You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
3.9 KiB
83 lines
3.9 KiB
5 months ago
|
from sympy.concrete.summations import Sum
|
||
|
from sympy.core.add import Add
|
||
|
from sympy.core.mul import Mul
|
||
|
from sympy.core.numbers import (Integer, oo, pi)
|
||
|
from sympy.core.power import Pow
|
||
|
from sympy.core.relational import (Eq, Ne)
|
||
|
from sympy.core.symbol import (Dummy, Symbol, symbols)
|
||
|
from sympy.functions.combinatorial.factorials import factorial
|
||
|
from sympy.functions.elementary.exponential import exp
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.functions.elementary.piecewise import Piecewise
|
||
|
from sympy.functions.special.delta_functions import DiracDelta
|
||
|
from sympy.functions.special.gamma_functions import gamma
|
||
|
from sympy.integrals.integrals import Integral
|
||
|
from sympy.simplify.simplify import simplify
|
||
|
from sympy.tensor.indexed import (Indexed, IndexedBase)
|
||
|
from sympy.functions.elementary.piecewise import ExprCondPair
|
||
|
from sympy.stats import (Poisson, Beta, Exponential, P,
|
||
|
Multinomial, MultivariateBeta)
|
||
|
from sympy.stats.crv_types import Normal
|
||
|
from sympy.stats.drv_types import PoissonDistribution
|
||
|
from sympy.stats.compound_rv import CompoundPSpace, CompoundDistribution
|
||
|
from sympy.stats.joint_rv import MarginalDistribution
|
||
|
from sympy.stats.rv import pspace, density
|
||
|
from sympy.testing.pytest import ignore_warnings
|
||
|
|
||
|
def test_density():
|
||
|
x = Symbol('x')
|
||
|
l = Symbol('l', positive=True)
|
||
|
rate = Beta(l, 2, 3)
|
||
|
X = Poisson(x, rate)
|
||
|
assert isinstance(pspace(X), CompoundPSpace)
|
||
|
assert density(X, Eq(rate, rate.symbol)) == PoissonDistribution(l)
|
||
|
N1 = Normal('N1', 0, 1)
|
||
|
N2 = Normal('N2', N1, 2)
|
||
|
assert density(N2)(0).doit() == sqrt(10)/(10*sqrt(pi))
|
||
|
assert simplify(density(N2, Eq(N1, 1))(x)) == \
|
||
|
sqrt(2)*exp(-(x - 1)**2/8)/(4*sqrt(pi))
|
||
|
assert simplify(density(N2)(x)) == sqrt(10)*exp(-x**2/10)/(10*sqrt(pi))
|
||
|
|
||
|
def test_MarginalDistribution():
|
||
|
a1, p1, p2 = symbols('a1 p1 p2', positive=True)
|
||
|
C = Multinomial('C', 2, p1, p2)
|
||
|
B = MultivariateBeta('B', a1, C[0])
|
||
|
MGR = MarginalDistribution(B, (C[0],))
|
||
|
mgrc = Mul(Symbol('B'), Piecewise(ExprCondPair(Mul(Integer(2),
|
||
|
Pow(Symbol('p1', positive=True), Indexed(IndexedBase(Symbol('C')),
|
||
|
Integer(0))), Pow(Symbol('p2', positive=True),
|
||
|
Indexed(IndexedBase(Symbol('C')), Integer(1))),
|
||
|
Pow(factorial(Indexed(IndexedBase(Symbol('C')), Integer(0))), Integer(-1)),
|
||
|
Pow(factorial(Indexed(IndexedBase(Symbol('C')), Integer(1))), Integer(-1))),
|
||
|
Eq(Add(Indexed(IndexedBase(Symbol('C')), Integer(0)),
|
||
|
Indexed(IndexedBase(Symbol('C')), Integer(1))), Integer(2))),
|
||
|
ExprCondPair(Integer(0), True)), Pow(gamma(Symbol('a1', positive=True)),
|
||
|
Integer(-1)), gamma(Add(Symbol('a1', positive=True),
|
||
|
Indexed(IndexedBase(Symbol('C')), Integer(0)))),
|
||
|
Pow(gamma(Indexed(IndexedBase(Symbol('C')), Integer(0))), Integer(-1)),
|
||
|
Pow(Indexed(IndexedBase(Symbol('B')), Integer(0)),
|
||
|
Add(Symbol('a1', positive=True), Integer(-1))),
|
||
|
Pow(Indexed(IndexedBase(Symbol('B')), Integer(1)),
|
||
|
Add(Indexed(IndexedBase(Symbol('C')), Integer(0)), Integer(-1))))
|
||
|
assert MGR(C) == mgrc
|
||
|
|
||
|
def test_compound_distribution():
|
||
|
Y = Poisson('Y', 1)
|
||
|
Z = Poisson('Z', Y)
|
||
|
assert isinstance(pspace(Z), CompoundPSpace)
|
||
|
assert isinstance(pspace(Z).distribution, CompoundDistribution)
|
||
|
assert Z.pspace.distribution.pdf(1).doit() == exp(-2)*exp(exp(-1))
|
||
|
|
||
|
def test_mix_expression():
|
||
|
Y, E = Poisson('Y', 1), Exponential('E', 1)
|
||
|
k = Dummy('k')
|
||
|
expr1 = Integral(Sum(exp(-1)*Integral(exp(-k)*DiracDelta(k - 2), (k, 0, oo)
|
||
|
)/factorial(k), (k, 0, oo)), (k, -oo, 0))
|
||
|
expr2 = Integral(Sum(exp(-1)*Integral(exp(-k)*DiracDelta(k - 2), (k, 0, oo)
|
||
|
)/factorial(k), (k, 0, oo)), (k, 0, oo))
|
||
|
assert P(Eq(Y + E, 1)) == 0
|
||
|
assert P(Ne(Y + E, 2)) == 1
|
||
|
with ignore_warnings(UserWarning): ### TODO: Restore tests once warnings are removed
|
||
|
assert P(E + Y < 2, evaluate=False).rewrite(Integral).dummy_eq(expr1)
|
||
|
assert P(E + Y > 2, evaluate=False).rewrite(Integral).dummy_eq(expr2)
|