You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
247 lines
6.8 KiB
247 lines
6.8 KiB
5 months ago
|
from sympy.concrete.summations import Sum
|
||
|
from sympy.core.expr import Expr
|
||
|
from sympy.core.symbol import symbols
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.functions.elementary.piecewise import Piecewise
|
||
|
from sympy.functions.elementary.trigonometric import sin
|
||
|
from sympy.matrices.dense import MutableDenseMatrix as Matrix
|
||
|
from sympy.sets.sets import Interval
|
||
|
from sympy.utilities.lambdify import lambdify
|
||
|
from sympy.testing.pytest import raises
|
||
|
|
||
|
from sympy.printing.tensorflow import TensorflowPrinter
|
||
|
from sympy.printing.lambdarepr import lambdarepr, LambdaPrinter, NumExprPrinter
|
||
|
|
||
|
|
||
|
x, y, z = symbols("x,y,z")
|
||
|
i, a, b = symbols("i,a,b")
|
||
|
j, c, d = symbols("j,c,d")
|
||
|
|
||
|
|
||
|
def test_basic():
|
||
|
assert lambdarepr(x*y) == "x*y"
|
||
|
assert lambdarepr(x + y) in ["y + x", "x + y"]
|
||
|
assert lambdarepr(x**y) == "x**y"
|
||
|
|
||
|
|
||
|
def test_matrix():
|
||
|
# Test printing a Matrix that has an element that is printed differently
|
||
|
# with the LambdaPrinter than with the StrPrinter.
|
||
|
e = x % 2
|
||
|
assert lambdarepr(e) != str(e)
|
||
|
assert lambdarepr(Matrix([e])) == 'ImmutableDenseMatrix([[x % 2]])'
|
||
|
|
||
|
|
||
|
def test_piecewise():
|
||
|
# In each case, test eval() the lambdarepr() to make sure there are a
|
||
|
# correct number of parentheses. It will give a SyntaxError if there aren't.
|
||
|
|
||
|
h = "lambda x: "
|
||
|
|
||
|
p = Piecewise((x, x < 0))
|
||
|
l = lambdarepr(p)
|
||
|
eval(h + l)
|
||
|
assert l == "((x) if (x < 0) else None)"
|
||
|
|
||
|
p = Piecewise(
|
||
|
(1, x < 1),
|
||
|
(2, x < 2),
|
||
|
(0, True)
|
||
|
)
|
||
|
l = lambdarepr(p)
|
||
|
eval(h + l)
|
||
|
assert l == "((1) if (x < 1) else (2) if (x < 2) else (0))"
|
||
|
|
||
|
p = Piecewise(
|
||
|
(1, x < 1),
|
||
|
(2, x < 2),
|
||
|
)
|
||
|
l = lambdarepr(p)
|
||
|
eval(h + l)
|
||
|
assert l == "((1) if (x < 1) else (2) if (x < 2) else None)"
|
||
|
|
||
|
p = Piecewise(
|
||
|
(x, x < 1),
|
||
|
(x**2, Interval(3, 4, True, False).contains(x)),
|
||
|
(0, True),
|
||
|
)
|
||
|
l = lambdarepr(p)
|
||
|
eval(h + l)
|
||
|
assert l == "((x) if (x < 1) else (x**2) if (((x <= 4)) and ((x > 3))) else (0))"
|
||
|
|
||
|
p = Piecewise(
|
||
|
(x**2, x < 0),
|
||
|
(x, x < 1),
|
||
|
(2 - x, x >= 1),
|
||
|
(0, True), evaluate=False
|
||
|
)
|
||
|
l = lambdarepr(p)
|
||
|
eval(h + l)
|
||
|
assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\
|
||
|
" else (2 - x) if (x >= 1) else (0))"
|
||
|
|
||
|
p = Piecewise(
|
||
|
(x**2, x < 0),
|
||
|
(x, x < 1),
|
||
|
(2 - x, x >= 1), evaluate=False
|
||
|
)
|
||
|
l = lambdarepr(p)
|
||
|
eval(h + l)
|
||
|
assert l == "((x**2) if (x < 0) else (x) if (x < 1)"\
|
||
|
" else (2 - x) if (x >= 1) else None)"
|
||
|
|
||
|
p = Piecewise(
|
||
|
(1, x >= 1),
|
||
|
(2, x >= 2),
|
||
|
(3, x >= 3),
|
||
|
(4, x >= 4),
|
||
|
(5, x >= 5),
|
||
|
(6, True)
|
||
|
)
|
||
|
l = lambdarepr(p)
|
||
|
eval(h + l)
|
||
|
assert l == "((1) if (x >= 1) else (2) if (x >= 2) else (3) if (x >= 3)"\
|
||
|
" else (4) if (x >= 4) else (5) if (x >= 5) else (6))"
|
||
|
|
||
|
p = Piecewise(
|
||
|
(1, x <= 1),
|
||
|
(2, x <= 2),
|
||
|
(3, x <= 3),
|
||
|
(4, x <= 4),
|
||
|
(5, x <= 5),
|
||
|
(6, True)
|
||
|
)
|
||
|
l = lambdarepr(p)
|
||
|
eval(h + l)
|
||
|
assert l == "((1) if (x <= 1) else (2) if (x <= 2) else (3) if (x <= 3)"\
|
||
|
" else (4) if (x <= 4) else (5) if (x <= 5) else (6))"
|
||
|
|
||
|
p = Piecewise(
|
||
|
(1, x > 1),
|
||
|
(2, x > 2),
|
||
|
(3, x > 3),
|
||
|
(4, x > 4),
|
||
|
(5, x > 5),
|
||
|
(6, True)
|
||
|
)
|
||
|
l = lambdarepr(p)
|
||
|
eval(h + l)
|
||
|
assert l =="((1) if (x > 1) else (2) if (x > 2) else (3) if (x > 3)"\
|
||
|
" else (4) if (x > 4) else (5) if (x > 5) else (6))"
|
||
|
|
||
|
p = Piecewise(
|
||
|
(1, x < 1),
|
||
|
(2, x < 2),
|
||
|
(3, x < 3),
|
||
|
(4, x < 4),
|
||
|
(5, x < 5),
|
||
|
(6, True)
|
||
|
)
|
||
|
l = lambdarepr(p)
|
||
|
eval(h + l)
|
||
|
assert l == "((1) if (x < 1) else (2) if (x < 2) else (3) if (x < 3)"\
|
||
|
" else (4) if (x < 4) else (5) if (x < 5) else (6))"
|
||
|
|
||
|
p = Piecewise(
|
||
|
(Piecewise(
|
||
|
(1, x > 0),
|
||
|
(2, True)
|
||
|
), y > 0),
|
||
|
(3, True)
|
||
|
)
|
||
|
l = lambdarepr(p)
|
||
|
eval(h + l)
|
||
|
assert l == "((((1) if (x > 0) else (2))) if (y > 0) else (3))"
|
||
|
|
||
|
|
||
|
def test_sum__1():
|
||
|
# In each case, test eval() the lambdarepr() to make sure that
|
||
|
# it evaluates to the same results as the symbolic expression
|
||
|
s = Sum(x ** i, (i, a, b))
|
||
|
l = lambdarepr(s)
|
||
|
assert l == "(builtins.sum(x**i for i in range(a, b+1)))"
|
||
|
|
||
|
args = x, a, b
|
||
|
f = lambdify(args, s)
|
||
|
v = 2, 3, 8
|
||
|
assert f(*v) == s.subs(zip(args, v)).doit()
|
||
|
|
||
|
def test_sum__2():
|
||
|
s = Sum(i * x, (i, a, b))
|
||
|
l = lambdarepr(s)
|
||
|
assert l == "(builtins.sum(i*x for i in range(a, b+1)))"
|
||
|
|
||
|
args = x, a, b
|
||
|
f = lambdify(args, s)
|
||
|
v = 2, 3, 8
|
||
|
assert f(*v) == s.subs(zip(args, v)).doit()
|
||
|
|
||
|
|
||
|
def test_multiple_sums():
|
||
|
s = Sum(i * x + j, (i, a, b), (j, c, d))
|
||
|
|
||
|
l = lambdarepr(s)
|
||
|
assert l == "(builtins.sum(i*x + j for i in range(a, b+1) for j in range(c, d+1)))"
|
||
|
|
||
|
args = x, a, b, c, d
|
||
|
f = lambdify(args, s)
|
||
|
vals = 2, 3, 4, 5, 6
|
||
|
f_ref = s.subs(zip(args, vals)).doit()
|
||
|
f_res = f(*vals)
|
||
|
assert f_res == f_ref
|
||
|
|
||
|
|
||
|
def test_sqrt():
|
||
|
prntr = LambdaPrinter({'standard' : 'python3'})
|
||
|
assert prntr._print_Pow(sqrt(x), rational=False) == 'sqrt(x)'
|
||
|
assert prntr._print_Pow(sqrt(x), rational=True) == 'x**(1/2)'
|
||
|
|
||
|
|
||
|
def test_settings():
|
||
|
raises(TypeError, lambda: lambdarepr(sin(x), method="garbage"))
|
||
|
|
||
|
|
||
|
def test_numexpr():
|
||
|
# test ITE rewrite as Piecewise
|
||
|
from sympy.logic.boolalg import ITE
|
||
|
expr = ITE(x > 0, True, False, evaluate=False)
|
||
|
assert NumExprPrinter().doprint(expr) == \
|
||
|
"numexpr.evaluate('where((x > 0), True, False)', truediv=True)"
|
||
|
|
||
|
from sympy.codegen.ast import Return, FunctionDefinition, Variable, Assignment
|
||
|
func_def = FunctionDefinition(None, 'foo', [Variable(x)], [Assignment(y,x), Return(y**2)])
|
||
|
expected = "def foo(x):\n"\
|
||
|
" y = numexpr.evaluate('x', truediv=True)\n"\
|
||
|
" return numexpr.evaluate('y**2', truediv=True)"
|
||
|
assert NumExprPrinter().doprint(func_def) == expected
|
||
|
|
||
|
|
||
|
class CustomPrintedObject(Expr):
|
||
|
def _lambdacode(self, printer):
|
||
|
return 'lambda'
|
||
|
|
||
|
def _tensorflowcode(self, printer):
|
||
|
return 'tensorflow'
|
||
|
|
||
|
def _numpycode(self, printer):
|
||
|
return 'numpy'
|
||
|
|
||
|
def _numexprcode(self, printer):
|
||
|
return 'numexpr'
|
||
|
|
||
|
def _mpmathcode(self, printer):
|
||
|
return 'mpmath'
|
||
|
|
||
|
|
||
|
def test_printmethod():
|
||
|
# In each case, printmethod is called to test
|
||
|
# its working
|
||
|
|
||
|
obj = CustomPrintedObject()
|
||
|
assert LambdaPrinter().doprint(obj) == 'lambda'
|
||
|
assert TensorflowPrinter().doprint(obj) == 'tensorflow'
|
||
|
assert NumExprPrinter().doprint(obj) == "numexpr.evaluate('numexpr', truediv=True)"
|
||
|
|
||
|
assert NumExprPrinter().doprint(Piecewise((y, x >= 0), (z, x < 0))) == \
|
||
|
"numexpr.evaluate('where((x >= 0), y, z)', truediv=True)"
|