You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

247 lines
7.6 KiB

5 months ago
from sympy.core.singleton import S
from sympy.core.basic import Basic
from sympy.core.containers import Tuple
from sympy.core.function import Lambda, BadSignatureError
from sympy.core.logic import fuzzy_bool
from sympy.core.relational import Eq
from sympy.core.symbol import Dummy
from sympy.core.sympify import _sympify
from sympy.logic.boolalg import And, as_Boolean
from sympy.utilities.iterables import sift, flatten, has_dups
from sympy.utilities.exceptions import sympy_deprecation_warning
from .contains import Contains
from .sets import Set, Union, FiniteSet, SetKind
adummy = Dummy('conditionset')
class ConditionSet(Set):
r"""
Set of elements which satisfies a given condition.
.. math:: \{x \mid \textrm{condition}(x) = \texttt{True}, x \in S\}
Examples
========
>>> from sympy import Symbol, S, ConditionSet, pi, Eq, sin, Interval
>>> from sympy.abc import x, y, z
>>> sin_sols = ConditionSet(x, Eq(sin(x), 0), Interval(0, 2*pi))
>>> 2*pi in sin_sols
True
>>> pi/2 in sin_sols
False
>>> 3*pi in sin_sols
False
>>> 5 in ConditionSet(x, x**2 > 4, S.Reals)
True
If the value is not in the base set, the result is false:
>>> 5 in ConditionSet(x, x**2 > 4, Interval(2, 4))
False
Notes
=====
Symbols with assumptions should be avoided or else the
condition may evaluate without consideration of the set:
>>> n = Symbol('n', negative=True)
>>> cond = (n > 0); cond
False
>>> ConditionSet(n, cond, S.Integers)
EmptySet
Only free symbols can be changed by using `subs`:
>>> c = ConditionSet(x, x < 1, {x, z})
>>> c.subs(x, y)
ConditionSet(x, x < 1, {y, z})
To check if ``pi`` is in ``c`` use:
>>> pi in c
False
If no base set is specified, the universal set is implied:
>>> ConditionSet(x, x < 1).base_set
UniversalSet
Only symbols or symbol-like expressions can be used:
>>> ConditionSet(x + 1, x + 1 < 1, S.Integers)
Traceback (most recent call last):
...
ValueError: non-symbol dummy not recognized in condition
When the base set is a ConditionSet, the symbols will be
unified if possible with preference for the outermost symbols:
>>> ConditionSet(x, x < y, ConditionSet(z, z + y < 2, S.Integers))
ConditionSet(x, (x < y) & (x + y < 2), Integers)
"""
def __new__(cls, sym, condition, base_set=S.UniversalSet):
sym = _sympify(sym)
flat = flatten([sym])
if has_dups(flat):
raise BadSignatureError("Duplicate symbols detected")
base_set = _sympify(base_set)
if not isinstance(base_set, Set):
raise TypeError(
'base set should be a Set object, not %s' % base_set)
condition = _sympify(condition)
if isinstance(condition, FiniteSet):
condition_orig = condition
temp = (Eq(lhs, 0) for lhs in condition)
condition = And(*temp)
sympy_deprecation_warning(
f"""
Using a set for the condition in ConditionSet is deprecated. Use a boolean
instead.
In this case, replace
{condition_orig}
with
{condition}
""",
deprecated_since_version='1.5',
active_deprecations_target="deprecated-conditionset-set",
)
condition = as_Boolean(condition)
if condition is S.true:
return base_set
if condition is S.false:
return S.EmptySet
if base_set is S.EmptySet:
return S.EmptySet
# no simple answers, so now check syms
for i in flat:
if not getattr(i, '_diff_wrt', False):
raise ValueError('`%s` is not symbol-like' % i)
if base_set.contains(sym) is S.false:
raise TypeError('sym `%s` is not in base_set `%s`' % (sym, base_set))
know = None
if isinstance(base_set, FiniteSet):
sifted = sift(
base_set, lambda _: fuzzy_bool(condition.subs(sym, _)))
if sifted[None]:
know = FiniteSet(*sifted[True])
base_set = FiniteSet(*sifted[None])
else:
return FiniteSet(*sifted[True])
if isinstance(base_set, cls):
s, c, b = base_set.args
def sig(s):
return cls(s, Eq(adummy, 0)).as_dummy().sym
sa, sb = map(sig, (sym, s))
if sa != sb:
raise BadSignatureError('sym does not match sym of base set')
reps = dict(zip(flatten([sym]), flatten([s])))
if s == sym:
condition = And(condition, c)
base_set = b
elif not c.free_symbols & sym.free_symbols:
reps = {v: k for k, v in reps.items()}
condition = And(condition, c.xreplace(reps))
base_set = b
elif not condition.free_symbols & s.free_symbols:
sym = sym.xreplace(reps)
condition = And(condition.xreplace(reps), c)
base_set = b
# flatten ConditionSet(Contains(ConditionSet())) expressions
if isinstance(condition, Contains) and (sym == condition.args[0]):
if isinstance(condition.args[1], Set):
return condition.args[1].intersect(base_set)
rv = Basic.__new__(cls, sym, condition, base_set)
return rv if know is None else Union(know, rv)
sym = property(lambda self: self.args[0])
condition = property(lambda self: self.args[1])
base_set = property(lambda self: self.args[2])
@property
def free_symbols(self):
cond_syms = self.condition.free_symbols - self.sym.free_symbols
return cond_syms | self.base_set.free_symbols
@property
def bound_symbols(self):
return flatten([self.sym])
def _contains(self, other):
def ok_sig(a, b):
tuples = [isinstance(i, Tuple) for i in (a, b)]
c = tuples.count(True)
if c == 1:
return False
if c == 0:
return True
return len(a) == len(b) and all(
ok_sig(i, j) for i, j in zip(a, b))
if not ok_sig(self.sym, other):
return S.false
# try doing base_cond first and return
# False immediately if it is False
base_cond = Contains(other, self.base_set)
if base_cond is S.false:
return S.false
# Substitute other into condition. This could raise e.g. for
# ConditionSet(x, 1/x >= 0, Reals).contains(0)
lamda = Lambda((self.sym,), self.condition)
try:
lambda_cond = lamda(other)
except TypeError:
return Contains(other, self, evaluate=False)
else:
return And(base_cond, lambda_cond)
def as_relational(self, other):
f = Lambda(self.sym, self.condition)
if isinstance(self.sym, Tuple):
f = f(*other)
else:
f = f(other)
return And(f, self.base_set.contains(other))
def _eval_subs(self, old, new):
sym, cond, base = self.args
dsym = sym.subs(old, adummy)
insym = dsym.has(adummy)
# prioritize changing a symbol in the base
newbase = base.subs(old, new)
if newbase != base:
if not insym:
cond = cond.subs(old, new)
return self.func(sym, cond, newbase)
if insym:
pass # no change of bound symbols via subs
elif getattr(new, '_diff_wrt', False):
cond = cond.subs(old, new)
else:
pass # let error about the symbol raise from __new__
return self.func(sym, cond, base)
def _kind(self):
return SetKind(self.sym.kind)