to see that the minimal polynomial must be
|
||
|
# a factor of dup_chebyshevt(n, ZZ)
|
||
|
a = dup_chebyshevt(n, ZZ)
|
||
|
a = [x**(n - i)*a[i] for i in range(n + 1)]
|
||
|
r = Add(*a)
|
||
|
_, factors = factor_list(r)
|
||
|
res = _choose_factor(factors, x, ex)
|
||
|
return res
|
||
|
|
||
|
expr = ((1 - cos(2*c*pi))/2)**S.Half
|
||
|
res = _minpoly_compose(expr, x, QQ)
|
||
|
return res
|
||
|
|
||
|
raise NotAlgebraic("%s does not seem to be an algebraic element" % ex)
|
||
|
|
||
|
|
||
|
def _minpoly_cos(ex, x):
|
||
|
"""
|
||
|
Returns the minimal polynomial of ``cos(ex)``
|
||
|
see https://mathworld.wolfram.com/TrigonometryAngles.html
|
||
|
"""
|
||
|
c, a = ex.args[0].as_coeff_Mul()
|
||
|
if a is pi:
|
||
|
if c.is_rational:
|
||
|
if c.p == 1:
|
||
|
if c.q == 7:
|
||
|
return 8*x**3 - 4*x**2 - 4*x + 1
|
||
|
if c.q == 9:
|
||
|
return 8*x**3 - 6*x - 1
|
||
|
elif c.p == 2:
|
||
|
q = sympify(c.q)
|
||
|
if q.is_prime:
|
||
|
s = _minpoly_sin(ex, x)
|
||
|
return _mexpand(s.subs({x:sqrt((1 - x)/2)}))
|
||
|
|
||
|
# for a = pi*p/q, cos(q*a) =T_q(cos(a)) = (-1)**p
|
||
|
n = int(c.q)
|
||
|
a = dup_chebyshevt(n, ZZ)
|
||
|
a = [x**(n - i)*a[i] for i in range(n + 1)]
|
||
|
r = Add(*a) - (-1)**c.p
|
||
|
_, factors = factor_list(r)
|
||
|
res = _choose_factor(factors, x, ex)
|
||
|
return res
|
||
|
|
||
|
raise NotAlgebraic("%s does not seem to be an algebraic element" % ex)
|
||
|
|
||
|
|
||
|
def _minpoly_tan(ex, x):
|
||
|
"""
|
||
|
Returns the minimal polynomial of ``tan(ex)``
|
||
|
see https://github.com/sympy/sympy/issues/21430
|
||
|
"""
|
||
|
c, a = ex.args[0].as_coeff_Mul()
|
||
|
if a is pi:
|
||
|
if c.is_rational:
|
||
|
c = c * 2
|
||
|
n = int(c.q)
|
||
|
a = n if c.p % 2 == 0 else 1
|
||
|
terms = []
|
||
|
for k in range((c.p+1)%2, n+1, 2):
|
||
|
terms.append(a*x**k)
|
||
|
a = -(a*(n-k-1)*(n-k)) // ((k+1)*(k+2))
|
||
|
|
||
|
r = Add(*terms)
|
||
|
_, factors = factor_list(r)
|
||
|
res = _choose_factor(factors, x, ex)
|
||
|
return res
|
||
|
|
||
|
raise NotAlgebraic("%s does not seem to be an algebraic element" % ex)
|
||
|
|
||
|
|
||
|
def _minpoly_exp(ex, x):
|
||
|
"""
|
||
|
Returns the minimal polynomial of ``exp(ex)``
|
||
|
"""
|
||
|
c, a = ex.args[0].as_coeff_Mul()
|
||
|
if a == I*pi:
|
||
|
if c.is_rational:
|
||
|
q = sympify(c.q)
|
||
|
if c.p == 1 or c.p == -1:
|
||
|
if q == 3:
|
||
|
return x**2 - x + 1
|
||
|
if q == 4:
|
||
|
return x**4 + 1
|
||
|
if q == 6:
|
||
|
return x**4 - x**2 + 1
|
||
|
if q == 8:
|
||
|
return x**8 + 1
|
||
|
if q == 9:
|
||
|
return x**6 - x**3 + 1
|
||
|
if q == 10:
|
||
|
return x**8 - x**6 + x**4 - x**2 + 1
|
||
|
if q.is_prime:
|
||
|
s = 0
|
||
|
for i in range(q):
|
||
|
s += (-x)**i
|
||
|
return s
|
||
|
|
||
|
# x**(2*q) = product(factors)
|
||
|
factors = [cyclotomic_poly(i, x) for i in divisors(2*q)]
|
||
|
mp = _choose_factor(factors, x, ex)
|
||
|
return mp
|
||
|
else:
|
||
|
raise NotAlgebraic("%s does not seem to be an algebraic element" % ex)
|
||
|
raise NotAlgebraic("%s does not seem to be an algebraic element" % ex)
|
||
|
|
||
|
|
||
|
def _minpoly_rootof(ex, x):
|
||
|
"""
|
||
|
Returns the minimal polynomial of a ``CRootOf`` object.
|
||
|
"""
|
||
|
p = ex.expr
|
||
|
p = p.subs({ex.poly.gens[0]:x})
|
||
|
_, factors = factor_list(p, x)
|
||
|
result = _choose_factor(factors, x, ex)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _minpoly_compose(ex, x, dom):
|
||
|
"""
|
||
|
Computes the minimal polynomial of an algebraic element
|
||
|
using operations on minimal polynomials
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import minimal_polynomial, sqrt, Rational
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=True)
|
||
|
x**2 - 2*x - 1
|
||
|
>>> minimal_polynomial(sqrt(y) + 1/y, x, compose=True)
|
||
|
x**2*y**2 - 2*x*y - y**3 + 1
|
||
|
|
||
|
"""
|
||
|
if ex.is_Rational:
|
||
|
return ex.q*x - ex.p
|
||
|
if ex is I:
|
||
|
_, factors = factor_list(x**2 + 1, x, domain=dom)
|
||
|
return x**2 + 1 if len(factors) == 1 else x - I
|
||
|
|
||
|
if ex is S.GoldenRatio:
|
||
|
_, factors = factor_list(x**2 - x - 1, x, domain=dom)
|
||
|
if len(factors) == 1:
|
||
|
return x**2 - x - 1
|
||
|
else:
|
||
|
return _choose_factor(factors, x, (1 + sqrt(5))/2, dom=dom)
|
||
|
|
||
|
if ex is S.TribonacciConstant:
|
||
|
_, factors = factor_list(x**3 - x**2 - x - 1, x, domain=dom)
|
||
|
if len(factors) == 1:
|
||
|
return x**3 - x**2 - x - 1
|
||
|
else:
|
||
|
fac = (1 + cbrt(19 - 3*sqrt(33)) + cbrt(19 + 3*sqrt(33))) / 3
|
||
|
return _choose_factor(factors, x, fac, dom=dom)
|
||
|
|
||
|
if hasattr(dom, 'symbols') and ex in dom.symbols:
|
||
|
return x - ex
|
||
|
|
||
|
if dom.is_QQ and _is_sum_surds(ex):
|
||
|
# eliminate the square roots
|
||
|
ex -= x
|
||
|
while 1:
|
||
|
ex1 = _separate_sq(ex)
|
||
|
if ex1 is ex:
|
||
|
return ex
|
||
|
else:
|
||
|
ex = ex1
|
||
|
|
||
|
if ex.is_Add:
|
||
|
res = _minpoly_add(x, dom, *ex.args)
|
||
|
elif ex.is_Mul:
|
||
|
f = Factors(ex).factors
|
||
|
r = sift(f.items(), lambda itx: itx[0].is_Rational and itx[1].is_Rational)
|
||
|
if r[True] and dom == QQ:
|
||
|
ex1 = Mul(*[bx**ex for bx, ex in r[False] + r[None]])
|
||
|
r1 = dict(r[True])
|
||
|
dens = [y.q for y in r1.values()]
|
||
|
lcmdens = reduce(lcm, dens, 1)
|
||
|
neg1 = S.NegativeOne
|
||
|
expn1 = r1.pop(neg1, S.Zero)
|
||
|
nums = [base**(y.p*lcmdens // y.q) for base, y in r1.items()]
|
||
|
ex2 = Mul(*nums)
|
||
|
mp1 = minimal_polynomial(ex1, x)
|
||
|
# use the fact that in SymPy canonicalization products of integers
|
||
|
# raised to rational powers are organized in relatively prime
|
||
|
# bases, and that in ``base**(n/d)`` a perfect power is
|
||
|
# simplified with the root
|
||
|
# Powers of -1 have to be treated separately to preserve sign.
|
||
|
mp2 = ex2.q*x**lcmdens - ex2.p*neg1**(expn1*lcmdens)
|
||
|
ex2 = neg1**expn1 * ex2**Rational(1, lcmdens)
|
||
|
res = _minpoly_op_algebraic_element(Mul, ex1, ex2, x, dom, mp1=mp1, mp2=mp2)
|
||
|
else:
|
||
|
res = _minpoly_mul(x, dom, *ex.args)
|
||
|
elif ex.is_Pow:
|
||
|
res = _minpoly_pow(ex.base, ex.exp, x, dom)
|
||
|
elif ex.__class__ is sin:
|
||
|
res = _minpoly_sin(ex, x)
|
||
|
elif ex.__class__ is cos:
|
||
|
res = _minpoly_cos(ex, x)
|
||
|
elif ex.__class__ is tan:
|
||
|
res = _minpoly_tan(ex, x)
|
||
|
elif ex.__class__ is exp:
|
||
|
res = _minpoly_exp(ex, x)
|
||
|
elif ex.__class__ is CRootOf:
|
||
|
res = _minpoly_rootof(ex, x)
|
||
|
else:
|
||
|
raise NotAlgebraic("%s does not seem to be an algebraic element" % ex)
|
||
|
return res
|
||
|
|
||
|
|
||
|
@public
|
||
|
def minimal_polynomial(ex, x=None, compose=True, polys=False, domain=None):
|
||
|
"""
|
||
|
Computes the minimal polynomial of an algebraic element.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
ex : Expr
|
||
|
Element or expression whose minimal polynomial is to be calculated.
|
||
|
|
||
|
x : Symbol, optional
|
||
|
Independent variable of the minimal polynomial
|
||
|
|
||
|
compose : boolean, optional (default=True)
|
||
|
Method to use for computing minimal polynomial. If ``compose=True``
|
||
|
(default) then ``_minpoly_compose`` is used, if ``compose=False`` then
|
||
|
groebner bases are used.
|
||
|
|
||
|
polys : boolean, optional (default=False)
|
||
|
If ``True`` returns a ``Poly`` object else an ``Expr`` object.
|
||
|
|
||
|
domain : Domain, optional
|
||
|
Ground domain
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
By default ``compose=True``, the minimal polynomial of the subexpressions of ``ex``
|
||
|
are computed, then the arithmetic operations on them are performed using the resultant
|
||
|
and factorization.
|
||
|
If ``compose=False``, a bottom-up algorithm is used with ``groebner``.
|
||
|
The default algorithm stalls less frequently.
|
||
|
|
||
|
If no ground domain is given, it will be generated automatically from the expression.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import minimal_polynomial, sqrt, solve, QQ
|
||
|
>>> from sympy.abc import x, y
|
||
|
|
||
|
>>> minimal_polynomial(sqrt(2), x)
|
||
|
x**2 - 2
|
||
|
>>> minimal_polynomial(sqrt(2), x, domain=QQ.algebraic_field(sqrt(2)))
|
||
|
x - sqrt(2)
|
||
|
>>> minimal_polynomial(sqrt(2) + sqrt(3), x)
|
||
|
x**4 - 10*x**2 + 1
|
||
|
>>> minimal_polynomial(solve(x**3 + x + 3)[0], x)
|
||
|
x**3 + x + 3
|
||
|
>>> minimal_polynomial(sqrt(y), x)
|
||
|
x**2 - y
|
||
|
|
||
|
"""
|
||
|
|
||
|
ex = sympify(ex)
|
||
|
if ex.is_number:
|
||
|
# not sure if it's always needed but try it for numbers (issue 8354)
|
||
|
ex = _mexpand(ex, recursive=True)
|
||
|
for expr in preorder_traversal(ex):
|
||
|
if expr.is_AlgebraicNumber:
|
||
|
compose = False
|
||
|
break
|
||
|
|
||
|
if x is not None:
|
||
|
x, cls = sympify(x), Poly
|
||
|
else:
|
||
|
x, cls = Dummy('x'), PurePoly
|
||
|
|
||
|
if not domain:
|
||
|
if ex.free_symbols:
|
||
|
domain = FractionField(QQ, list(ex.free_symbols))
|
||
|
else:
|
||
|
domain = QQ
|
||
|
if hasattr(domain, 'symbols') and x in domain.symbols:
|
||
|
raise GeneratorsError("the variable %s is an element of the ground "
|
||
|
"domain %s" % (x, domain))
|
||
|
|
||
|
if compose:
|
||
|
result = _minpoly_compose(ex, x, domain)
|
||
|
result = result.primitive()[1]
|
||
|
c = result.coeff(x**degree(result, x))
|
||
|
if c.is_negative:
|
||
|
result = expand_mul(-result)
|
||
|
return cls(result, x, field=True) if polys else result.collect(x)
|
||
|
|
||
|
if not domain.is_QQ:
|
||
|
raise NotImplementedError("groebner method only works for QQ")
|
||
|
|
||
|
result = _minpoly_groebner(ex, x, cls)
|
||
|
return cls(result, x, field=True) if polys else result.collect(x)
|
||
|
|
||
|
|
||
|
def _minpoly_groebner(ex, x, cls):
|
||
|
"""
|
||
|
Computes the minimal polynomial of an algebraic number
|
||
|
using Groebner bases
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import minimal_polynomial, sqrt, Rational
|
||
|
>>> from sympy.abc import x
|
||
|
>>> minimal_polynomial(sqrt(2) + 3*Rational(1, 3), x, compose=False)
|
||
|
x**2 - 2*x - 1
|
||
|
|
||
|
"""
|
||
|
|
||
|
generator = numbered_symbols('a', cls=Dummy)
|
||
|
mapping, symbols = {}, {}
|
||
|
|
||
|
def update_mapping(ex, exp, base=None):
|
||
|
a = next(generator)
|
||
|
symbols[ex] = a
|
||
|
|
||
|
if base is not None:
|
||
|
mapping[ex] = a**exp + base
|
||
|
else:
|
||
|
mapping[ex] = exp.as_expr(a)
|
||
|
|
||
|
return a
|
||
|
|
||
|
def bottom_up_scan(ex):
|
||
|
"""
|
||
|
Transform a given algebraic expression *ex* into a multivariate
|
||
|
polynomial, by introducing fresh variables with defining equations.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The critical elements of the algebraic expression *ex* are root
|
||
|
extractions, instances of :py:class:`~.AlgebraicNumber`, and negative
|
||
|
powers.
|
||
|
|
||
|
When we encounter a root extraction or an :py:class:`~.AlgebraicNumber`
|
||
|
we replace this expression with a fresh variable ``a_i``, and record
|
||
|
the defining polynomial for ``a_i``. For example, if ``a_0**(1/3)``
|
||
|
occurs, we will replace it with ``a_1``, and record the new defining
|
||
|
polynomial ``a_1**3 - a_0``.
|
||
|
|
||
|
When we encounter a negative power we transform it into a positive
|
||
|
power by algebraically inverting the base. This means computing the
|
||
|
minimal polynomial in ``x`` for the base, inverting ``x`` modulo this
|
||
|
poly (which generates a new polynomial) and then substituting the
|
||
|
original base expression for ``x`` in this last polynomial.
|
||
|
|
||
|
We return the transformed expression, and we record the defining
|
||
|
equations for new symbols using the ``update_mapping()`` function.
|
||
|
|
||
|
"""
|
||
|
if ex.is_Atom:
|
||
|
if ex is S.ImaginaryUnit:
|
||
|
if ex not in mapping:
|
||
|
return update_mapping(ex, 2, 1)
|
||
|
else:
|
||
|
return symbols[ex]
|
||
|
elif ex.is_Rational:
|
||
|
return ex
|
||
|
elif ex.is_Add:
|
||
|
return Add(*[ bottom_up_scan(g) for g in ex.args ])
|
||
|
elif ex.is_Mul:
|
||
|
return Mul(*[ bottom_up_scan(g) for g in ex.args ])
|
||
|
elif ex.is_Pow:
|
||
|
if ex.exp.is_Rational:
|
||
|
if ex.exp < 0:
|
||
|
minpoly_base = _minpoly_groebner(ex.base, x, cls)
|
||
|
inverse = invert(x, minpoly_base).as_expr()
|
||
|
base_inv = inverse.subs(x, ex.base).expand()
|
||
|
|
||
|
if ex.exp == -1:
|
||
|
return bottom_up_scan(base_inv)
|
||
|
else:
|
||
|
ex = base_inv**(-ex.exp)
|
||
|
if not ex.exp.is_Integer:
|
||
|
base, exp = (
|
||
|
ex.base**ex.exp.p).expand(), Rational(1, ex.exp.q)
|
||
|
else:
|
||
|
base, exp = ex.base, ex.exp
|
||
|
base = bottom_up_scan(base)
|
||
|
expr = base**exp
|
||
|
|
||
|
if expr not in mapping:
|
||
|
if exp.is_Integer:
|
||
|
return expr.expand()
|
||
|
else:
|
||
|
return update_mapping(expr, 1 / exp, -base)
|
||
|
else:
|
||
|
return symbols[expr]
|
||
|
elif ex.is_AlgebraicNumber:
|
||
|
if ex not in mapping:
|
||
|
return update_mapping(ex, ex.minpoly_of_element())
|
||
|
else:
|
||
|
return symbols[ex]
|
||
|
|
||
|
raise NotAlgebraic("%s does not seem to be an algebraic number" % ex)
|
||
|
|
||
|
def simpler_inverse(ex):
|
||
|
"""
|
||
|
Returns True if it is more likely that the minimal polynomial
|
||
|
algorithm works better with the inverse
|
||
|
"""
|
||
|
if ex.is_Pow:
|
||
|
if (1/ex.exp).is_integer and ex.exp < 0:
|
||
|
if ex.base.is_Add:
|
||
|
return True
|
||
|
if ex.is_Mul:
|
||
|
hit = True
|
||
|
for p in ex.args:
|
||
|
if p.is_Add:
|
||
|
return False
|
||
|
if p.is_Pow:
|
||
|
if p.base.is_Add and p.exp > 0:
|
||
|
return False
|
||
|
|
||
|
if hit:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
inverted = False
|
||
|
ex = expand_multinomial(ex)
|
||
|
if ex.is_AlgebraicNumber:
|
||
|
return ex.minpoly_of_element().as_expr(x)
|
||
|
elif ex.is_Rational:
|
||
|
result = ex.q*x - ex.p
|
||
|
else:
|
||
|
inverted = simpler_inverse(ex)
|
||
|
if inverted:
|
||
|
ex = ex**-1
|
||
|
res = None
|
||
|
if ex.is_Pow and (1/ex.exp).is_Integer:
|
||
|
n = 1/ex.exp
|
||
|
res = _minimal_polynomial_sq(ex.base, n, x)
|
||
|
|
||
|
elif _is_sum_surds(ex):
|
||
|
res = _minimal_polynomial_sq(ex, S.One, x)
|
||
|
|
||
|
if res is not None:
|
||
|
result = res
|
||
|
|
||
|
if res is None:
|
||
|
bus = bottom_up_scan(ex)
|
||
|
F = [x - bus] + list(mapping.values())
|
||
|
G = groebner(F, list(symbols.values()) + [x], order='lex')
|
||
|
|
||
|
_, factors = factor_list(G[-1])
|
||
|
# by construction G[-1] has root `ex`
|
||
|
result = _choose_factor(factors, x, ex)
|
||
|
if inverted:
|
||
|
result = _invertx(result, x)
|
||
|
if result.coeff(x**degree(result, x)) < 0:
|
||
|
result = expand_mul(-result)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
@public
|
||
|
def minpoly(ex, x=None, compose=True, polys=False, domain=None):
|
||
|
"""This is a synonym for :py:func:`~.minimal_polynomial`."""
|
||
|
return minimal_polynomial(ex, x=x, compose=compose, polys=polys, domain=domain)
|