You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1227 lines
36 KiB
1227 lines
36 KiB
5 months ago
|
"""Algorithms for computing symbolic roots of polynomials. """
|
||
|
|
||
|
|
||
|
import math
|
||
|
from functools import reduce
|
||
|
|
||
|
from sympy.core import S, I, pi
|
||
|
from sympy.core.exprtools import factor_terms
|
||
|
from sympy.core.function import _mexpand
|
||
|
from sympy.core.logic import fuzzy_not
|
||
|
from sympy.core.mul import expand_2arg, Mul
|
||
|
from sympy.core.numbers import Rational, igcd, comp
|
||
|
from sympy.core.power import Pow
|
||
|
from sympy.core.relational import Eq
|
||
|
from sympy.core.sorting import ordered
|
||
|
from sympy.core.symbol import Dummy, Symbol, symbols
|
||
|
from sympy.core.sympify import sympify
|
||
|
from sympy.functions import exp, im, cos, acos, Piecewise
|
||
|
from sympy.functions.elementary.miscellaneous import root, sqrt
|
||
|
from sympy.ntheory import divisors, isprime, nextprime
|
||
|
from sympy.polys.domains import EX
|
||
|
from sympy.polys.polyerrors import (PolynomialError, GeneratorsNeeded,
|
||
|
DomainError, UnsolvableFactorError)
|
||
|
from sympy.polys.polyquinticconst import PolyQuintic
|
||
|
from sympy.polys.polytools import Poly, cancel, factor, gcd_list, discriminant
|
||
|
from sympy.polys.rationaltools import together
|
||
|
from sympy.polys.specialpolys import cyclotomic_poly
|
||
|
from sympy.utilities import public
|
||
|
from sympy.utilities.misc import filldedent
|
||
|
|
||
|
|
||
|
|
||
|
z = Symbol('z') # importing from abc cause O to be lost as clashing symbol
|
||
|
|
||
|
|
||
|
def roots_linear(f):
|
||
|
"""Returns a list of roots of a linear polynomial."""
|
||
|
r = -f.nth(0)/f.nth(1)
|
||
|
dom = f.get_domain()
|
||
|
|
||
|
if not dom.is_Numerical:
|
||
|
if dom.is_Composite:
|
||
|
r = factor(r)
|
||
|
else:
|
||
|
from sympy.simplify.simplify import simplify
|
||
|
r = simplify(r)
|
||
|
|
||
|
return [r]
|
||
|
|
||
|
|
||
|
def roots_quadratic(f):
|
||
|
"""Returns a list of roots of a quadratic polynomial. If the domain is ZZ
|
||
|
then the roots will be sorted with negatives coming before positives.
|
||
|
The ordering will be the same for any numerical coefficients as long as
|
||
|
the assumptions tested are correct, otherwise the ordering will not be
|
||
|
sorted (but will be canonical).
|
||
|
"""
|
||
|
|
||
|
a, b, c = f.all_coeffs()
|
||
|
dom = f.get_domain()
|
||
|
|
||
|
def _sqrt(d):
|
||
|
# remove squares from square root since both will be represented
|
||
|
# in the results; a similar thing is happening in roots() but
|
||
|
# must be duplicated here because not all quadratics are binomials
|
||
|
co = []
|
||
|
other = []
|
||
|
for di in Mul.make_args(d):
|
||
|
if di.is_Pow and di.exp.is_Integer and di.exp % 2 == 0:
|
||
|
co.append(Pow(di.base, di.exp//2))
|
||
|
else:
|
||
|
other.append(di)
|
||
|
if co:
|
||
|
d = Mul(*other)
|
||
|
co = Mul(*co)
|
||
|
return co*sqrt(d)
|
||
|
return sqrt(d)
|
||
|
|
||
|
def _simplify(expr):
|
||
|
if dom.is_Composite:
|
||
|
return factor(expr)
|
||
|
else:
|
||
|
from sympy.simplify.simplify import simplify
|
||
|
return simplify(expr)
|
||
|
|
||
|
if c is S.Zero:
|
||
|
r0, r1 = S.Zero, -b/a
|
||
|
|
||
|
if not dom.is_Numerical:
|
||
|
r1 = _simplify(r1)
|
||
|
elif r1.is_negative:
|
||
|
r0, r1 = r1, r0
|
||
|
elif b is S.Zero:
|
||
|
r = -c/a
|
||
|
if not dom.is_Numerical:
|
||
|
r = _simplify(r)
|
||
|
|
||
|
R = _sqrt(r)
|
||
|
r0 = -R
|
||
|
r1 = R
|
||
|
else:
|
||
|
d = b**2 - 4*a*c
|
||
|
A = 2*a
|
||
|
B = -b/A
|
||
|
|
||
|
if not dom.is_Numerical:
|
||
|
d = _simplify(d)
|
||
|
B = _simplify(B)
|
||
|
|
||
|
D = factor_terms(_sqrt(d)/A)
|
||
|
r0 = B - D
|
||
|
r1 = B + D
|
||
|
if a.is_negative:
|
||
|
r0, r1 = r1, r0
|
||
|
elif not dom.is_Numerical:
|
||
|
r0, r1 = [expand_2arg(i) for i in (r0, r1)]
|
||
|
|
||
|
return [r0, r1]
|
||
|
|
||
|
|
||
|
def roots_cubic(f, trig=False):
|
||
|
"""Returns a list of roots of a cubic polynomial.
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
[1] https://en.wikipedia.org/wiki/Cubic_function, General formula for roots,
|
||
|
(accessed November 17, 2014).
|
||
|
"""
|
||
|
if trig:
|
||
|
a, b, c, d = f.all_coeffs()
|
||
|
p = (3*a*c - b**2)/(3*a**2)
|
||
|
q = (2*b**3 - 9*a*b*c + 27*a**2*d)/(27*a**3)
|
||
|
D = 18*a*b*c*d - 4*b**3*d + b**2*c**2 - 4*a*c**3 - 27*a**2*d**2
|
||
|
if (D > 0) == True:
|
||
|
rv = []
|
||
|
for k in range(3):
|
||
|
rv.append(2*sqrt(-p/3)*cos(acos(q/p*sqrt(-3/p)*Rational(3, 2))/3 - k*pi*Rational(2, 3)))
|
||
|
return [i - b/3/a for i in rv]
|
||
|
|
||
|
# a*x**3 + b*x**2 + c*x + d -> x**3 + a*x**2 + b*x + c
|
||
|
_, a, b, c = f.monic().all_coeffs()
|
||
|
|
||
|
if c is S.Zero:
|
||
|
x1, x2 = roots([1, a, b], multiple=True)
|
||
|
return [x1, S.Zero, x2]
|
||
|
|
||
|
# x**3 + a*x**2 + b*x + c -> u**3 + p*u + q
|
||
|
p = b - a**2/3
|
||
|
q = c - a*b/3 + 2*a**3/27
|
||
|
|
||
|
pon3 = p/3
|
||
|
aon3 = a/3
|
||
|
|
||
|
u1 = None
|
||
|
if p is S.Zero:
|
||
|
if q is S.Zero:
|
||
|
return [-aon3]*3
|
||
|
u1 = -root(q, 3) if q.is_positive else root(-q, 3)
|
||
|
elif q is S.Zero:
|
||
|
y1, y2 = roots([1, 0, p], multiple=True)
|
||
|
return [tmp - aon3 for tmp in [y1, S.Zero, y2]]
|
||
|
elif q.is_real and q.is_negative:
|
||
|
u1 = -root(-q/2 + sqrt(q**2/4 + pon3**3), 3)
|
||
|
|
||
|
coeff = I*sqrt(3)/2
|
||
|
if u1 is None:
|
||
|
u1 = S.One
|
||
|
u2 = Rational(-1, 2) + coeff
|
||
|
u3 = Rational(-1, 2) - coeff
|
||
|
b, c, d = a, b, c # a, b, c, d = S.One, a, b, c
|
||
|
D0 = b**2 - 3*c # b**2 - 3*a*c
|
||
|
D1 = 2*b**3 - 9*b*c + 27*d # 2*b**3 - 9*a*b*c + 27*a**2*d
|
||
|
C = root((D1 + sqrt(D1**2 - 4*D0**3))/2, 3)
|
||
|
return [-(b + uk*C + D0/C/uk)/3 for uk in [u1, u2, u3]] # -(b + uk*C + D0/C/uk)/3/a
|
||
|
|
||
|
u2 = u1*(Rational(-1, 2) + coeff)
|
||
|
u3 = u1*(Rational(-1, 2) - coeff)
|
||
|
|
||
|
if p is S.Zero:
|
||
|
return [u1 - aon3, u2 - aon3, u3 - aon3]
|
||
|
|
||
|
soln = [
|
||
|
-u1 + pon3/u1 - aon3,
|
||
|
-u2 + pon3/u2 - aon3,
|
||
|
-u3 + pon3/u3 - aon3
|
||
|
]
|
||
|
|
||
|
return soln
|
||
|
|
||
|
def _roots_quartic_euler(p, q, r, a):
|
||
|
"""
|
||
|
Descartes-Euler solution of the quartic equation
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
p, q, r: coefficients of ``x**4 + p*x**2 + q*x + r``
|
||
|
a: shift of the roots
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
This is a helper function for ``roots_quartic``.
|
||
|
|
||
|
Look for solutions of the form ::
|
||
|
|
||
|
``x1 = sqrt(R) - sqrt(A + B*sqrt(R))``
|
||
|
``x2 = -sqrt(R) - sqrt(A - B*sqrt(R))``
|
||
|
``x3 = -sqrt(R) + sqrt(A - B*sqrt(R))``
|
||
|
``x4 = sqrt(R) + sqrt(A + B*sqrt(R))``
|
||
|
|
||
|
To satisfy the quartic equation one must have
|
||
|
``p = -2*(R + A); q = -4*B*R; r = (R - A)**2 - B**2*R``
|
||
|
so that ``R`` must satisfy the Descartes-Euler resolvent equation
|
||
|
``64*R**3 + 32*p*R**2 + (4*p**2 - 16*r)*R - q**2 = 0``
|
||
|
|
||
|
If the resolvent does not have a rational solution, return None;
|
||
|
in that case it is likely that the Ferrari method gives a simpler
|
||
|
solution.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import S
|
||
|
>>> from sympy.polys.polyroots import _roots_quartic_euler
|
||
|
>>> p, q, r = -S(64)/5, -S(512)/125, -S(1024)/3125
|
||
|
>>> _roots_quartic_euler(p, q, r, S(0))[0]
|
||
|
-sqrt(32*sqrt(5)/125 + 16/5) + 4*sqrt(5)/5
|
||
|
"""
|
||
|
# solve the resolvent equation
|
||
|
x = Dummy('x')
|
||
|
eq = 64*x**3 + 32*p*x**2 + (4*p**2 - 16*r)*x - q**2
|
||
|
xsols = list(roots(Poly(eq, x), cubics=False).keys())
|
||
|
xsols = [sol for sol in xsols if sol.is_rational and sol.is_nonzero]
|
||
|
if not xsols:
|
||
|
return None
|
||
|
R = max(xsols)
|
||
|
c1 = sqrt(R)
|
||
|
B = -q*c1/(4*R)
|
||
|
A = -R - p/2
|
||
|
c2 = sqrt(A + B)
|
||
|
c3 = sqrt(A - B)
|
||
|
return [c1 - c2 - a, -c1 - c3 - a, -c1 + c3 - a, c1 + c2 - a]
|
||
|
|
||
|
|
||
|
def roots_quartic(f):
|
||
|
r"""
|
||
|
Returns a list of roots of a quartic polynomial.
|
||
|
|
||
|
There are many references for solving quartic expressions available [1-5].
|
||
|
This reviewer has found that many of them require one to select from among
|
||
|
2 or more possible sets of solutions and that some solutions work when one
|
||
|
is searching for real roots but do not work when searching for complex roots
|
||
|
(though this is not always stated clearly). The following routine has been
|
||
|
tested and found to be correct for 0, 2 or 4 complex roots.
|
||
|
|
||
|
The quasisymmetric case solution [6] looks for quartics that have the form
|
||
|
`x**4 + A*x**3 + B*x**2 + C*x + D = 0` where `(C/A)**2 = D`.
|
||
|
|
||
|
Although no general solution that is always applicable for all
|
||
|
coefficients is known to this reviewer, certain conditions are tested
|
||
|
to determine the simplest 4 expressions that can be returned:
|
||
|
|
||
|
1) `f = c + a*(a**2/8 - b/2) == 0`
|
||
|
2) `g = d - a*(a*(3*a**2/256 - b/16) + c/4) = 0`
|
||
|
3) if `f != 0` and `g != 0` and `p = -d + a*c/4 - b**2/12` then
|
||
|
a) `p == 0`
|
||
|
b) `p != 0`
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Poly
|
||
|
>>> from sympy.polys.polyroots import roots_quartic
|
||
|
|
||
|
>>> r = roots_quartic(Poly('x**4-6*x**3+17*x**2-26*x+20'))
|
||
|
|
||
|
>>> # 4 complex roots: 1+-I*sqrt(3), 2+-I
|
||
|
>>> sorted(str(tmp.evalf(n=2)) for tmp in r)
|
||
|
['1.0 + 1.7*I', '1.0 - 1.7*I', '2.0 + 1.0*I', '2.0 - 1.0*I']
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
1. http://mathforum.org/dr.math/faq/faq.cubic.equations.html
|
||
|
2. https://en.wikipedia.org/wiki/Quartic_function#Summary_of_Ferrari.27s_method
|
||
|
3. https://planetmath.org/encyclopedia/GaloisTheoreticDerivationOfTheQuarticFormula.html
|
||
|
4. https://people.bath.ac.uk/masjhd/JHD-CA.pdf
|
||
|
5. http://www.albmath.org/files/Math_5713.pdf
|
||
|
6. https://web.archive.org/web/20171002081448/http://www.statemaster.com/encyclopedia/Quartic-equation
|
||
|
7. https://eqworld.ipmnet.ru/en/solutions/ae/ae0108.pdf
|
||
|
"""
|
||
|
_, a, b, c, d = f.monic().all_coeffs()
|
||
|
|
||
|
if not d:
|
||
|
return [S.Zero] + roots([1, a, b, c], multiple=True)
|
||
|
elif (c/a)**2 == d:
|
||
|
x, m = f.gen, c/a
|
||
|
|
||
|
g = Poly(x**2 + a*x + b - 2*m, x)
|
||
|
|
||
|
z1, z2 = roots_quadratic(g)
|
||
|
|
||
|
h1 = Poly(x**2 - z1*x + m, x)
|
||
|
h2 = Poly(x**2 - z2*x + m, x)
|
||
|
|
||
|
r1 = roots_quadratic(h1)
|
||
|
r2 = roots_quadratic(h2)
|
||
|
|
||
|
return r1 + r2
|
||
|
else:
|
||
|
a2 = a**2
|
||
|
e = b - 3*a2/8
|
||
|
f = _mexpand(c + a*(a2/8 - b/2))
|
||
|
aon4 = a/4
|
||
|
g = _mexpand(d - aon4*(a*(3*a2/64 - b/4) + c))
|
||
|
|
||
|
if f.is_zero:
|
||
|
y1, y2 = [sqrt(tmp) for tmp in
|
||
|
roots([1, e, g], multiple=True)]
|
||
|
return [tmp - aon4 for tmp in [-y1, -y2, y1, y2]]
|
||
|
if g.is_zero:
|
||
|
y = [S.Zero] + roots([1, 0, e, f], multiple=True)
|
||
|
return [tmp - aon4 for tmp in y]
|
||
|
else:
|
||
|
# Descartes-Euler method, see [7]
|
||
|
sols = _roots_quartic_euler(e, f, g, aon4)
|
||
|
if sols:
|
||
|
return sols
|
||
|
# Ferrari method, see [1, 2]
|
||
|
p = -e**2/12 - g
|
||
|
q = -e**3/108 + e*g/3 - f**2/8
|
||
|
TH = Rational(1, 3)
|
||
|
|
||
|
def _ans(y):
|
||
|
w = sqrt(e + 2*y)
|
||
|
arg1 = 3*e + 2*y
|
||
|
arg2 = 2*f/w
|
||
|
ans = []
|
||
|
for s in [-1, 1]:
|
||
|
root = sqrt(-(arg1 + s*arg2))
|
||
|
for t in [-1, 1]:
|
||
|
ans.append((s*w - t*root)/2 - aon4)
|
||
|
return ans
|
||
|
|
||
|
# whether a Piecewise is returned or not
|
||
|
# depends on knowing p, so try to put
|
||
|
# in a simple form
|
||
|
p = _mexpand(p)
|
||
|
|
||
|
|
||
|
# p == 0 case
|
||
|
y1 = e*Rational(-5, 6) - q**TH
|
||
|
if p.is_zero:
|
||
|
return _ans(y1)
|
||
|
|
||
|
# if p != 0 then u below is not 0
|
||
|
root = sqrt(q**2/4 + p**3/27)
|
||
|
r = -q/2 + root # or -q/2 - root
|
||
|
u = r**TH # primary root of solve(x**3 - r, x)
|
||
|
y2 = e*Rational(-5, 6) + u - p/u/3
|
||
|
if fuzzy_not(p.is_zero):
|
||
|
return _ans(y2)
|
||
|
|
||
|
# sort it out once they know the values of the coefficients
|
||
|
return [Piecewise((a1, Eq(p, 0)), (a2, True))
|
||
|
for a1, a2 in zip(_ans(y1), _ans(y2))]
|
||
|
|
||
|
|
||
|
def roots_binomial(f):
|
||
|
"""Returns a list of roots of a binomial polynomial. If the domain is ZZ
|
||
|
then the roots will be sorted with negatives coming before positives.
|
||
|
The ordering will be the same for any numerical coefficients as long as
|
||
|
the assumptions tested are correct, otherwise the ordering will not be
|
||
|
sorted (but will be canonical).
|
||
|
"""
|
||
|
n = f.degree()
|
||
|
|
||
|
a, b = f.nth(n), f.nth(0)
|
||
|
base = -cancel(b/a)
|
||
|
alpha = root(base, n)
|
||
|
|
||
|
if alpha.is_number:
|
||
|
alpha = alpha.expand(complex=True)
|
||
|
|
||
|
# define some parameters that will allow us to order the roots.
|
||
|
# If the domain is ZZ this is guaranteed to return roots sorted
|
||
|
# with reals before non-real roots and non-real sorted according
|
||
|
# to real part and imaginary part, e.g. -1, 1, -1 + I, 2 - I
|
||
|
neg = base.is_negative
|
||
|
even = n % 2 == 0
|
||
|
if neg:
|
||
|
if even == True and (base + 1).is_positive:
|
||
|
big = True
|
||
|
else:
|
||
|
big = False
|
||
|
|
||
|
# get the indices in the right order so the computed
|
||
|
# roots will be sorted when the domain is ZZ
|
||
|
ks = []
|
||
|
imax = n//2
|
||
|
if even:
|
||
|
ks.append(imax)
|
||
|
imax -= 1
|
||
|
if not neg:
|
||
|
ks.append(0)
|
||
|
for i in range(imax, 0, -1):
|
||
|
if neg:
|
||
|
ks.extend([i, -i])
|
||
|
else:
|
||
|
ks.extend([-i, i])
|
||
|
if neg:
|
||
|
ks.append(0)
|
||
|
if big:
|
||
|
for i in range(0, len(ks), 2):
|
||
|
pair = ks[i: i + 2]
|
||
|
pair = list(reversed(pair))
|
||
|
|
||
|
# compute the roots
|
||
|
roots, d = [], 2*I*pi/n
|
||
|
for k in ks:
|
||
|
zeta = exp(k*d).expand(complex=True)
|
||
|
roots.append((alpha*zeta).expand(power_base=False))
|
||
|
|
||
|
return roots
|
||
|
|
||
|
|
||
|
def _inv_totient_estimate(m):
|
||
|
"""
|
||
|
Find ``(L, U)`` such that ``L <= phi^-1(m) <= U``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.polyroots import _inv_totient_estimate
|
||
|
|
||
|
>>> _inv_totient_estimate(192)
|
||
|
(192, 840)
|
||
|
>>> _inv_totient_estimate(400)
|
||
|
(400, 1750)
|
||
|
|
||
|
"""
|
||
|
primes = [ d + 1 for d in divisors(m) if isprime(d + 1) ]
|
||
|
|
||
|
a, b = 1, 1
|
||
|
|
||
|
for p in primes:
|
||
|
a *= p
|
||
|
b *= p - 1
|
||
|
|
||
|
L = m
|
||
|
U = int(math.ceil(m*(float(a)/b)))
|
||
|
|
||
|
P = p = 2
|
||
|
primes = []
|
||
|
|
||
|
while P <= U:
|
||
|
p = nextprime(p)
|
||
|
primes.append(p)
|
||
|
P *= p
|
||
|
|
||
|
P //= p
|
||
|
b = 1
|
||
|
|
||
|
for p in primes[:-1]:
|
||
|
b *= p - 1
|
||
|
|
||
|
U = int(math.ceil(m*(float(P)/b)))
|
||
|
|
||
|
return L, U
|
||
|
|
||
|
|
||
|
def roots_cyclotomic(f, factor=False):
|
||
|
"""Compute roots of cyclotomic polynomials. """
|
||
|
L, U = _inv_totient_estimate(f.degree())
|
||
|
|
||
|
for n in range(L, U + 1):
|
||
|
g = cyclotomic_poly(n, f.gen, polys=True)
|
||
|
|
||
|
if f.expr == g.expr:
|
||
|
break
|
||
|
else: # pragma: no cover
|
||
|
raise RuntimeError("failed to find index of a cyclotomic polynomial")
|
||
|
|
||
|
roots = []
|
||
|
|
||
|
if not factor:
|
||
|
# get the indices in the right order so the computed
|
||
|
# roots will be sorted
|
||
|
h = n//2
|
||
|
ks = [i for i in range(1, n + 1) if igcd(i, n) == 1]
|
||
|
ks.sort(key=lambda x: (x, -1) if x <= h else (abs(x - n), 1))
|
||
|
d = 2*I*pi/n
|
||
|
for k in reversed(ks):
|
||
|
roots.append(exp(k*d).expand(complex=True))
|
||
|
else:
|
||
|
g = Poly(f, extension=root(-1, n))
|
||
|
|
||
|
for h, _ in ordered(g.factor_list()[1]):
|
||
|
roots.append(-h.TC())
|
||
|
|
||
|
return roots
|
||
|
|
||
|
|
||
|
def roots_quintic(f):
|
||
|
"""
|
||
|
Calculate exact roots of a solvable irreducible quintic with rational coefficients.
|
||
|
Return an empty list if the quintic is reducible or not solvable.
|
||
|
"""
|
||
|
result = []
|
||
|
|
||
|
coeff_5, coeff_4, p_, q_, r_, s_ = f.all_coeffs()
|
||
|
|
||
|
if not all(coeff.is_Rational for coeff in (coeff_5, coeff_4, p_, q_, r_, s_)):
|
||
|
return result
|
||
|
|
||
|
if coeff_5 != 1:
|
||
|
f = Poly(f / coeff_5)
|
||
|
_, coeff_4, p_, q_, r_, s_ = f.all_coeffs()
|
||
|
|
||
|
# Cancel coeff_4 to form x^5 + px^3 + qx^2 + rx + s
|
||
|
if coeff_4:
|
||
|
p = p_ - 2*coeff_4*coeff_4/5
|
||
|
q = q_ - 3*coeff_4*p_/5 + 4*coeff_4**3/25
|
||
|
r = r_ - 2*coeff_4*q_/5 + 3*coeff_4**2*p_/25 - 3*coeff_4**4/125
|
||
|
s = s_ - coeff_4*r_/5 + coeff_4**2*q_/25 - coeff_4**3*p_/125 + 4*coeff_4**5/3125
|
||
|
x = f.gen
|
||
|
f = Poly(x**5 + p*x**3 + q*x**2 + r*x + s)
|
||
|
else:
|
||
|
p, q, r, s = p_, q_, r_, s_
|
||
|
|
||
|
quintic = PolyQuintic(f)
|
||
|
|
||
|
# Eqn standardized. Algo for solving starts here
|
||
|
if not f.is_irreducible:
|
||
|
return result
|
||
|
f20 = quintic.f20
|
||
|
# Check if f20 has linear factors over domain Z
|
||
|
if f20.is_irreducible:
|
||
|
return result
|
||
|
# Now, we know that f is solvable
|
||
|
for _factor in f20.factor_list()[1]:
|
||
|
if _factor[0].is_linear:
|
||
|
theta = _factor[0].root(0)
|
||
|
break
|
||
|
d = discriminant(f)
|
||
|
delta = sqrt(d)
|
||
|
# zeta = a fifth root of unity
|
||
|
zeta1, zeta2, zeta3, zeta4 = quintic.zeta
|
||
|
T = quintic.T(theta, d)
|
||
|
tol = S(1e-10)
|
||
|
alpha = T[1] + T[2]*delta
|
||
|
alpha_bar = T[1] - T[2]*delta
|
||
|
beta = T[3] + T[4]*delta
|
||
|
beta_bar = T[3] - T[4]*delta
|
||
|
|
||
|
disc = alpha**2 - 4*beta
|
||
|
disc_bar = alpha_bar**2 - 4*beta_bar
|
||
|
|
||
|
l0 = quintic.l0(theta)
|
||
|
Stwo = S(2)
|
||
|
l1 = _quintic_simplify((-alpha + sqrt(disc)) / Stwo)
|
||
|
l4 = _quintic_simplify((-alpha - sqrt(disc)) / Stwo)
|
||
|
|
||
|
l2 = _quintic_simplify((-alpha_bar + sqrt(disc_bar)) / Stwo)
|
||
|
l3 = _quintic_simplify((-alpha_bar - sqrt(disc_bar)) / Stwo)
|
||
|
|
||
|
order = quintic.order(theta, d)
|
||
|
test = (order*delta.n()) - ( (l1.n() - l4.n())*(l2.n() - l3.n()) )
|
||
|
# Comparing floats
|
||
|
if not comp(test, 0, tol):
|
||
|
l2, l3 = l3, l2
|
||
|
|
||
|
# Now we have correct order of l's
|
||
|
R1 = l0 + l1*zeta1 + l2*zeta2 + l3*zeta3 + l4*zeta4
|
||
|
R2 = l0 + l3*zeta1 + l1*zeta2 + l4*zeta3 + l2*zeta4
|
||
|
R3 = l0 + l2*zeta1 + l4*zeta2 + l1*zeta3 + l3*zeta4
|
||
|
R4 = l0 + l4*zeta1 + l3*zeta2 + l2*zeta3 + l1*zeta4
|
||
|
|
||
|
Res = [None, [None]*5, [None]*5, [None]*5, [None]*5]
|
||
|
Res_n = [None, [None]*5, [None]*5, [None]*5, [None]*5]
|
||
|
|
||
|
# Simplifying improves performance a lot for exact expressions
|
||
|
R1 = _quintic_simplify(R1)
|
||
|
R2 = _quintic_simplify(R2)
|
||
|
R3 = _quintic_simplify(R3)
|
||
|
R4 = _quintic_simplify(R4)
|
||
|
|
||
|
# hard-coded results for [factor(i) for i in _vsolve(x**5 - a - I*b, x)]
|
||
|
x0 = z**(S(1)/5)
|
||
|
x1 = sqrt(2)
|
||
|
x2 = sqrt(5)
|
||
|
x3 = sqrt(5 - x2)
|
||
|
x4 = I*x2
|
||
|
x5 = x4 + I
|
||
|
x6 = I*x0/4
|
||
|
x7 = x1*sqrt(x2 + 5)
|
||
|
sol = [x0, -x6*(x1*x3 - x5), x6*(x1*x3 + x5), -x6*(x4 + x7 - I), x6*(-x4 + x7 + I)]
|
||
|
|
||
|
R1 = R1.as_real_imag()
|
||
|
R2 = R2.as_real_imag()
|
||
|
R3 = R3.as_real_imag()
|
||
|
R4 = R4.as_real_imag()
|
||
|
|
||
|
for i, s in enumerate(sol):
|
||
|
Res[1][i] = _quintic_simplify(s.xreplace({z: R1[0] + I*R1[1]}))
|
||
|
Res[2][i] = _quintic_simplify(s.xreplace({z: R2[0] + I*R2[1]}))
|
||
|
Res[3][i] = _quintic_simplify(s.xreplace({z: R3[0] + I*R3[1]}))
|
||
|
Res[4][i] = _quintic_simplify(s.xreplace({z: R4[0] + I*R4[1]}))
|
||
|
|
||
|
for i in range(1, 5):
|
||
|
for j in range(5):
|
||
|
Res_n[i][j] = Res[i][j].n()
|
||
|
Res[i][j] = _quintic_simplify(Res[i][j])
|
||
|
r1 = Res[1][0]
|
||
|
r1_n = Res_n[1][0]
|
||
|
|
||
|
for i in range(5):
|
||
|
if comp(im(r1_n*Res_n[4][i]), 0, tol):
|
||
|
r4 = Res[4][i]
|
||
|
break
|
||
|
|
||
|
# Now we have various Res values. Each will be a list of five
|
||
|
# values. We have to pick one r value from those five for each Res
|
||
|
u, v = quintic.uv(theta, d)
|
||
|
testplus = (u + v*delta*sqrt(5)).n()
|
||
|
testminus = (u - v*delta*sqrt(5)).n()
|
||
|
|
||
|
# Evaluated numbers suffixed with _n
|
||
|
# We will use evaluated numbers for calculation. Much faster.
|
||
|
r4_n = r4.n()
|
||
|
r2 = r3 = None
|
||
|
|
||
|
for i in range(5):
|
||
|
r2temp_n = Res_n[2][i]
|
||
|
for j in range(5):
|
||
|
# Again storing away the exact number and using
|
||
|
# evaluated numbers in computations
|
||
|
r3temp_n = Res_n[3][j]
|
||
|
if (comp((r1_n*r2temp_n**2 + r4_n*r3temp_n**2 - testplus).n(), 0, tol) and
|
||
|
comp((r3temp_n*r1_n**2 + r2temp_n*r4_n**2 - testminus).n(), 0, tol)):
|
||
|
r2 = Res[2][i]
|
||
|
r3 = Res[3][j]
|
||
|
break
|
||
|
if r2 is not None:
|
||
|
break
|
||
|
else:
|
||
|
return [] # fall back to normal solve
|
||
|
|
||
|
# Now, we have r's so we can get roots
|
||
|
x1 = (r1 + r2 + r3 + r4)/5
|
||
|
x2 = (r1*zeta4 + r2*zeta3 + r3*zeta2 + r4*zeta1)/5
|
||
|
x3 = (r1*zeta3 + r2*zeta1 + r3*zeta4 + r4*zeta2)/5
|
||
|
x4 = (r1*zeta2 + r2*zeta4 + r3*zeta1 + r4*zeta3)/5
|
||
|
x5 = (r1*zeta1 + r2*zeta2 + r3*zeta3 + r4*zeta4)/5
|
||
|
result = [x1, x2, x3, x4, x5]
|
||
|
|
||
|
# Now check if solutions are distinct
|
||
|
|
||
|
saw = set()
|
||
|
for r in result:
|
||
|
r = r.n(2)
|
||
|
if r in saw:
|
||
|
# Roots were identical. Abort, return []
|
||
|
# and fall back to usual solve
|
||
|
return []
|
||
|
saw.add(r)
|
||
|
|
||
|
# Restore to original equation where coeff_4 is nonzero
|
||
|
if coeff_4:
|
||
|
result = [x - coeff_4 / 5 for x in result]
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _quintic_simplify(expr):
|
||
|
from sympy.simplify.simplify import powsimp
|
||
|
expr = powsimp(expr)
|
||
|
expr = cancel(expr)
|
||
|
return together(expr)
|
||
|
|
||
|
|
||
|
def _integer_basis(poly):
|
||
|
"""Compute coefficient basis for a polynomial over integers.
|
||
|
|
||
|
Returns the integer ``div`` such that substituting ``x = div*y``
|
||
|
``p(x) = m*q(y)`` where the coefficients of ``q`` are smaller
|
||
|
than those of ``p``.
|
||
|
|
||
|
For example ``x**5 + 512*x + 1024 = 0``
|
||
|
with ``div = 4`` becomes ``y**5 + 2*y + 1 = 0``
|
||
|
|
||
|
Returns the integer ``div`` or ``None`` if there is no possible scaling.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys import Poly
|
||
|
>>> from sympy.abc import x
|
||
|
>>> from sympy.polys.polyroots import _integer_basis
|
||
|
>>> p = Poly(x**5 + 512*x + 1024, x, domain='ZZ')
|
||
|
>>> _integer_basis(p)
|
||
|
4
|
||
|
"""
|
||
|
monoms, coeffs = list(zip(*poly.terms()))
|
||
|
|
||
|
monoms, = list(zip(*monoms))
|
||
|
coeffs = list(map(abs, coeffs))
|
||
|
|
||
|
if coeffs[0] < coeffs[-1]:
|
||
|
coeffs = list(reversed(coeffs))
|
||
|
n = monoms[0]
|
||
|
monoms = [n - i for i in reversed(monoms)]
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
monoms = monoms[:-1]
|
||
|
coeffs = coeffs[:-1]
|
||
|
|
||
|
# Special case for two-term polynominals
|
||
|
if len(monoms) == 1:
|
||
|
r = Pow(coeffs[0], S.One/monoms[0])
|
||
|
if r.is_Integer:
|
||
|
return int(r)
|
||
|
else:
|
||
|
return None
|
||
|
|
||
|
divs = reversed(divisors(gcd_list(coeffs))[1:])
|
||
|
|
||
|
try:
|
||
|
div = next(divs)
|
||
|
except StopIteration:
|
||
|
return None
|
||
|
|
||
|
while True:
|
||
|
for monom, coeff in zip(monoms, coeffs):
|
||
|
if coeff % div**monom != 0:
|
||
|
try:
|
||
|
div = next(divs)
|
||
|
except StopIteration:
|
||
|
return None
|
||
|
else:
|
||
|
break
|
||
|
else:
|
||
|
return div
|
||
|
|
||
|
|
||
|
def preprocess_roots(poly):
|
||
|
"""Try to get rid of symbolic coefficients from ``poly``. """
|
||
|
coeff = S.One
|
||
|
|
||
|
poly_func = poly.func
|
||
|
try:
|
||
|
_, poly = poly.clear_denoms(convert=True)
|
||
|
except DomainError:
|
||
|
return coeff, poly
|
||
|
|
||
|
poly = poly.primitive()[1]
|
||
|
poly = poly.retract()
|
||
|
|
||
|
# TODO: This is fragile. Figure out how to make this independent of construct_domain().
|
||
|
if poly.get_domain().is_Poly and all(c.is_term for c in poly.rep.coeffs()):
|
||
|
poly = poly.inject()
|
||
|
|
||
|
strips = list(zip(*poly.monoms()))
|
||
|
gens = list(poly.gens[1:])
|
||
|
|
||
|
base, strips = strips[0], strips[1:]
|
||
|
|
||
|
for gen, strip in zip(list(gens), strips):
|
||
|
reverse = False
|
||
|
|
||
|
if strip[0] < strip[-1]:
|
||
|
strip = reversed(strip)
|
||
|
reverse = True
|
||
|
|
||
|
ratio = None
|
||
|
|
||
|
for a, b in zip(base, strip):
|
||
|
if not a and not b:
|
||
|
continue
|
||
|
elif not a or not b:
|
||
|
break
|
||
|
elif b % a != 0:
|
||
|
break
|
||
|
else:
|
||
|
_ratio = b // a
|
||
|
|
||
|
if ratio is None:
|
||
|
ratio = _ratio
|
||
|
elif ratio != _ratio:
|
||
|
break
|
||
|
else:
|
||
|
if reverse:
|
||
|
ratio = -ratio
|
||
|
|
||
|
poly = poly.eval(gen, 1)
|
||
|
coeff *= gen**(-ratio)
|
||
|
gens.remove(gen)
|
||
|
|
||
|
if gens:
|
||
|
poly = poly.eject(*gens)
|
||
|
|
||
|
if poly.is_univariate and poly.get_domain().is_ZZ:
|
||
|
basis = _integer_basis(poly)
|
||
|
|
||
|
if basis is not None:
|
||
|
n = poly.degree()
|
||
|
|
||
|
def func(k, coeff):
|
||
|
return coeff//basis**(n - k[0])
|
||
|
|
||
|
poly = poly.termwise(func)
|
||
|
coeff *= basis
|
||
|
|
||
|
if not isinstance(poly, poly_func):
|
||
|
poly = poly_func(poly)
|
||
|
return coeff, poly
|
||
|
|
||
|
|
||
|
@public
|
||
|
def roots(f, *gens,
|
||
|
auto=True,
|
||
|
cubics=True,
|
||
|
trig=False,
|
||
|
quartics=True,
|
||
|
quintics=False,
|
||
|
multiple=False,
|
||
|
filter=None,
|
||
|
predicate=None,
|
||
|
strict=False,
|
||
|
**flags):
|
||
|
"""
|
||
|
Computes symbolic roots of a univariate polynomial.
|
||
|
|
||
|
Given a univariate polynomial f with symbolic coefficients (or
|
||
|
a list of the polynomial's coefficients), returns a dictionary
|
||
|
with its roots and their multiplicities.
|
||
|
|
||
|
Only roots expressible via radicals will be returned. To get
|
||
|
a complete set of roots use RootOf class or numerical methods
|
||
|
instead. By default cubic and quartic formulas are used in
|
||
|
the algorithm. To disable them because of unreadable output
|
||
|
set ``cubics=False`` or ``quartics=False`` respectively. If cubic
|
||
|
roots are real but are expressed in terms of complex numbers
|
||
|
(casus irreducibilis [1]) the ``trig`` flag can be set to True to
|
||
|
have the solutions returned in terms of cosine and inverse cosine
|
||
|
functions.
|
||
|
|
||
|
To get roots from a specific domain set the ``filter`` flag with
|
||
|
one of the following specifiers: Z, Q, R, I, C. By default all
|
||
|
roots are returned (this is equivalent to setting ``filter='C'``).
|
||
|
|
||
|
By default a dictionary is returned giving a compact result in
|
||
|
case of multiple roots. However to get a list containing all
|
||
|
those roots set the ``multiple`` flag to True; the list will
|
||
|
have identical roots appearing next to each other in the result.
|
||
|
(For a given Poly, the all_roots method will give the roots in
|
||
|
sorted numerical order.)
|
||
|
|
||
|
If the ``strict`` flag is True, ``UnsolvableFactorError`` will be
|
||
|
raised if the roots found are known to be incomplete (because
|
||
|
some roots are not expressible in radicals).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import Poly, roots, degree
|
||
|
>>> from sympy.abc import x, y
|
||
|
|
||
|
>>> roots(x**2 - 1, x)
|
||
|
{-1: 1, 1: 1}
|
||
|
|
||
|
>>> p = Poly(x**2-1, x)
|
||
|
>>> roots(p)
|
||
|
{-1: 1, 1: 1}
|
||
|
|
||
|
>>> p = Poly(x**2-y, x, y)
|
||
|
|
||
|
>>> roots(Poly(p, x))
|
||
|
{-sqrt(y): 1, sqrt(y): 1}
|
||
|
|
||
|
>>> roots(x**2 - y, x)
|
||
|
{-sqrt(y): 1, sqrt(y): 1}
|
||
|
|
||
|
>>> roots([1, 0, -1])
|
||
|
{-1: 1, 1: 1}
|
||
|
|
||
|
``roots`` will only return roots expressible in radicals. If
|
||
|
the given polynomial has some or all of its roots inexpressible in
|
||
|
radicals, the result of ``roots`` will be incomplete or empty
|
||
|
respectively.
|
||
|
|
||
|
Example where result is incomplete:
|
||
|
|
||
|
>>> roots((x-1)*(x**5-x+1), x)
|
||
|
{1: 1}
|
||
|
|
||
|
In this case, the polynomial has an unsolvable quintic factor
|
||
|
whose roots cannot be expressed by radicals. The polynomial has a
|
||
|
rational root (due to the factor `(x-1)`), which is returned since
|
||
|
``roots`` always finds all rational roots.
|
||
|
|
||
|
Example where result is empty:
|
||
|
|
||
|
>>> roots(x**7-3*x**2+1, x)
|
||
|
{}
|
||
|
|
||
|
Here, the polynomial has no roots expressible in radicals, so
|
||
|
``roots`` returns an empty dictionary.
|
||
|
|
||
|
The result produced by ``roots`` is complete if and only if the
|
||
|
sum of the multiplicity of each root is equal to the degree of
|
||
|
the polynomial. If strict=True, UnsolvableFactorError will be
|
||
|
raised if the result is incomplete.
|
||
|
|
||
|
The result can be be checked for completeness as follows:
|
||
|
|
||
|
>>> f = x**3-2*x**2+1
|
||
|
>>> sum(roots(f, x).values()) == degree(f, x)
|
||
|
True
|
||
|
>>> f = (x-1)*(x**5-x+1)
|
||
|
>>> sum(roots(f, x).values()) == degree(f, x)
|
||
|
False
|
||
|
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Cubic_equation#Trigonometric_and_hyperbolic_solutions
|
||
|
|
||
|
"""
|
||
|
from sympy.polys.polytools import to_rational_coeffs
|
||
|
flags = dict(flags)
|
||
|
|
||
|
if isinstance(f, list):
|
||
|
if gens:
|
||
|
raise ValueError('redundant generators given')
|
||
|
|
||
|
x = Dummy('x')
|
||
|
|
||
|
poly, i = {}, len(f) - 1
|
||
|
|
||
|
for coeff in f:
|
||
|
poly[i], i = sympify(coeff), i - 1
|
||
|
|
||
|
f = Poly(poly, x, field=True)
|
||
|
else:
|
||
|
try:
|
||
|
F = Poly(f, *gens, **flags)
|
||
|
if not isinstance(f, Poly) and not F.gen.is_Symbol:
|
||
|
raise PolynomialError("generator must be a Symbol")
|
||
|
f = F
|
||
|
except GeneratorsNeeded:
|
||
|
if multiple:
|
||
|
return []
|
||
|
else:
|
||
|
return {}
|
||
|
else:
|
||
|
n = f.degree()
|
||
|
if f.length() == 2 and n > 2:
|
||
|
# check for foo**n in constant if dep is c*gen**m
|
||
|
con, dep = f.as_expr().as_independent(*f.gens)
|
||
|
fcon = -(-con).factor()
|
||
|
if fcon != con:
|
||
|
con = fcon
|
||
|
bases = []
|
||
|
for i in Mul.make_args(con):
|
||
|
if i.is_Pow:
|
||
|
b, e = i.as_base_exp()
|
||
|
if e.is_Integer and b.is_Add:
|
||
|
bases.append((b, Dummy(positive=True)))
|
||
|
if bases:
|
||
|
rv = roots(Poly((dep + con).xreplace(dict(bases)),
|
||
|
*f.gens), *F.gens,
|
||
|
auto=auto,
|
||
|
cubics=cubics,
|
||
|
trig=trig,
|
||
|
quartics=quartics,
|
||
|
quintics=quintics,
|
||
|
multiple=multiple,
|
||
|
filter=filter,
|
||
|
predicate=predicate,
|
||
|
**flags)
|
||
|
return {factor_terms(k.xreplace(
|
||
|
{v: k for k, v in bases})
|
||
|
): v for k, v in rv.items()}
|
||
|
|
||
|
if f.is_multivariate:
|
||
|
raise PolynomialError('multivariate polynomials are not supported')
|
||
|
|
||
|
def _update_dict(result, zeros, currentroot, k):
|
||
|
if currentroot == S.Zero:
|
||
|
if S.Zero in zeros:
|
||
|
zeros[S.Zero] += k
|
||
|
else:
|
||
|
zeros[S.Zero] = k
|
||
|
if currentroot in result:
|
||
|
result[currentroot] += k
|
||
|
else:
|
||
|
result[currentroot] = k
|
||
|
|
||
|
def _try_decompose(f):
|
||
|
"""Find roots using functional decomposition. """
|
||
|
factors, roots = f.decompose(), []
|
||
|
|
||
|
for currentroot in _try_heuristics(factors[0]):
|
||
|
roots.append(currentroot)
|
||
|
|
||
|
for currentfactor in factors[1:]:
|
||
|
previous, roots = list(roots), []
|
||
|
|
||
|
for currentroot in previous:
|
||
|
g = currentfactor - Poly(currentroot, f.gen)
|
||
|
|
||
|
for currentroot in _try_heuristics(g):
|
||
|
roots.append(currentroot)
|
||
|
|
||
|
return roots
|
||
|
|
||
|
def _try_heuristics(f):
|
||
|
"""Find roots using formulas and some tricks. """
|
||
|
if f.is_ground:
|
||
|
return []
|
||
|
if f.is_monomial:
|
||
|
return [S.Zero]*f.degree()
|
||
|
|
||
|
if f.length() == 2:
|
||
|
if f.degree() == 1:
|
||
|
return list(map(cancel, roots_linear(f)))
|
||
|
else:
|
||
|
return roots_binomial(f)
|
||
|
|
||
|
result = []
|
||
|
|
||
|
for i in [-1, 1]:
|
||
|
if not f.eval(i):
|
||
|
f = f.quo(Poly(f.gen - i, f.gen))
|
||
|
result.append(i)
|
||
|
break
|
||
|
|
||
|
n = f.degree()
|
||
|
|
||
|
if n == 1:
|
||
|
result += list(map(cancel, roots_linear(f)))
|
||
|
elif n == 2:
|
||
|
result += list(map(cancel, roots_quadratic(f)))
|
||
|
elif f.is_cyclotomic:
|
||
|
result += roots_cyclotomic(f)
|
||
|
elif n == 3 and cubics:
|
||
|
result += roots_cubic(f, trig=trig)
|
||
|
elif n == 4 and quartics:
|
||
|
result += roots_quartic(f)
|
||
|
elif n == 5 and quintics:
|
||
|
result += roots_quintic(f)
|
||
|
|
||
|
return result
|
||
|
|
||
|
# Convert the generators to symbols
|
||
|
dumgens = symbols('x:%d' % len(f.gens), cls=Dummy)
|
||
|
f = f.per(f.rep, dumgens)
|
||
|
|
||
|
(k,), f = f.terms_gcd()
|
||
|
|
||
|
if not k:
|
||
|
zeros = {}
|
||
|
else:
|
||
|
zeros = {S.Zero: k}
|
||
|
|
||
|
coeff, f = preprocess_roots(f)
|
||
|
|
||
|
if auto and f.get_domain().is_Ring:
|
||
|
f = f.to_field()
|
||
|
|
||
|
# Use EX instead of ZZ_I or QQ_I
|
||
|
if f.get_domain().is_QQ_I:
|
||
|
f = f.per(f.rep.convert(EX))
|
||
|
|
||
|
rescale_x = None
|
||
|
translate_x = None
|
||
|
|
||
|
result = {}
|
||
|
|
||
|
if not f.is_ground:
|
||
|
dom = f.get_domain()
|
||
|
if not dom.is_Exact and dom.is_Numerical:
|
||
|
for r in f.nroots():
|
||
|
_update_dict(result, zeros, r, 1)
|
||
|
elif f.degree() == 1:
|
||
|
_update_dict(result, zeros, roots_linear(f)[0], 1)
|
||
|
elif f.length() == 2:
|
||
|
roots_fun = roots_quadratic if f.degree() == 2 else roots_binomial
|
||
|
for r in roots_fun(f):
|
||
|
_update_dict(result, zeros, r, 1)
|
||
|
else:
|
||
|
_, factors = Poly(f.as_expr()).factor_list()
|
||
|
if len(factors) == 1 and f.degree() == 2:
|
||
|
for r in roots_quadratic(f):
|
||
|
_update_dict(result, zeros, r, 1)
|
||
|
else:
|
||
|
if len(factors) == 1 and factors[0][1] == 1:
|
||
|
if f.get_domain().is_EX:
|
||
|
res = to_rational_coeffs(f)
|
||
|
if res:
|
||
|
if res[0] is None:
|
||
|
translate_x, f = res[2:]
|
||
|
else:
|
||
|
rescale_x, f = res[1], res[-1]
|
||
|
result = roots(f)
|
||
|
if not result:
|
||
|
for currentroot in _try_decompose(f):
|
||
|
_update_dict(result, zeros, currentroot, 1)
|
||
|
else:
|
||
|
for r in _try_heuristics(f):
|
||
|
_update_dict(result, zeros, r, 1)
|
||
|
else:
|
||
|
for currentroot in _try_decompose(f):
|
||
|
_update_dict(result, zeros, currentroot, 1)
|
||
|
else:
|
||
|
for currentfactor, k in factors:
|
||
|
for r in _try_heuristics(Poly(currentfactor, f.gen, field=True)):
|
||
|
_update_dict(result, zeros, r, k)
|
||
|
|
||
|
if coeff is not S.One:
|
||
|
_result, result, = result, {}
|
||
|
|
||
|
for currentroot, k in _result.items():
|
||
|
result[coeff*currentroot] = k
|
||
|
|
||
|
if filter not in [None, 'C']:
|
||
|
handlers = {
|
||
|
'Z': lambda r: r.is_Integer,
|
||
|
'Q': lambda r: r.is_Rational,
|
||
|
'R': lambda r: all(a.is_real for a in r.as_numer_denom()),
|
||
|
'I': lambda r: r.is_imaginary,
|
||
|
}
|
||
|
|
||
|
try:
|
||
|
query = handlers[filter]
|
||
|
except KeyError:
|
||
|
raise ValueError("Invalid filter: %s" % filter)
|
||
|
|
||
|
for zero in dict(result).keys():
|
||
|
if not query(zero):
|
||
|
del result[zero]
|
||
|
|
||
|
if predicate is not None:
|
||
|
for zero in dict(result).keys():
|
||
|
if not predicate(zero):
|
||
|
del result[zero]
|
||
|
if rescale_x:
|
||
|
result1 = {}
|
||
|
for k, v in result.items():
|
||
|
result1[k*rescale_x] = v
|
||
|
result = result1
|
||
|
if translate_x:
|
||
|
result1 = {}
|
||
|
for k, v in result.items():
|
||
|
result1[k + translate_x] = v
|
||
|
result = result1
|
||
|
|
||
|
# adding zero roots after non-trivial roots have been translated
|
||
|
result.update(zeros)
|
||
|
|
||
|
if strict and sum(result.values()) < f.degree():
|
||
|
raise UnsolvableFactorError(filldedent('''
|
||
|
Strict mode: some factors cannot be solved in radicals, so
|
||
|
a complete list of solutions cannot be returned. Call
|
||
|
roots with strict=False to get solutions expressible in
|
||
|
radicals (if there are any).
|
||
|
'''))
|
||
|
|
||
|
if not multiple:
|
||
|
return result
|
||
|
else:
|
||
|
zeros = []
|
||
|
|
||
|
for zero in ordered(result):
|
||
|
zeros.extend([zero]*result[zero])
|
||
|
|
||
|
return zeros
|
||
|
|
||
|
|
||
|
def root_factors(f, *gens, filter=None, **args):
|
||
|
"""
|
||
|
Returns all factors of a univariate polynomial.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> from sympy.polys.polyroots import root_factors
|
||
|
|
||
|
>>> root_factors(x**2 - y, x)
|
||
|
[x - sqrt(y), x + sqrt(y)]
|
||
|
|
||
|
"""
|
||
|
args = dict(args)
|
||
|
|
||
|
F = Poly(f, *gens, **args)
|
||
|
|
||
|
if not F.is_Poly:
|
||
|
return [f]
|
||
|
|
||
|
if F.is_multivariate:
|
||
|
raise ValueError('multivariate polynomials are not supported')
|
||
|
|
||
|
x = F.gens[0]
|
||
|
|
||
|
zeros = roots(F, filter=filter)
|
||
|
|
||
|
if not zeros:
|
||
|
factors = [F]
|
||
|
else:
|
||
|
factors, N = [], 0
|
||
|
|
||
|
for r, n in ordered(zeros.items()):
|
||
|
factors, N = factors + [Poly(x - r, x)]*n, N + n
|
||
|
|
||
|
if N < F.degree():
|
||
|
G = reduce(lambda p, q: p*q, factors)
|
||
|
factors.append(F.quo(G))
|
||
|
|
||
|
if not isinstance(f, Poly):
|
||
|
factors = [ f.as_expr() for f in factors ]
|
||
|
|
||
|
return factors
|