You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1484 lines
44 KiB
1484 lines
44 KiB
5 months ago
|
"""Test sparse polynomials. """
|
||
|
|
||
|
from functools import reduce
|
||
|
from operator import add, mul
|
||
|
|
||
|
from sympy.polys.rings import ring, xring, sring, PolyRing, PolyElement
|
||
|
from sympy.polys.fields import field, FracField
|
||
|
from sympy.polys.domains import ZZ, QQ, RR, FF, EX
|
||
|
from sympy.polys.orderings import lex, grlex
|
||
|
from sympy.polys.polyerrors import GeneratorsError, \
|
||
|
ExactQuotientFailed, MultivariatePolynomialError, CoercionFailed
|
||
|
|
||
|
from sympy.testing.pytest import raises
|
||
|
from sympy.core import Symbol, symbols
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.numbers import (oo, pi)
|
||
|
from sympy.functions.elementary.exponential import exp
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
|
||
|
def test_PolyRing___init__():
|
||
|
x, y, z, t = map(Symbol, "xyzt")
|
||
|
|
||
|
assert len(PolyRing("x,y,z", ZZ, lex).gens) == 3
|
||
|
assert len(PolyRing(x, ZZ, lex).gens) == 1
|
||
|
assert len(PolyRing(("x", "y", "z"), ZZ, lex).gens) == 3
|
||
|
assert len(PolyRing((x, y, z), ZZ, lex).gens) == 3
|
||
|
assert len(PolyRing("", ZZ, lex).gens) == 0
|
||
|
assert len(PolyRing([], ZZ, lex).gens) == 0
|
||
|
|
||
|
raises(GeneratorsError, lambda: PolyRing(0, ZZ, lex))
|
||
|
|
||
|
assert PolyRing("x", ZZ[t], lex).domain == ZZ[t]
|
||
|
assert PolyRing("x", 'ZZ[t]', lex).domain == ZZ[t]
|
||
|
assert PolyRing("x", PolyRing("t", ZZ, lex), lex).domain == ZZ[t]
|
||
|
|
||
|
raises(GeneratorsError, lambda: PolyRing("x", PolyRing("x", ZZ, lex), lex))
|
||
|
|
||
|
_lex = Symbol("lex")
|
||
|
assert PolyRing("x", ZZ, lex).order == lex
|
||
|
assert PolyRing("x", ZZ, _lex).order == lex
|
||
|
assert PolyRing("x", ZZ, 'lex').order == lex
|
||
|
|
||
|
R1 = PolyRing("x,y", ZZ, lex)
|
||
|
R2 = PolyRing("x,y", ZZ, lex)
|
||
|
R3 = PolyRing("x,y,z", ZZ, lex)
|
||
|
|
||
|
assert R1.x == R1.gens[0]
|
||
|
assert R1.y == R1.gens[1]
|
||
|
assert R1.x == R2.x
|
||
|
assert R1.y == R2.y
|
||
|
assert R1.x != R3.x
|
||
|
assert R1.y != R3.y
|
||
|
|
||
|
def test_PolyRing___hash__():
|
||
|
R, x, y, z = ring("x,y,z", QQ)
|
||
|
assert hash(R)
|
||
|
|
||
|
def test_PolyRing___eq__():
|
||
|
assert ring("x,y,z", QQ)[0] == ring("x,y,z", QQ)[0]
|
||
|
assert ring("x,y,z", QQ)[0] is ring("x,y,z", QQ)[0]
|
||
|
|
||
|
assert ring("x,y,z", QQ)[0] != ring("x,y,z", ZZ)[0]
|
||
|
assert ring("x,y,z", QQ)[0] is not ring("x,y,z", ZZ)[0]
|
||
|
|
||
|
assert ring("x,y,z", ZZ)[0] != ring("x,y,z", QQ)[0]
|
||
|
assert ring("x,y,z", ZZ)[0] is not ring("x,y,z", QQ)[0]
|
||
|
|
||
|
assert ring("x,y,z", QQ)[0] != ring("x,y", QQ)[0]
|
||
|
assert ring("x,y,z", QQ)[0] is not ring("x,y", QQ)[0]
|
||
|
|
||
|
assert ring("x,y", QQ)[0] != ring("x,y,z", QQ)[0]
|
||
|
assert ring("x,y", QQ)[0] is not ring("x,y,z", QQ)[0]
|
||
|
|
||
|
def test_PolyRing_ring_new():
|
||
|
R, x, y, z = ring("x,y,z", QQ)
|
||
|
|
||
|
assert R.ring_new(7) == R(7)
|
||
|
assert R.ring_new(7*x*y*z) == 7*x*y*z
|
||
|
|
||
|
f = x**2 + 2*x*y + 3*x + 4*z**2 + 5*z + 6
|
||
|
|
||
|
assert R.ring_new([[[1]], [[2], [3]], [[4, 5, 6]]]) == f
|
||
|
assert R.ring_new({(2, 0, 0): 1, (1, 1, 0): 2, (1, 0, 0): 3, (0, 0, 2): 4, (0, 0, 1): 5, (0, 0, 0): 6}) == f
|
||
|
assert R.ring_new([((2, 0, 0), 1), ((1, 1, 0), 2), ((1, 0, 0), 3), ((0, 0, 2), 4), ((0, 0, 1), 5), ((0, 0, 0), 6)]) == f
|
||
|
|
||
|
R, = ring("", QQ)
|
||
|
assert R.ring_new([((), 7)]) == R(7)
|
||
|
|
||
|
def test_PolyRing_drop():
|
||
|
R, x,y,z = ring("x,y,z", ZZ)
|
||
|
|
||
|
assert R.drop(x) == PolyRing("y,z", ZZ, lex)
|
||
|
assert R.drop(y) == PolyRing("x,z", ZZ, lex)
|
||
|
assert R.drop(z) == PolyRing("x,y", ZZ, lex)
|
||
|
|
||
|
assert R.drop(0) == PolyRing("y,z", ZZ, lex)
|
||
|
assert R.drop(0).drop(0) == PolyRing("z", ZZ, lex)
|
||
|
assert R.drop(0).drop(0).drop(0) == ZZ
|
||
|
|
||
|
assert R.drop(1) == PolyRing("x,z", ZZ, lex)
|
||
|
|
||
|
assert R.drop(2) == PolyRing("x,y", ZZ, lex)
|
||
|
assert R.drop(2).drop(1) == PolyRing("x", ZZ, lex)
|
||
|
assert R.drop(2).drop(1).drop(0) == ZZ
|
||
|
|
||
|
raises(ValueError, lambda: R.drop(3))
|
||
|
raises(ValueError, lambda: R.drop(x).drop(y))
|
||
|
|
||
|
def test_PolyRing___getitem__():
|
||
|
R, x,y,z = ring("x,y,z", ZZ)
|
||
|
|
||
|
assert R[0:] == PolyRing("x,y,z", ZZ, lex)
|
||
|
assert R[1:] == PolyRing("y,z", ZZ, lex)
|
||
|
assert R[2:] == PolyRing("z", ZZ, lex)
|
||
|
assert R[3:] == ZZ
|
||
|
|
||
|
def test_PolyRing_is_():
|
||
|
R = PolyRing("x", QQ, lex)
|
||
|
|
||
|
assert R.is_univariate is True
|
||
|
assert R.is_multivariate is False
|
||
|
|
||
|
R = PolyRing("x,y,z", QQ, lex)
|
||
|
|
||
|
assert R.is_univariate is False
|
||
|
assert R.is_multivariate is True
|
||
|
|
||
|
R = PolyRing("", QQ, lex)
|
||
|
|
||
|
assert R.is_univariate is False
|
||
|
assert R.is_multivariate is False
|
||
|
|
||
|
def test_PolyRing_add():
|
||
|
R, x = ring("x", ZZ)
|
||
|
F = [ x**2 + 2*i + 3 for i in range(4) ]
|
||
|
|
||
|
assert R.add(F) == reduce(add, F) == 4*x**2 + 24
|
||
|
|
||
|
R, = ring("", ZZ)
|
||
|
|
||
|
assert R.add([2, 5, 7]) == 14
|
||
|
|
||
|
def test_PolyRing_mul():
|
||
|
R, x = ring("x", ZZ)
|
||
|
F = [ x**2 + 2*i + 3 for i in range(4) ]
|
||
|
|
||
|
assert R.mul(F) == reduce(mul, F) == x**8 + 24*x**6 + 206*x**4 + 744*x**2 + 945
|
||
|
|
||
|
R, = ring("", ZZ)
|
||
|
|
||
|
assert R.mul([2, 3, 5]) == 30
|
||
|
|
||
|
def test_PolyRing_symmetric_poly():
|
||
|
R, x, y, z, t = ring("x,y,z,t", ZZ)
|
||
|
|
||
|
raises(ValueError, lambda: R.symmetric_poly(-1))
|
||
|
raises(ValueError, lambda: R.symmetric_poly(5))
|
||
|
|
||
|
assert R.symmetric_poly(0) == R.one
|
||
|
assert R.symmetric_poly(1) == x + y + z + t
|
||
|
assert R.symmetric_poly(2) == x*y + x*z + x*t + y*z + y*t + z*t
|
||
|
assert R.symmetric_poly(3) == x*y*z + x*y*t + x*z*t + y*z*t
|
||
|
assert R.symmetric_poly(4) == x*y*z*t
|
||
|
|
||
|
def test_sring():
|
||
|
x, y, z, t = symbols("x,y,z,t")
|
||
|
|
||
|
R = PolyRing("x,y,z", ZZ, lex)
|
||
|
assert sring(x + 2*y + 3*z) == (R, R.x + 2*R.y + 3*R.z)
|
||
|
|
||
|
R = PolyRing("x,y,z", QQ, lex)
|
||
|
assert sring(x + 2*y + z/3) == (R, R.x + 2*R.y + R.z/3)
|
||
|
assert sring([x, 2*y, z/3]) == (R, [R.x, 2*R.y, R.z/3])
|
||
|
|
||
|
Rt = PolyRing("t", ZZ, lex)
|
||
|
R = PolyRing("x,y,z", Rt, lex)
|
||
|
assert sring(x + 2*t*y + 3*t**2*z, x, y, z) == (R, R.x + 2*Rt.t*R.y + 3*Rt.t**2*R.z)
|
||
|
|
||
|
Rt = PolyRing("t", QQ, lex)
|
||
|
R = PolyRing("x,y,z", Rt, lex)
|
||
|
assert sring(x + t*y/2 + t**2*z/3, x, y, z) == (R, R.x + Rt.t*R.y/2 + Rt.t**2*R.z/3)
|
||
|
|
||
|
Rt = FracField("t", ZZ, lex)
|
||
|
R = PolyRing("x,y,z", Rt, lex)
|
||
|
assert sring(x + 2*y/t + t**2*z/3, x, y, z) == (R, R.x + 2*R.y/Rt.t + Rt.t**2*R.z/3)
|
||
|
|
||
|
r = sqrt(2) - sqrt(3)
|
||
|
R, a = sring(r, extension=True)
|
||
|
assert R.domain == QQ.algebraic_field(sqrt(2) + sqrt(3))
|
||
|
assert R.gens == ()
|
||
|
assert a == R.domain.from_sympy(r)
|
||
|
|
||
|
def test_PolyElement___hash__():
|
||
|
R, x, y, z = ring("x,y,z", QQ)
|
||
|
assert hash(x*y*z)
|
||
|
|
||
|
def test_PolyElement___eq__():
|
||
|
R, x, y = ring("x,y", ZZ, lex)
|
||
|
|
||
|
assert ((x*y + 5*x*y) == 6) == False
|
||
|
assert ((x*y + 5*x*y) == 6*x*y) == True
|
||
|
assert (6 == (x*y + 5*x*y)) == False
|
||
|
assert (6*x*y == (x*y + 5*x*y)) == True
|
||
|
|
||
|
assert ((x*y - x*y) == 0) == True
|
||
|
assert (0 == (x*y - x*y)) == True
|
||
|
|
||
|
assert ((x*y - x*y) == 1) == False
|
||
|
assert (1 == (x*y - x*y)) == False
|
||
|
|
||
|
assert ((x*y - x*y) == 1) == False
|
||
|
assert (1 == (x*y - x*y)) == False
|
||
|
|
||
|
assert ((x*y + 5*x*y) != 6) == True
|
||
|
assert ((x*y + 5*x*y) != 6*x*y) == False
|
||
|
assert (6 != (x*y + 5*x*y)) == True
|
||
|
assert (6*x*y != (x*y + 5*x*y)) == False
|
||
|
|
||
|
assert ((x*y - x*y) != 0) == False
|
||
|
assert (0 != (x*y - x*y)) == False
|
||
|
|
||
|
assert ((x*y - x*y) != 1) == True
|
||
|
assert (1 != (x*y - x*y)) == True
|
||
|
|
||
|
assert R.one == QQ(1, 1) == R.one
|
||
|
assert R.one == 1 == R.one
|
||
|
|
||
|
Rt, t = ring("t", ZZ)
|
||
|
R, x, y = ring("x,y", Rt)
|
||
|
|
||
|
assert (t**3*x/x == t**3) == True
|
||
|
assert (t**3*x/x == t**4) == False
|
||
|
|
||
|
def test_PolyElement__lt_le_gt_ge__():
|
||
|
R, x, y = ring("x,y", ZZ)
|
||
|
|
||
|
assert R(1) < x < x**2 < x**3
|
||
|
assert R(1) <= x <= x**2 <= x**3
|
||
|
|
||
|
assert x**3 > x**2 > x > R(1)
|
||
|
assert x**3 >= x**2 >= x >= R(1)
|
||
|
|
||
|
def test_PolyElement__str__():
|
||
|
x, y = symbols('x, y')
|
||
|
|
||
|
for dom in [ZZ, QQ, ZZ[x], ZZ[x,y], ZZ[x][y]]:
|
||
|
R, t = ring('t', dom)
|
||
|
assert str(2*t**2 + 1) == '2*t**2 + 1'
|
||
|
|
||
|
for dom in [EX, EX[x]]:
|
||
|
R, t = ring('t', dom)
|
||
|
assert str(2*t**2 + 1) == 'EX(2)*t**2 + EX(1)'
|
||
|
|
||
|
def test_PolyElement_copy():
|
||
|
R, x, y, z = ring("x,y,z", ZZ)
|
||
|
|
||
|
f = x*y + 3*z
|
||
|
g = f.copy()
|
||
|
|
||
|
assert f == g
|
||
|
g[(1, 1, 1)] = 7
|
||
|
assert f != g
|
||
|
|
||
|
def test_PolyElement_as_expr():
|
||
|
R, x, y, z = ring("x,y,z", ZZ)
|
||
|
f = 3*x**2*y - x*y*z + 7*z**3 + 1
|
||
|
|
||
|
X, Y, Z = R.symbols
|
||
|
g = 3*X**2*Y - X*Y*Z + 7*Z**3 + 1
|
||
|
|
||
|
assert f != g
|
||
|
assert f.as_expr() == g
|
||
|
|
||
|
U, V, W = symbols("u,v,w")
|
||
|
g = 3*U**2*V - U*V*W + 7*W**3 + 1
|
||
|
|
||
|
assert f != g
|
||
|
assert f.as_expr(U, V, W) == g
|
||
|
|
||
|
raises(ValueError, lambda: f.as_expr(X))
|
||
|
|
||
|
R, = ring("", ZZ)
|
||
|
assert R(3).as_expr() == 3
|
||
|
|
||
|
def test_PolyElement_from_expr():
|
||
|
x, y, z = symbols("x,y,z")
|
||
|
R, X, Y, Z = ring((x, y, z), ZZ)
|
||
|
|
||
|
f = R.from_expr(1)
|
||
|
assert f == 1 and isinstance(f, R.dtype)
|
||
|
|
||
|
f = R.from_expr(x)
|
||
|
assert f == X and isinstance(f, R.dtype)
|
||
|
|
||
|
f = R.from_expr(x*y*z)
|
||
|
assert f == X*Y*Z and isinstance(f, R.dtype)
|
||
|
|
||
|
f = R.from_expr(x*y*z + x*y + x)
|
||
|
assert f == X*Y*Z + X*Y + X and isinstance(f, R.dtype)
|
||
|
|
||
|
f = R.from_expr(x**3*y*z + x**2*y**7 + 1)
|
||
|
assert f == X**3*Y*Z + X**2*Y**7 + 1 and isinstance(f, R.dtype)
|
||
|
|
||
|
r, F = sring([exp(2)])
|
||
|
f = r.from_expr(exp(2))
|
||
|
assert f == F[0] and isinstance(f, r.dtype)
|
||
|
|
||
|
raises(ValueError, lambda: R.from_expr(1/x))
|
||
|
raises(ValueError, lambda: R.from_expr(2**x))
|
||
|
raises(ValueError, lambda: R.from_expr(7*x + sqrt(2)))
|
||
|
|
||
|
R, = ring("", ZZ)
|
||
|
f = R.from_expr(1)
|
||
|
assert f == 1 and isinstance(f, R.dtype)
|
||
|
|
||
|
def test_PolyElement_degree():
|
||
|
R, x,y,z = ring("x,y,z", ZZ)
|
||
|
|
||
|
assert R(0).degree() is -oo
|
||
|
assert R(1).degree() == 0
|
||
|
assert (x + 1).degree() == 1
|
||
|
assert (2*y**3 + z).degree() == 0
|
||
|
assert (x*y**3 + z).degree() == 1
|
||
|
assert (x**5*y**3 + z).degree() == 5
|
||
|
|
||
|
assert R(0).degree(x) is -oo
|
||
|
assert R(1).degree(x) == 0
|
||
|
assert (x + 1).degree(x) == 1
|
||
|
assert (2*y**3 + z).degree(x) == 0
|
||
|
assert (x*y**3 + z).degree(x) == 1
|
||
|
assert (7*x**5*y**3 + z).degree(x) == 5
|
||
|
|
||
|
assert R(0).degree(y) is -oo
|
||
|
assert R(1).degree(y) == 0
|
||
|
assert (x + 1).degree(y) == 0
|
||
|
assert (2*y**3 + z).degree(y) == 3
|
||
|
assert (x*y**3 + z).degree(y) == 3
|
||
|
assert (7*x**5*y**3 + z).degree(y) == 3
|
||
|
|
||
|
assert R(0).degree(z) is -oo
|
||
|
assert R(1).degree(z) == 0
|
||
|
assert (x + 1).degree(z) == 0
|
||
|
assert (2*y**3 + z).degree(z) == 1
|
||
|
assert (x*y**3 + z).degree(z) == 1
|
||
|
assert (7*x**5*y**3 + z).degree(z) == 1
|
||
|
|
||
|
R, = ring("", ZZ)
|
||
|
assert R(0).degree() is -oo
|
||
|
assert R(1).degree() == 0
|
||
|
|
||
|
def test_PolyElement_tail_degree():
|
||
|
R, x,y,z = ring("x,y,z", ZZ)
|
||
|
|
||
|
assert R(0).tail_degree() is -oo
|
||
|
assert R(1).tail_degree() == 0
|
||
|
assert (x + 1).tail_degree() == 0
|
||
|
assert (2*y**3 + x**3*z).tail_degree() == 0
|
||
|
assert (x*y**3 + x**3*z).tail_degree() == 1
|
||
|
assert (x**5*y**3 + x**3*z).tail_degree() == 3
|
||
|
|
||
|
assert R(0).tail_degree(x) is -oo
|
||
|
assert R(1).tail_degree(x) == 0
|
||
|
assert (x + 1).tail_degree(x) == 0
|
||
|
assert (2*y**3 + x**3*z).tail_degree(x) == 0
|
||
|
assert (x*y**3 + x**3*z).tail_degree(x) == 1
|
||
|
assert (7*x**5*y**3 + x**3*z).tail_degree(x) == 3
|
||
|
|
||
|
assert R(0).tail_degree(y) is -oo
|
||
|
assert R(1).tail_degree(y) == 0
|
||
|
assert (x + 1).tail_degree(y) == 0
|
||
|
assert (2*y**3 + x**3*z).tail_degree(y) == 0
|
||
|
assert (x*y**3 + x**3*z).tail_degree(y) == 0
|
||
|
assert (7*x**5*y**3 + x**3*z).tail_degree(y) == 0
|
||
|
|
||
|
assert R(0).tail_degree(z) is -oo
|
||
|
assert R(1).tail_degree(z) == 0
|
||
|
assert (x + 1).tail_degree(z) == 0
|
||
|
assert (2*y**3 + x**3*z).tail_degree(z) == 0
|
||
|
assert (x*y**3 + x**3*z).tail_degree(z) == 0
|
||
|
assert (7*x**5*y**3 + x**3*z).tail_degree(z) == 0
|
||
|
|
||
|
R, = ring("", ZZ)
|
||
|
assert R(0).tail_degree() is -oo
|
||
|
assert R(1).tail_degree() == 0
|
||
|
|
||
|
def test_PolyElement_degrees():
|
||
|
R, x,y,z = ring("x,y,z", ZZ)
|
||
|
|
||
|
assert R(0).degrees() == (-oo, -oo, -oo)
|
||
|
assert R(1).degrees() == (0, 0, 0)
|
||
|
assert (x**2*y + x**3*z**2).degrees() == (3, 1, 2)
|
||
|
|
||
|
def test_PolyElement_tail_degrees():
|
||
|
R, x,y,z = ring("x,y,z", ZZ)
|
||
|
|
||
|
assert R(0).tail_degrees() == (-oo, -oo, -oo)
|
||
|
assert R(1).tail_degrees() == (0, 0, 0)
|
||
|
assert (x**2*y + x**3*z**2).tail_degrees() == (2, 0, 0)
|
||
|
|
||
|
def test_PolyElement_coeff():
|
||
|
R, x, y, z = ring("x,y,z", ZZ, lex)
|
||
|
f = 3*x**2*y - x*y*z + 7*z**3 + 23
|
||
|
|
||
|
assert f.coeff(1) == 23
|
||
|
raises(ValueError, lambda: f.coeff(3))
|
||
|
|
||
|
assert f.coeff(x) == 0
|
||
|
assert f.coeff(y) == 0
|
||
|
assert f.coeff(z) == 0
|
||
|
|
||
|
assert f.coeff(x**2*y) == 3
|
||
|
assert f.coeff(x*y*z) == -1
|
||
|
assert f.coeff(z**3) == 7
|
||
|
|
||
|
raises(ValueError, lambda: f.coeff(3*x**2*y))
|
||
|
raises(ValueError, lambda: f.coeff(-x*y*z))
|
||
|
raises(ValueError, lambda: f.coeff(7*z**3))
|
||
|
|
||
|
R, = ring("", ZZ)
|
||
|
assert R(3).coeff(1) == 3
|
||
|
|
||
|
def test_PolyElement_LC():
|
||
|
R, x, y = ring("x,y", QQ, lex)
|
||
|
assert R(0).LC == QQ(0)
|
||
|
assert (QQ(1,2)*x).LC == QQ(1, 2)
|
||
|
assert (QQ(1,4)*x*y + QQ(1,2)*x).LC == QQ(1, 4)
|
||
|
|
||
|
def test_PolyElement_LM():
|
||
|
R, x, y = ring("x,y", QQ, lex)
|
||
|
assert R(0).LM == (0, 0)
|
||
|
assert (QQ(1,2)*x).LM == (1, 0)
|
||
|
assert (QQ(1,4)*x*y + QQ(1,2)*x).LM == (1, 1)
|
||
|
|
||
|
def test_PolyElement_LT():
|
||
|
R, x, y = ring("x,y", QQ, lex)
|
||
|
assert R(0).LT == ((0, 0), QQ(0))
|
||
|
assert (QQ(1,2)*x).LT == ((1, 0), QQ(1, 2))
|
||
|
assert (QQ(1,4)*x*y + QQ(1,2)*x).LT == ((1, 1), QQ(1, 4))
|
||
|
|
||
|
R, = ring("", ZZ)
|
||
|
assert R(0).LT == ((), 0)
|
||
|
assert R(1).LT == ((), 1)
|
||
|
|
||
|
def test_PolyElement_leading_monom():
|
||
|
R, x, y = ring("x,y", QQ, lex)
|
||
|
assert R(0).leading_monom() == 0
|
||
|
assert (QQ(1,2)*x).leading_monom() == x
|
||
|
assert (QQ(1,4)*x*y + QQ(1,2)*x).leading_monom() == x*y
|
||
|
|
||
|
def test_PolyElement_leading_term():
|
||
|
R, x, y = ring("x,y", QQ, lex)
|
||
|
assert R(0).leading_term() == 0
|
||
|
assert (QQ(1,2)*x).leading_term() == QQ(1,2)*x
|
||
|
assert (QQ(1,4)*x*y + QQ(1,2)*x).leading_term() == QQ(1,4)*x*y
|
||
|
|
||
|
def test_PolyElement_terms():
|
||
|
R, x,y,z = ring("x,y,z", QQ)
|
||
|
terms = (x**2/3 + y**3/4 + z**4/5).terms()
|
||
|
assert terms == [((2,0,0), QQ(1,3)), ((0,3,0), QQ(1,4)), ((0,0,4), QQ(1,5))]
|
||
|
|
||
|
R, x,y = ring("x,y", ZZ, lex)
|
||
|
f = x*y**7 + 2*x**2*y**3
|
||
|
|
||
|
assert f.terms() == f.terms(lex) == f.terms('lex') == [((2, 3), 2), ((1, 7), 1)]
|
||
|
assert f.terms(grlex) == f.terms('grlex') == [((1, 7), 1), ((2, 3), 2)]
|
||
|
|
||
|
R, x,y = ring("x,y", ZZ, grlex)
|
||
|
f = x*y**7 + 2*x**2*y**3
|
||
|
|
||
|
assert f.terms() == f.terms(grlex) == f.terms('grlex') == [((1, 7), 1), ((2, 3), 2)]
|
||
|
assert f.terms(lex) == f.terms('lex') == [((2, 3), 2), ((1, 7), 1)]
|
||
|
|
||
|
R, = ring("", ZZ)
|
||
|
assert R(3).terms() == [((), 3)]
|
||
|
|
||
|
def test_PolyElement_monoms():
|
||
|
R, x,y,z = ring("x,y,z", QQ)
|
||
|
monoms = (x**2/3 + y**3/4 + z**4/5).monoms()
|
||
|
assert monoms == [(2,0,0), (0,3,0), (0,0,4)]
|
||
|
|
||
|
R, x,y = ring("x,y", ZZ, lex)
|
||
|
f = x*y**7 + 2*x**2*y**3
|
||
|
|
||
|
assert f.monoms() == f.monoms(lex) == f.monoms('lex') == [(2, 3), (1, 7)]
|
||
|
assert f.monoms(grlex) == f.monoms('grlex') == [(1, 7), (2, 3)]
|
||
|
|
||
|
R, x,y = ring("x,y", ZZ, grlex)
|
||
|
f = x*y**7 + 2*x**2*y**3
|
||
|
|
||
|
assert f.monoms() == f.monoms(grlex) == f.monoms('grlex') == [(1, 7), (2, 3)]
|
||
|
assert f.monoms(lex) == f.monoms('lex') == [(2, 3), (1, 7)]
|
||
|
|
||
|
def test_PolyElement_coeffs():
|
||
|
R, x,y,z = ring("x,y,z", QQ)
|
||
|
coeffs = (x**2/3 + y**3/4 + z**4/5).coeffs()
|
||
|
assert coeffs == [QQ(1,3), QQ(1,4), QQ(1,5)]
|
||
|
|
||
|
R, x,y = ring("x,y", ZZ, lex)
|
||
|
f = x*y**7 + 2*x**2*y**3
|
||
|
|
||
|
assert f.coeffs() == f.coeffs(lex) == f.coeffs('lex') == [2, 1]
|
||
|
assert f.coeffs(grlex) == f.coeffs('grlex') == [1, 2]
|
||
|
|
||
|
R, x,y = ring("x,y", ZZ, grlex)
|
||
|
f = x*y**7 + 2*x**2*y**3
|
||
|
|
||
|
assert f.coeffs() == f.coeffs(grlex) == f.coeffs('grlex') == [1, 2]
|
||
|
assert f.coeffs(lex) == f.coeffs('lex') == [2, 1]
|
||
|
|
||
|
def test_PolyElement___add__():
|
||
|
Rt, t = ring("t", ZZ)
|
||
|
Ruv, u,v = ring("u,v", ZZ)
|
||
|
Rxyz, x,y,z = ring("x,y,z", Ruv)
|
||
|
|
||
|
assert dict(x + 3*y) == {(1, 0, 0): 1, (0, 1, 0): 3}
|
||
|
|
||
|
assert dict(u + x) == dict(x + u) == {(1, 0, 0): 1, (0, 0, 0): u}
|
||
|
assert dict(u + x*y) == dict(x*y + u) == {(1, 1, 0): 1, (0, 0, 0): u}
|
||
|
assert dict(u + x*y + z) == dict(x*y + z + u) == {(1, 1, 0): 1, (0, 0, 1): 1, (0, 0, 0): u}
|
||
|
|
||
|
assert dict(u*x + x) == dict(x + u*x) == {(1, 0, 0): u + 1}
|
||
|
assert dict(u*x + x*y) == dict(x*y + u*x) == {(1, 1, 0): 1, (1, 0, 0): u}
|
||
|
assert dict(u*x + x*y + z) == dict(x*y + z + u*x) == {(1, 1, 0): 1, (0, 0, 1): 1, (1, 0, 0): u}
|
||
|
|
||
|
raises(TypeError, lambda: t + x)
|
||
|
raises(TypeError, lambda: x + t)
|
||
|
raises(TypeError, lambda: t + u)
|
||
|
raises(TypeError, lambda: u + t)
|
||
|
|
||
|
Fuv, u,v = field("u,v", ZZ)
|
||
|
Rxyz, x,y,z = ring("x,y,z", Fuv)
|
||
|
|
||
|
assert dict(u + x) == dict(x + u) == {(1, 0, 0): 1, (0, 0, 0): u}
|
||
|
|
||
|
Rxyz, x,y,z = ring("x,y,z", EX)
|
||
|
|
||
|
assert dict(EX(pi) + x*y*z) == dict(x*y*z + EX(pi)) == {(1, 1, 1): EX(1), (0, 0, 0): EX(pi)}
|
||
|
|
||
|
def test_PolyElement___sub__():
|
||
|
Rt, t = ring("t", ZZ)
|
||
|
Ruv, u,v = ring("u,v", ZZ)
|
||
|
Rxyz, x,y,z = ring("x,y,z", Ruv)
|
||
|
|
||
|
assert dict(x - 3*y) == {(1, 0, 0): 1, (0, 1, 0): -3}
|
||
|
|
||
|
assert dict(-u + x) == dict(x - u) == {(1, 0, 0): 1, (0, 0, 0): -u}
|
||
|
assert dict(-u + x*y) == dict(x*y - u) == {(1, 1, 0): 1, (0, 0, 0): -u}
|
||
|
assert dict(-u + x*y + z) == dict(x*y + z - u) == {(1, 1, 0): 1, (0, 0, 1): 1, (0, 0, 0): -u}
|
||
|
|
||
|
assert dict(-u*x + x) == dict(x - u*x) == {(1, 0, 0): -u + 1}
|
||
|
assert dict(-u*x + x*y) == dict(x*y - u*x) == {(1, 1, 0): 1, (1, 0, 0): -u}
|
||
|
assert dict(-u*x + x*y + z) == dict(x*y + z - u*x) == {(1, 1, 0): 1, (0, 0, 1): 1, (1, 0, 0): -u}
|
||
|
|
||
|
raises(TypeError, lambda: t - x)
|
||
|
raises(TypeError, lambda: x - t)
|
||
|
raises(TypeError, lambda: t - u)
|
||
|
raises(TypeError, lambda: u - t)
|
||
|
|
||
|
Fuv, u,v = field("u,v", ZZ)
|
||
|
Rxyz, x,y,z = ring("x,y,z", Fuv)
|
||
|
|
||
|
assert dict(-u + x) == dict(x - u) == {(1, 0, 0): 1, (0, 0, 0): -u}
|
||
|
|
||
|
Rxyz, x,y,z = ring("x,y,z", EX)
|
||
|
|
||
|
assert dict(-EX(pi) + x*y*z) == dict(x*y*z - EX(pi)) == {(1, 1, 1): EX(1), (0, 0, 0): -EX(pi)}
|
||
|
|
||
|
def test_PolyElement___mul__():
|
||
|
Rt, t = ring("t", ZZ)
|
||
|
Ruv, u,v = ring("u,v", ZZ)
|
||
|
Rxyz, x,y,z = ring("x,y,z", Ruv)
|
||
|
|
||
|
assert dict(u*x) == dict(x*u) == {(1, 0, 0): u}
|
||
|
|
||
|
assert dict(2*u*x + z) == dict(x*2*u + z) == {(1, 0, 0): 2*u, (0, 0, 1): 1}
|
||
|
assert dict(u*2*x + z) == dict(2*x*u + z) == {(1, 0, 0): 2*u, (0, 0, 1): 1}
|
||
|
assert dict(2*u*x + z) == dict(x*2*u + z) == {(1, 0, 0): 2*u, (0, 0, 1): 1}
|
||
|
assert dict(u*x*2 + z) == dict(x*u*2 + z) == {(1, 0, 0): 2*u, (0, 0, 1): 1}
|
||
|
|
||
|
assert dict(2*u*x*y + z) == dict(x*y*2*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
|
||
|
assert dict(u*2*x*y + z) == dict(2*x*y*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
|
||
|
assert dict(2*u*x*y + z) == dict(x*y*2*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
|
||
|
assert dict(u*x*y*2 + z) == dict(x*y*u*2 + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
|
||
|
|
||
|
assert dict(2*u*y*x + z) == dict(y*x*2*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
|
||
|
assert dict(u*2*y*x + z) == dict(2*y*x*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
|
||
|
assert dict(2*u*y*x + z) == dict(y*x*2*u + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
|
||
|
assert dict(u*y*x*2 + z) == dict(y*x*u*2 + z) == {(1, 1, 0): 2*u, (0, 0, 1): 1}
|
||
|
|
||
|
assert dict(3*u*(x + y) + z) == dict((x + y)*3*u + z) == {(1, 0, 0): 3*u, (0, 1, 0): 3*u, (0, 0, 1): 1}
|
||
|
|
||
|
raises(TypeError, lambda: t*x + z)
|
||
|
raises(TypeError, lambda: x*t + z)
|
||
|
raises(TypeError, lambda: t*u + z)
|
||
|
raises(TypeError, lambda: u*t + z)
|
||
|
|
||
|
Fuv, u,v = field("u,v", ZZ)
|
||
|
Rxyz, x,y,z = ring("x,y,z", Fuv)
|
||
|
|
||
|
assert dict(u*x) == dict(x*u) == {(1, 0, 0): u}
|
||
|
|
||
|
Rxyz, x,y,z = ring("x,y,z", EX)
|
||
|
|
||
|
assert dict(EX(pi)*x*y*z) == dict(x*y*z*EX(pi)) == {(1, 1, 1): EX(pi)}
|
||
|
|
||
|
def test_PolyElement___truediv__():
|
||
|
R, x,y,z = ring("x,y,z", ZZ)
|
||
|
|
||
|
assert (2*x**2 - 4)/2 == x**2 - 2
|
||
|
assert (2*x**2 - 3)/2 == x**2
|
||
|
|
||
|
assert (x**2 - 1).quo(x) == x
|
||
|
assert (x**2 - x).quo(x) == x - 1
|
||
|
|
||
|
assert (x**2 - 1)/x == x - x**(-1)
|
||
|
assert (x**2 - x)/x == x - 1
|
||
|
assert (x**2 - 1)/(2*x) == x/2 - x**(-1)/2
|
||
|
|
||
|
assert (x**2 - 1).quo(2*x) == 0
|
||
|
assert (x**2 - x)/(x - 1) == (x**2 - x).quo(x - 1) == x
|
||
|
|
||
|
|
||
|
R, x,y,z = ring("x,y,z", ZZ)
|
||
|
assert len((x**2/3 + y**3/4 + z**4/5).terms()) == 0
|
||
|
|
||
|
R, x,y,z = ring("x,y,z", QQ)
|
||
|
assert len((x**2/3 + y**3/4 + z**4/5).terms()) == 3
|
||
|
|
||
|
Rt, t = ring("t", ZZ)
|
||
|
Ruv, u,v = ring("u,v", ZZ)
|
||
|
Rxyz, x,y,z = ring("x,y,z", Ruv)
|
||
|
|
||
|
assert dict((u**2*x + u)/u) == {(1, 0, 0): u, (0, 0, 0): 1}
|
||
|
raises(TypeError, lambda: u/(u**2*x + u))
|
||
|
|
||
|
raises(TypeError, lambda: t/x)
|
||
|
raises(TypeError, lambda: x/t)
|
||
|
raises(TypeError, lambda: t/u)
|
||
|
raises(TypeError, lambda: u/t)
|
||
|
|
||
|
R, x = ring("x", ZZ)
|
||
|
f, g = x**2 + 2*x + 3, R(0)
|
||
|
|
||
|
raises(ZeroDivisionError, lambda: f.div(g))
|
||
|
raises(ZeroDivisionError, lambda: divmod(f, g))
|
||
|
raises(ZeroDivisionError, lambda: f.rem(g))
|
||
|
raises(ZeroDivisionError, lambda: f % g)
|
||
|
raises(ZeroDivisionError, lambda: f.quo(g))
|
||
|
raises(ZeroDivisionError, lambda: f / g)
|
||
|
raises(ZeroDivisionError, lambda: f.exquo(g))
|
||
|
|
||
|
R, x, y = ring("x,y", ZZ)
|
||
|
f, g = x*y + 2*x + 3, R(0)
|
||
|
|
||
|
raises(ZeroDivisionError, lambda: f.div(g))
|
||
|
raises(ZeroDivisionError, lambda: divmod(f, g))
|
||
|
raises(ZeroDivisionError, lambda: f.rem(g))
|
||
|
raises(ZeroDivisionError, lambda: f % g)
|
||
|
raises(ZeroDivisionError, lambda: f.quo(g))
|
||
|
raises(ZeroDivisionError, lambda: f / g)
|
||
|
raises(ZeroDivisionError, lambda: f.exquo(g))
|
||
|
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
f, g = x**2 + 1, 2*x - 4
|
||
|
q, r = R(0), x**2 + 1
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
raises(ExactQuotientFailed, lambda: f.exquo(g))
|
||
|
|
||
|
f, g = 3*x**3 + x**2 + x + 5, 5*x**2 - 3*x + 1
|
||
|
q, r = R(0), f
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
raises(ExactQuotientFailed, lambda: f.exquo(g))
|
||
|
|
||
|
f, g = 5*x**4 + 4*x**3 + 3*x**2 + 2*x + 1, x**2 + 2*x + 3
|
||
|
q, r = 5*x**2 - 6*x, 20*x + 1
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
raises(ExactQuotientFailed, lambda: f.exquo(g))
|
||
|
|
||
|
f, g = 5*x**5 + 4*x**4 + 3*x**3 + 2*x**2 + x, x**4 + 2*x**3 + 9
|
||
|
q, r = 5*x - 6, 15*x**3 + 2*x**2 - 44*x + 54
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
raises(ExactQuotientFailed, lambda: f.exquo(g))
|
||
|
|
||
|
R, x = ring("x", QQ)
|
||
|
|
||
|
f, g = x**2 + 1, 2*x - 4
|
||
|
q, r = x/2 + 1, R(5)
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
raises(ExactQuotientFailed, lambda: f.exquo(g))
|
||
|
|
||
|
f, g = 3*x**3 + x**2 + x + 5, 5*x**2 - 3*x + 1
|
||
|
q, r = QQ(3, 5)*x + QQ(14, 25), QQ(52, 25)*x + QQ(111, 25)
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
raises(ExactQuotientFailed, lambda: f.exquo(g))
|
||
|
|
||
|
R, x,y = ring("x,y", ZZ)
|
||
|
|
||
|
f, g = x**2 - y**2, x - y
|
||
|
q, r = x + y, R(0)
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
assert f.exquo(g) == q
|
||
|
|
||
|
f, g = x**2 + y**2, x - y
|
||
|
q, r = x + y, 2*y**2
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
raises(ExactQuotientFailed, lambda: f.exquo(g))
|
||
|
|
||
|
f, g = x**2 + y**2, -x + y
|
||
|
q, r = -x - y, 2*y**2
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
raises(ExactQuotientFailed, lambda: f.exquo(g))
|
||
|
|
||
|
f, g = x**2 + y**2, 2*x - 2*y
|
||
|
q, r = R(0), f
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
raises(ExactQuotientFailed, lambda: f.exquo(g))
|
||
|
|
||
|
R, x,y = ring("x,y", QQ)
|
||
|
|
||
|
f, g = x**2 - y**2, x - y
|
||
|
q, r = x + y, R(0)
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
assert f.exquo(g) == q
|
||
|
|
||
|
f, g = x**2 + y**2, x - y
|
||
|
q, r = x + y, 2*y**2
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
raises(ExactQuotientFailed, lambda: f.exquo(g))
|
||
|
|
||
|
f, g = x**2 + y**2, -x + y
|
||
|
q, r = -x - y, 2*y**2
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
raises(ExactQuotientFailed, lambda: f.exquo(g))
|
||
|
|
||
|
f, g = x**2 + y**2, 2*x - 2*y
|
||
|
q, r = x/2 + y/2, 2*y**2
|
||
|
|
||
|
assert f.div(g) == divmod(f, g) == (q, r)
|
||
|
assert f.rem(g) == f % g == r
|
||
|
assert f.quo(g) == f / g == q
|
||
|
raises(ExactQuotientFailed, lambda: f.exquo(g))
|
||
|
|
||
|
def test_PolyElement___pow__():
|
||
|
R, x = ring("x", ZZ, grlex)
|
||
|
f = 2*x + 3
|
||
|
|
||
|
assert f**0 == 1
|
||
|
assert f**1 == f
|
||
|
raises(ValueError, lambda: f**(-1))
|
||
|
|
||
|
assert x**(-1) == x**(-1)
|
||
|
|
||
|
assert f**2 == f._pow_generic(2) == f._pow_multinomial(2) == 4*x**2 + 12*x + 9
|
||
|
assert f**3 == f._pow_generic(3) == f._pow_multinomial(3) == 8*x**3 + 36*x**2 + 54*x + 27
|
||
|
assert f**4 == f._pow_generic(4) == f._pow_multinomial(4) == 16*x**4 + 96*x**3 + 216*x**2 + 216*x + 81
|
||
|
assert f**5 == f._pow_generic(5) == f._pow_multinomial(5) == 32*x**5 + 240*x**4 + 720*x**3 + 1080*x**2 + 810*x + 243
|
||
|
|
||
|
R, x,y,z = ring("x,y,z", ZZ, grlex)
|
||
|
f = x**3*y - 2*x*y**2 - 3*z + 1
|
||
|
g = x**6*y**2 - 4*x**4*y**3 - 6*x**3*y*z + 2*x**3*y + 4*x**2*y**4 + 12*x*y**2*z - 4*x*y**2 + 9*z**2 - 6*z + 1
|
||
|
|
||
|
assert f**2 == f._pow_generic(2) == f._pow_multinomial(2) == g
|
||
|
|
||
|
R, t = ring("t", ZZ)
|
||
|
f = -11200*t**4 - 2604*t**2 + 49
|
||
|
g = 15735193600000000*t**16 + 14633730048000000*t**14 + 4828147466240000*t**12 \
|
||
|
+ 598976863027200*t**10 + 3130812416256*t**8 - 2620523775744*t**6 \
|
||
|
+ 92413760096*t**4 - 1225431984*t**2 + 5764801
|
||
|
|
||
|
assert f**4 == f._pow_generic(4) == f._pow_multinomial(4) == g
|
||
|
|
||
|
def test_PolyElement_div():
|
||
|
R, x = ring("x", ZZ, grlex)
|
||
|
|
||
|
f = x**3 - 12*x**2 - 42
|
||
|
g = x - 3
|
||
|
|
||
|
q = x**2 - 9*x - 27
|
||
|
r = -123
|
||
|
|
||
|
assert f.div([g]) == ([q], r)
|
||
|
|
||
|
R, x = ring("x", ZZ, grlex)
|
||
|
f = x**2 + 2*x + 2
|
||
|
assert f.div([R(1)]) == ([f], 0)
|
||
|
|
||
|
R, x = ring("x", QQ, grlex)
|
||
|
f = x**2 + 2*x + 2
|
||
|
assert f.div([R(2)]) == ([QQ(1,2)*x**2 + x + 1], 0)
|
||
|
|
||
|
R, x,y = ring("x,y", ZZ, grlex)
|
||
|
f = 4*x**2*y - 2*x*y + 4*x - 2*y + 8
|
||
|
|
||
|
assert f.div([R(2)]) == ([2*x**2*y - x*y + 2*x - y + 4], 0)
|
||
|
assert f.div([2*y]) == ([2*x**2 - x - 1], 4*x + 8)
|
||
|
|
||
|
f = x - 1
|
||
|
g = y - 1
|
||
|
|
||
|
assert f.div([g]) == ([0], f)
|
||
|
|
||
|
f = x*y**2 + 1
|
||
|
G = [x*y + 1, y + 1]
|
||
|
|
||
|
Q = [y, -1]
|
||
|
r = 2
|
||
|
|
||
|
assert f.div(G) == (Q, r)
|
||
|
|
||
|
f = x**2*y + x*y**2 + y**2
|
||
|
G = [x*y - 1, y**2 - 1]
|
||
|
|
||
|
Q = [x + y, 1]
|
||
|
r = x + y + 1
|
||
|
|
||
|
assert f.div(G) == (Q, r)
|
||
|
|
||
|
G = [y**2 - 1, x*y - 1]
|
||
|
|
||
|
Q = [x + 1, x]
|
||
|
r = 2*x + 1
|
||
|
|
||
|
assert f.div(G) == (Q, r)
|
||
|
|
||
|
R, = ring("", ZZ)
|
||
|
assert R(3).div(R(2)) == (0, 3)
|
||
|
|
||
|
R, = ring("", QQ)
|
||
|
assert R(3).div(R(2)) == (QQ(3, 2), 0)
|
||
|
|
||
|
def test_PolyElement_rem():
|
||
|
R, x = ring("x", ZZ, grlex)
|
||
|
|
||
|
f = x**3 - 12*x**2 - 42
|
||
|
g = x - 3
|
||
|
r = -123
|
||
|
|
||
|
assert f.rem([g]) == f.div([g])[1] == r
|
||
|
|
||
|
R, x,y = ring("x,y", ZZ, grlex)
|
||
|
|
||
|
f = 4*x**2*y - 2*x*y + 4*x - 2*y + 8
|
||
|
|
||
|
assert f.rem([R(2)]) == f.div([R(2)])[1] == 0
|
||
|
assert f.rem([2*y]) == f.div([2*y])[1] == 4*x + 8
|
||
|
|
||
|
f = x - 1
|
||
|
g = y - 1
|
||
|
|
||
|
assert f.rem([g]) == f.div([g])[1] == f
|
||
|
|
||
|
f = x*y**2 + 1
|
||
|
G = [x*y + 1, y + 1]
|
||
|
r = 2
|
||
|
|
||
|
assert f.rem(G) == f.div(G)[1] == r
|
||
|
|
||
|
f = x**2*y + x*y**2 + y**2
|
||
|
G = [x*y - 1, y**2 - 1]
|
||
|
r = x + y + 1
|
||
|
|
||
|
assert f.rem(G) == f.div(G)[1] == r
|
||
|
|
||
|
G = [y**2 - 1, x*y - 1]
|
||
|
r = 2*x + 1
|
||
|
|
||
|
assert f.rem(G) == f.div(G)[1] == r
|
||
|
|
||
|
def test_PolyElement_deflate():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
assert (2*x**2).deflate(x**4 + 4*x**2 + 1) == ((2,), [2*x, x**2 + 4*x + 1])
|
||
|
|
||
|
R, x,y = ring("x,y", ZZ)
|
||
|
|
||
|
assert R(0).deflate(R(0)) == ((1, 1), [0, 0])
|
||
|
assert R(1).deflate(R(0)) == ((1, 1), [1, 0])
|
||
|
assert R(1).deflate(R(2)) == ((1, 1), [1, 2])
|
||
|
assert R(1).deflate(2*y) == ((1, 1), [1, 2*y])
|
||
|
assert (2*y).deflate(2*y) == ((1, 1), [2*y, 2*y])
|
||
|
assert R(2).deflate(2*y**2) == ((1, 2), [2, 2*y])
|
||
|
assert (2*y**2).deflate(2*y**2) == ((1, 2), [2*y, 2*y])
|
||
|
|
||
|
f = x**4*y**2 + x**2*y + 1
|
||
|
g = x**2*y**3 + x**2*y + 1
|
||
|
|
||
|
assert f.deflate(g) == ((2, 1), [x**2*y**2 + x*y + 1, x*y**3 + x*y + 1])
|
||
|
|
||
|
def test_PolyElement_clear_denoms():
|
||
|
R, x,y = ring("x,y", QQ)
|
||
|
|
||
|
assert R(1).clear_denoms() == (ZZ(1), 1)
|
||
|
assert R(7).clear_denoms() == (ZZ(1), 7)
|
||
|
|
||
|
assert R(QQ(7,3)).clear_denoms() == (3, 7)
|
||
|
assert R(QQ(7,3)).clear_denoms() == (3, 7)
|
||
|
|
||
|
assert (3*x**2 + x).clear_denoms() == (1, 3*x**2 + x)
|
||
|
assert (x**2 + QQ(1,2)*x).clear_denoms() == (2, 2*x**2 + x)
|
||
|
|
||
|
rQQ, x,t = ring("x,t", QQ, lex)
|
||
|
rZZ, X,T = ring("x,t", ZZ, lex)
|
||
|
|
||
|
F = [x - QQ(17824537287975195925064602467992950991718052713078834557692023531499318507213727406844943097,413954288007559433755329699713866804710749652268151059918115348815925474842910720000)*t**7
|
||
|
- QQ(4882321164854282623427463828745855894130208215961904469205260756604820743234704900167747753,12936071500236232304854053116058337647210926633379720622441104650497671088840960000)*t**6
|
||
|
- QQ(36398103304520066098365558157422127347455927422509913596393052633155821154626830576085097433,25872143000472464609708106232116675294421853266759441244882209300995342177681920000)*t**5
|
||
|
- QQ(168108082231614049052707339295479262031324376786405372698857619250210703675982492356828810819,58212321751063045371843239022262519412449169850208742800984970927239519899784320000)*t**4
|
||
|
- QQ(5694176899498574510667890423110567593477487855183144378347226247962949388653159751849449037,1617008937529529038106756639507292205901365829172465077805138081312208886105120000)*t**3
|
||
|
- QQ(154482622347268833757819824809033388503591365487934245386958884099214649755244381307907779,60637835157357338929003373981523457721301218593967440417692678049207833228942000)*t**2
|
||
|
- QQ(2452813096069528207645703151222478123259511586701148682951852876484544822947007791153163,2425513406294293557160134959260938308852048743758697616707707121968313329157680)*t
|
||
|
- QQ(34305265428126440542854669008203683099323146152358231964773310260498715579162112959703,202126117191191129763344579938411525737670728646558134725642260164026110763140),
|
||
|
t**8 + QQ(693749860237914515552,67859264524169150569)*t**7
|
||
|
+ QQ(27761407182086143225024,610733380717522355121)*t**6
|
||
|
+ QQ(7785127652157884044288,67859264524169150569)*t**5
|
||
|
+ QQ(36567075214771261409792,203577793572507451707)*t**4
|
||
|
+ QQ(36336335165196147384320,203577793572507451707)*t**3
|
||
|
+ QQ(7452455676042754048000,67859264524169150569)*t**2
|
||
|
+ QQ(2593331082514399232000,67859264524169150569)*t
|
||
|
+ QQ(390399197427343360000,67859264524169150569)]
|
||
|
|
||
|
G = [3725588592068034903797967297424801242396746870413359539263038139343329273586196480000*X -
|
||
|
160420835591776763325581422211936558925462474417709511019228211783493866564923546661604487873*T**7 -
|
||
|
1406108495478033395547109582678806497509499966197028487131115097902188374051595011248311352864*T**6 -
|
||
|
5241326875850889518164640374668786338033653548841427557880599579174438246266263602956254030352*T**5 -
|
||
|
10758917262823299139373269714910672770004760114329943852726887632013485035262879510837043892416*T**4 -
|
||
|
13119383576444715672578819534846747735372132018341964647712009275306635391456880068261130581248*T**3 -
|
||
|
9491412317016197146080450036267011389660653495578680036574753839055748080962214787557853941760*T**2 -
|
||
|
3767520915562795326943800040277726397326609797172964377014046018280260848046603967211258368000*T -
|
||
|
632314652371226552085897259159210286886724229880266931574701654721512325555116066073245696000,
|
||
|
610733380717522355121*T**8 +
|
||
|
6243748742141230639968*T**7 +
|
||
|
27761407182086143225024*T**6 +
|
||
|
70066148869420956398592*T**5 +
|
||
|
109701225644313784229376*T**4 +
|
||
|
109009005495588442152960*T**3 +
|
||
|
67072101084384786432000*T**2 +
|
||
|
23339979742629593088000*T +
|
||
|
3513592776846090240000]
|
||
|
|
||
|
assert [ f.clear_denoms()[1].set_ring(rZZ) for f in F ] == G
|
||
|
|
||
|
def test_PolyElement_cofactors():
|
||
|
R, x, y = ring("x,y", ZZ)
|
||
|
|
||
|
f, g = R(0), R(0)
|
||
|
assert f.cofactors(g) == (0, 0, 0)
|
||
|
|
||
|
f, g = R(2), R(0)
|
||
|
assert f.cofactors(g) == (2, 1, 0)
|
||
|
|
||
|
f, g = R(-2), R(0)
|
||
|
assert f.cofactors(g) == (2, -1, 0)
|
||
|
|
||
|
f, g = R(0), R(-2)
|
||
|
assert f.cofactors(g) == (2, 0, -1)
|
||
|
|
||
|
f, g = R(0), 2*x + 4
|
||
|
assert f.cofactors(g) == (2*x + 4, 0, 1)
|
||
|
|
||
|
f, g = 2*x + 4, R(0)
|
||
|
assert f.cofactors(g) == (2*x + 4, 1, 0)
|
||
|
|
||
|
f, g = R(2), R(2)
|
||
|
assert f.cofactors(g) == (2, 1, 1)
|
||
|
|
||
|
f, g = R(-2), R(2)
|
||
|
assert f.cofactors(g) == (2, -1, 1)
|
||
|
|
||
|
f, g = R(2), R(-2)
|
||
|
assert f.cofactors(g) == (2, 1, -1)
|
||
|
|
||
|
f, g = R(-2), R(-2)
|
||
|
assert f.cofactors(g) == (2, -1, -1)
|
||
|
|
||
|
f, g = x**2 + 2*x + 1, R(1)
|
||
|
assert f.cofactors(g) == (1, x**2 + 2*x + 1, 1)
|
||
|
|
||
|
f, g = x**2 + 2*x + 1, R(2)
|
||
|
assert f.cofactors(g) == (1, x**2 + 2*x + 1, 2)
|
||
|
|
||
|
f, g = 2*x**2 + 4*x + 2, R(2)
|
||
|
assert f.cofactors(g) == (2, x**2 + 2*x + 1, 1)
|
||
|
|
||
|
f, g = R(2), 2*x**2 + 4*x + 2
|
||
|
assert f.cofactors(g) == (2, 1, x**2 + 2*x + 1)
|
||
|
|
||
|
f, g = 2*x**2 + 4*x + 2, x + 1
|
||
|
assert f.cofactors(g) == (x + 1, 2*x + 2, 1)
|
||
|
|
||
|
f, g = x + 1, 2*x**2 + 4*x + 2
|
||
|
assert f.cofactors(g) == (x + 1, 1, 2*x + 2)
|
||
|
|
||
|
R, x, y, z, t = ring("x,y,z,t", ZZ)
|
||
|
|
||
|
f, g = t**2 + 2*t + 1, 2*t + 2
|
||
|
assert f.cofactors(g) == (t + 1, t + 1, 2)
|
||
|
|
||
|
f, g = z**2*t**2 + 2*z**2*t + z**2 + z*t + z, t**2 + 2*t + 1
|
||
|
h, cff, cfg = t + 1, z**2*t + z**2 + z, t + 1
|
||
|
|
||
|
assert f.cofactors(g) == (h, cff, cfg)
|
||
|
assert g.cofactors(f) == (h, cfg, cff)
|
||
|
|
||
|
R, x, y = ring("x,y", QQ)
|
||
|
|
||
|
f = QQ(1,2)*x**2 + x + QQ(1,2)
|
||
|
g = QQ(1,2)*x + QQ(1,2)
|
||
|
|
||
|
h = x + 1
|
||
|
|
||
|
assert f.cofactors(g) == (h, g, QQ(1,2))
|
||
|
assert g.cofactors(f) == (h, QQ(1,2), g)
|
||
|
|
||
|
R, x, y = ring("x,y", RR)
|
||
|
|
||
|
f = 2.1*x*y**2 - 2.1*x*y + 2.1*x
|
||
|
g = 2.1*x**3
|
||
|
h = 1.0*x
|
||
|
|
||
|
assert f.cofactors(g) == (h, f/h, g/h)
|
||
|
assert g.cofactors(f) == (h, g/h, f/h)
|
||
|
|
||
|
def test_PolyElement_gcd():
|
||
|
R, x, y = ring("x,y", QQ)
|
||
|
|
||
|
f = QQ(1,2)*x**2 + x + QQ(1,2)
|
||
|
g = QQ(1,2)*x + QQ(1,2)
|
||
|
|
||
|
assert f.gcd(g) == x + 1
|
||
|
|
||
|
def test_PolyElement_cancel():
|
||
|
R, x, y = ring("x,y", ZZ)
|
||
|
|
||
|
f = 2*x**3 + 4*x**2 + 2*x
|
||
|
g = 3*x**2 + 3*x
|
||
|
F = 2*x + 2
|
||
|
G = 3
|
||
|
|
||
|
assert f.cancel(g) == (F, G)
|
||
|
|
||
|
assert (-f).cancel(g) == (-F, G)
|
||
|
assert f.cancel(-g) == (-F, G)
|
||
|
|
||
|
R, x, y = ring("x,y", QQ)
|
||
|
|
||
|
f = QQ(1,2)*x**3 + x**2 + QQ(1,2)*x
|
||
|
g = QQ(1,3)*x**2 + QQ(1,3)*x
|
||
|
F = 3*x + 3
|
||
|
G = 2
|
||
|
|
||
|
assert f.cancel(g) == (F, G)
|
||
|
|
||
|
assert (-f).cancel(g) == (-F, G)
|
||
|
assert f.cancel(-g) == (-F, G)
|
||
|
|
||
|
Fx, x = field("x", ZZ)
|
||
|
Rt, t = ring("t", Fx)
|
||
|
|
||
|
f = (-x**2 - 4)/4*t
|
||
|
g = t**2 + (x**2 + 2)/2
|
||
|
|
||
|
assert f.cancel(g) == ((-x**2 - 4)*t, 4*t**2 + 2*x**2 + 4)
|
||
|
|
||
|
def test_PolyElement_max_norm():
|
||
|
R, x, y = ring("x,y", ZZ)
|
||
|
|
||
|
assert R(0).max_norm() == 0
|
||
|
assert R(1).max_norm() == 1
|
||
|
|
||
|
assert (x**3 + 4*x**2 + 2*x + 3).max_norm() == 4
|
||
|
|
||
|
def test_PolyElement_l1_norm():
|
||
|
R, x, y = ring("x,y", ZZ)
|
||
|
|
||
|
assert R(0).l1_norm() == 0
|
||
|
assert R(1).l1_norm() == 1
|
||
|
|
||
|
assert (x**3 + 4*x**2 + 2*x + 3).l1_norm() == 10
|
||
|
|
||
|
def test_PolyElement_diff():
|
||
|
R, X = xring("x:11", QQ)
|
||
|
|
||
|
f = QQ(288,5)*X[0]**8*X[1]**6*X[4]**3*X[10]**2 + 8*X[0]**2*X[2]**3*X[4]**3 +2*X[0]**2 - 2*X[1]**2
|
||
|
|
||
|
assert f.diff(X[0]) == QQ(2304,5)*X[0]**7*X[1]**6*X[4]**3*X[10]**2 + 16*X[0]*X[2]**3*X[4]**3 + 4*X[0]
|
||
|
assert f.diff(X[4]) == QQ(864,5)*X[0]**8*X[1]**6*X[4]**2*X[10]**2 + 24*X[0]**2*X[2]**3*X[4]**2
|
||
|
assert f.diff(X[10]) == QQ(576,5)*X[0]**8*X[1]**6*X[4]**3*X[10]
|
||
|
|
||
|
def test_PolyElement___call__():
|
||
|
R, x = ring("x", ZZ)
|
||
|
f = 3*x + 1
|
||
|
|
||
|
assert f(0) == 1
|
||
|
assert f(1) == 4
|
||
|
|
||
|
raises(ValueError, lambda: f())
|
||
|
raises(ValueError, lambda: f(0, 1))
|
||
|
|
||
|
raises(CoercionFailed, lambda: f(QQ(1,7)))
|
||
|
|
||
|
R, x,y = ring("x,y", ZZ)
|
||
|
f = 3*x + y**2 + 1
|
||
|
|
||
|
assert f(0, 0) == 1
|
||
|
assert f(1, 7) == 53
|
||
|
|
||
|
Ry = R.drop(x)
|
||
|
|
||
|
assert f(0) == Ry.y**2 + 1
|
||
|
assert f(1) == Ry.y**2 + 4
|
||
|
|
||
|
raises(ValueError, lambda: f())
|
||
|
raises(ValueError, lambda: f(0, 1, 2))
|
||
|
|
||
|
raises(CoercionFailed, lambda: f(1, QQ(1,7)))
|
||
|
raises(CoercionFailed, lambda: f(QQ(1,7), 1))
|
||
|
raises(CoercionFailed, lambda: f(QQ(1,7), QQ(1,7)))
|
||
|
|
||
|
def test_PolyElement_evaluate():
|
||
|
R, x = ring("x", ZZ)
|
||
|
f = x**3 + 4*x**2 + 2*x + 3
|
||
|
|
||
|
r = f.evaluate(x, 0)
|
||
|
assert r == 3 and not isinstance(r, PolyElement)
|
||
|
|
||
|
raises(CoercionFailed, lambda: f.evaluate(x, QQ(1,7)))
|
||
|
|
||
|
R, x, y, z = ring("x,y,z", ZZ)
|
||
|
f = (x*y)**3 + 4*(x*y)**2 + 2*x*y + 3
|
||
|
|
||
|
r = f.evaluate(x, 0)
|
||
|
assert r == 3 and isinstance(r, R.drop(x).dtype)
|
||
|
r = f.evaluate([(x, 0), (y, 0)])
|
||
|
assert r == 3 and isinstance(r, R.drop(x, y).dtype)
|
||
|
r = f.evaluate(y, 0)
|
||
|
assert r == 3 and isinstance(r, R.drop(y).dtype)
|
||
|
r = f.evaluate([(y, 0), (x, 0)])
|
||
|
assert r == 3 and isinstance(r, R.drop(y, x).dtype)
|
||
|
|
||
|
r = f.evaluate([(x, 0), (y, 0), (z, 0)])
|
||
|
assert r == 3 and not isinstance(r, PolyElement)
|
||
|
|
||
|
raises(CoercionFailed, lambda: f.evaluate([(x, 1), (y, QQ(1,7))]))
|
||
|
raises(CoercionFailed, lambda: f.evaluate([(x, QQ(1,7)), (y, 1)]))
|
||
|
raises(CoercionFailed, lambda: f.evaluate([(x, QQ(1,7)), (y, QQ(1,7))]))
|
||
|
|
||
|
def test_PolyElement_subs():
|
||
|
R, x = ring("x", ZZ)
|
||
|
f = x**3 + 4*x**2 + 2*x + 3
|
||
|
|
||
|
r = f.subs(x, 0)
|
||
|
assert r == 3 and isinstance(r, R.dtype)
|
||
|
|
||
|
raises(CoercionFailed, lambda: f.subs(x, QQ(1,7)))
|
||
|
|
||
|
R, x, y, z = ring("x,y,z", ZZ)
|
||
|
f = x**3 + 4*x**2 + 2*x + 3
|
||
|
|
||
|
r = f.subs(x, 0)
|
||
|
assert r == 3 and isinstance(r, R.dtype)
|
||
|
r = f.subs([(x, 0), (y, 0)])
|
||
|
assert r == 3 and isinstance(r, R.dtype)
|
||
|
|
||
|
raises(CoercionFailed, lambda: f.subs([(x, 1), (y, QQ(1,7))]))
|
||
|
raises(CoercionFailed, lambda: f.subs([(x, QQ(1,7)), (y, 1)]))
|
||
|
raises(CoercionFailed, lambda: f.subs([(x, QQ(1,7)), (y, QQ(1,7))]))
|
||
|
|
||
|
def test_PolyElement_symmetrize():
|
||
|
R, x, y = ring("x,y", ZZ)
|
||
|
|
||
|
# Homogeneous, symmetric
|
||
|
f = x**2 + y**2
|
||
|
sym, rem, m = f.symmetrize()
|
||
|
assert rem == 0
|
||
|
assert sym.compose(m) + rem == f
|
||
|
|
||
|
# Homogeneous, asymmetric
|
||
|
f = x**2 - y**2
|
||
|
sym, rem, m = f.symmetrize()
|
||
|
assert rem != 0
|
||
|
assert sym.compose(m) + rem == f
|
||
|
|
||
|
# Inhomogeneous, symmetric
|
||
|
f = x*y + 7
|
||
|
sym, rem, m = f.symmetrize()
|
||
|
assert rem == 0
|
||
|
assert sym.compose(m) + rem == f
|
||
|
|
||
|
# Inhomogeneous, asymmetric
|
||
|
f = y + 7
|
||
|
sym, rem, m = f.symmetrize()
|
||
|
assert rem != 0
|
||
|
assert sym.compose(m) + rem == f
|
||
|
|
||
|
# Constant
|
||
|
f = R.from_expr(3)
|
||
|
sym, rem, m = f.symmetrize()
|
||
|
assert rem == 0
|
||
|
assert sym.compose(m) + rem == f
|
||
|
|
||
|
# Constant constructed from sring
|
||
|
R, f = sring(3)
|
||
|
sym, rem, m = f.symmetrize()
|
||
|
assert rem == 0
|
||
|
assert sym.compose(m) + rem == f
|
||
|
|
||
|
def test_PolyElement_compose():
|
||
|
R, x = ring("x", ZZ)
|
||
|
f = x**3 + 4*x**2 + 2*x + 3
|
||
|
|
||
|
r = f.compose(x, 0)
|
||
|
assert r == 3 and isinstance(r, R.dtype)
|
||
|
|
||
|
assert f.compose(x, x) == f
|
||
|
assert f.compose(x, x**2) == x**6 + 4*x**4 + 2*x**2 + 3
|
||
|
|
||
|
raises(CoercionFailed, lambda: f.compose(x, QQ(1,7)))
|
||
|
|
||
|
R, x, y, z = ring("x,y,z", ZZ)
|
||
|
f = x**3 + 4*x**2 + 2*x + 3
|
||
|
|
||
|
r = f.compose(x, 0)
|
||
|
assert r == 3 and isinstance(r, R.dtype)
|
||
|
r = f.compose([(x, 0), (y, 0)])
|
||
|
assert r == 3 and isinstance(r, R.dtype)
|
||
|
|
||
|
r = (x**3 + 4*x**2 + 2*x*y*z + 3).compose(x, y*z**2 - 1)
|
||
|
q = (y*z**2 - 1)**3 + 4*(y*z**2 - 1)**2 + 2*(y*z**2 - 1)*y*z + 3
|
||
|
assert r == q and isinstance(r, R.dtype)
|
||
|
|
||
|
def test_PolyElement_is_():
|
||
|
R, x,y,z = ring("x,y,z", QQ)
|
||
|
|
||
|
assert (x - x).is_generator == False
|
||
|
assert (x - x).is_ground == True
|
||
|
assert (x - x).is_monomial == True
|
||
|
assert (x - x).is_term == True
|
||
|
|
||
|
assert (x - x + 1).is_generator == False
|
||
|
assert (x - x + 1).is_ground == True
|
||
|
assert (x - x + 1).is_monomial == True
|
||
|
assert (x - x + 1).is_term == True
|
||
|
|
||
|
assert x.is_generator == True
|
||
|
assert x.is_ground == False
|
||
|
assert x.is_monomial == True
|
||
|
assert x.is_term == True
|
||
|
|
||
|
assert (x*y).is_generator == False
|
||
|
assert (x*y).is_ground == False
|
||
|
assert (x*y).is_monomial == True
|
||
|
assert (x*y).is_term == True
|
||
|
|
||
|
assert (3*x).is_generator == False
|
||
|
assert (3*x).is_ground == False
|
||
|
assert (3*x).is_monomial == False
|
||
|
assert (3*x).is_term == True
|
||
|
|
||
|
assert (3*x + 1).is_generator == False
|
||
|
assert (3*x + 1).is_ground == False
|
||
|
assert (3*x + 1).is_monomial == False
|
||
|
assert (3*x + 1).is_term == False
|
||
|
|
||
|
assert R(0).is_zero is True
|
||
|
assert R(1).is_zero is False
|
||
|
|
||
|
assert R(0).is_one is False
|
||
|
assert R(1).is_one is True
|
||
|
|
||
|
assert (x - 1).is_monic is True
|
||
|
assert (2*x - 1).is_monic is False
|
||
|
|
||
|
assert (3*x + 2).is_primitive is True
|
||
|
assert (4*x + 2).is_primitive is False
|
||
|
|
||
|
assert (x + y + z + 1).is_linear is True
|
||
|
assert (x*y*z + 1).is_linear is False
|
||
|
|
||
|
assert (x*y + z + 1).is_quadratic is True
|
||
|
assert (x*y*z + 1).is_quadratic is False
|
||
|
|
||
|
assert (x - 1).is_squarefree is True
|
||
|
assert ((x - 1)**2).is_squarefree is False
|
||
|
|
||
|
assert (x**2 + x + 1).is_irreducible is True
|
||
|
assert (x**2 + 2*x + 1).is_irreducible is False
|
||
|
|
||
|
_, t = ring("t", FF(11))
|
||
|
|
||
|
assert (7*t + 3).is_irreducible is True
|
||
|
assert (7*t**2 + 3*t + 1).is_irreducible is False
|
||
|
|
||
|
_, u = ring("u", ZZ)
|
||
|
f = u**16 + u**14 - u**10 - u**8 - u**6 + u**2
|
||
|
|
||
|
assert f.is_cyclotomic is False
|
||
|
assert (f + 1).is_cyclotomic is True
|
||
|
|
||
|
raises(MultivariatePolynomialError, lambda: x.is_cyclotomic)
|
||
|
|
||
|
R, = ring("", ZZ)
|
||
|
assert R(4).is_squarefree is True
|
||
|
assert R(6).is_irreducible is True
|
||
|
|
||
|
def test_PolyElement_drop():
|
||
|
R, x,y,z = ring("x,y,z", ZZ)
|
||
|
|
||
|
assert R(1).drop(0).ring == PolyRing("y,z", ZZ, lex)
|
||
|
assert R(1).drop(0).drop(0).ring == PolyRing("z", ZZ, lex)
|
||
|
assert isinstance(R(1).drop(0).drop(0).drop(0), R.dtype) is False
|
||
|
|
||
|
raises(ValueError, lambda: z.drop(0).drop(0).drop(0))
|
||
|
raises(ValueError, lambda: x.drop(0))
|
||
|
|
||
|
def test_PolyElement_pdiv():
|
||
|
_, x, y = ring("x,y", ZZ)
|
||
|
|
||
|
f, g = x**2 - y**2, x - y
|
||
|
q, r = x + y, 0
|
||
|
|
||
|
assert f.pdiv(g) == (q, r)
|
||
|
assert f.prem(g) == r
|
||
|
assert f.pquo(g) == q
|
||
|
assert f.pexquo(g) == q
|
||
|
|
||
|
def test_PolyElement_gcdex():
|
||
|
_, x = ring("x", QQ)
|
||
|
|
||
|
f, g = 2*x, x**2 - 16
|
||
|
s, t, h = x/32, -QQ(1, 16), 1
|
||
|
|
||
|
assert f.half_gcdex(g) == (s, h)
|
||
|
assert f.gcdex(g) == (s, t, h)
|
||
|
|
||
|
def test_PolyElement_subresultants():
|
||
|
_, x = ring("x", ZZ)
|
||
|
f, g, h = x**2 - 2*x + 1, x**2 - 1, 2*x - 2
|
||
|
|
||
|
assert f.subresultants(g) == [f, g, h]
|
||
|
|
||
|
def test_PolyElement_resultant():
|
||
|
_, x = ring("x", ZZ)
|
||
|
f, g, h = x**2 - 2*x + 1, x**2 - 1, 0
|
||
|
|
||
|
assert f.resultant(g) == h
|
||
|
|
||
|
def test_PolyElement_discriminant():
|
||
|
_, x = ring("x", ZZ)
|
||
|
f, g = x**3 + 3*x**2 + 9*x - 13, -11664
|
||
|
|
||
|
assert f.discriminant() == g
|
||
|
|
||
|
F, a, b, c = ring("a,b,c", ZZ)
|
||
|
_, x = ring("x", F)
|
||
|
|
||
|
f, g = a*x**2 + b*x + c, b**2 - 4*a*c
|
||
|
|
||
|
assert f.discriminant() == g
|
||
|
|
||
|
def test_PolyElement_decompose():
|
||
|
_, x = ring("x", ZZ)
|
||
|
|
||
|
f = x**12 + 20*x**10 + 150*x**8 + 500*x**6 + 625*x**4 - 2*x**3 - 10*x + 9
|
||
|
g = x**4 - 2*x + 9
|
||
|
h = x**3 + 5*x
|
||
|
|
||
|
assert g.compose(x, h) == f
|
||
|
assert f.decompose() == [g, h]
|
||
|
|
||
|
def test_PolyElement_shift():
|
||
|
_, x = ring("x", ZZ)
|
||
|
assert (x**2 - 2*x + 1).shift(2) == x**2 + 2*x + 1
|
||
|
|
||
|
def test_PolyElement_sturm():
|
||
|
F, t = field("t", ZZ)
|
||
|
_, x = ring("x", F)
|
||
|
|
||
|
f = 1024/(15625*t**8)*x**5 - 4096/(625*t**8)*x**4 + 32/(15625*t**4)*x**3 - 128/(625*t**4)*x**2 + F(1)/62500*x - F(1)/625
|
||
|
|
||
|
assert f.sturm() == [
|
||
|
x**3 - 100*x**2 + t**4/64*x - 25*t**4/16,
|
||
|
3*x**2 - 200*x + t**4/64,
|
||
|
(-t**4/96 + F(20000)/9)*x + 25*t**4/18,
|
||
|
(-9*t**12 - 11520000*t**8 - 3686400000000*t**4)/(576*t**8 - 245760000*t**4 + 26214400000000),
|
||
|
]
|
||
|
|
||
|
def test_PolyElement_gff_list():
|
||
|
_, x = ring("x", ZZ)
|
||
|
|
||
|
f = x**5 + 2*x**4 - x**3 - 2*x**2
|
||
|
assert f.gff_list() == [(x, 1), (x + 2, 4)]
|
||
|
|
||
|
f = x*(x - 1)**3*(x - 2)**2*(x - 4)**2*(x - 5)
|
||
|
assert f.gff_list() == [(x**2 - 5*x + 4, 1), (x**2 - 5*x + 4, 2), (x, 3)]
|
||
|
|
||
|
def test_PolyElement_sqf_norm():
|
||
|
R, x = ring("x", QQ.algebraic_field(sqrt(3)))
|
||
|
X = R.to_ground().x
|
||
|
|
||
|
assert (x**2 - 2).sqf_norm() == (1, x**2 - 2*sqrt(3)*x + 1, X**4 - 10*X**2 + 1)
|
||
|
|
||
|
R, x = ring("x", QQ.algebraic_field(sqrt(2)))
|
||
|
X = R.to_ground().x
|
||
|
|
||
|
assert (x**2 - 3).sqf_norm() == (1, x**2 - 2*sqrt(2)*x - 1, X**4 - 10*X**2 + 1)
|
||
|
|
||
|
def test_PolyElement_sqf_list():
|
||
|
_, x = ring("x", ZZ)
|
||
|
|
||
|
f = x**5 - x**3 - x**2 + 1
|
||
|
g = x**3 + 2*x**2 + 2*x + 1
|
||
|
h = x - 1
|
||
|
p = x**4 + x**3 - x - 1
|
||
|
|
||
|
assert f.sqf_part() == p
|
||
|
assert f.sqf_list() == (1, [(g, 1), (h, 2)])
|
||
|
|
||
|
def test_issue_18894():
|
||
|
items = [S(3)/16 + sqrt(3*sqrt(3) + 10)/8, S(1)/8 + 3*sqrt(3)/16, S(1)/8 + 3*sqrt(3)/16, -S(3)/16 + sqrt(3*sqrt(3) + 10)/8]
|
||
|
R, a = sring(items, extension=True)
|
||
|
assert R.domain == QQ.algebraic_field(sqrt(3)+sqrt(3*sqrt(3)+10))
|
||
|
assert R.gens == ()
|
||
|
result = []
|
||
|
for item in items:
|
||
|
result.append(R.domain.from_sympy(item))
|
||
|
assert a == result
|
||
|
|
||
|
def test_PolyElement_factor_list():
|
||
|
_, x = ring("x", ZZ)
|
||
|
|
||
|
f = x**5 - x**3 - x**2 + 1
|
||
|
|
||
|
u = x + 1
|
||
|
v = x - 1
|
||
|
w = x**2 + x + 1
|
||
|
|
||
|
assert f.factor_list() == (1, [(u, 1), (v, 2), (w, 1)])
|
||
|
|
||
|
|
||
|
def test_issue_21410():
|
||
|
R, x = ring('x', FF(2))
|
||
|
p = x**6 + x**5 + x**4 + x**3 + 1
|
||
|
assert p._pow_multinomial(4) == x**24 + x**20 + x**16 + x**12 + 1
|