You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
125 lines
3.9 KiB
125 lines
3.9 KiB
5 months ago
|
""" SymPy interface to Unification engine
|
||
|
|
||
|
See sympy.unify for module level docstring
|
||
|
See sympy.unify.core for algorithmic docstring """
|
||
|
|
||
|
from sympy.core import Basic, Add, Mul, Pow
|
||
|
from sympy.core.operations import AssocOp, LatticeOp
|
||
|
from sympy.matrices import MatAdd, MatMul, MatrixExpr
|
||
|
from sympy.sets.sets import Union, Intersection, FiniteSet
|
||
|
from sympy.unify.core import Compound, Variable, CondVariable
|
||
|
from sympy.unify import core
|
||
|
|
||
|
basic_new_legal = [MatrixExpr]
|
||
|
eval_false_legal = [AssocOp, Pow, FiniteSet]
|
||
|
illegal = [LatticeOp]
|
||
|
|
||
|
def sympy_associative(op):
|
||
|
assoc_ops = (AssocOp, MatAdd, MatMul, Union, Intersection, FiniteSet)
|
||
|
return any(issubclass(op, aop) for aop in assoc_ops)
|
||
|
|
||
|
def sympy_commutative(op):
|
||
|
comm_ops = (Add, MatAdd, Union, Intersection, FiniteSet)
|
||
|
return any(issubclass(op, cop) for cop in comm_ops)
|
||
|
|
||
|
def is_associative(x):
|
||
|
return isinstance(x, Compound) and sympy_associative(x.op)
|
||
|
|
||
|
def is_commutative(x):
|
||
|
if not isinstance(x, Compound):
|
||
|
return False
|
||
|
if sympy_commutative(x.op):
|
||
|
return True
|
||
|
if issubclass(x.op, Mul):
|
||
|
return all(construct(arg).is_commutative for arg in x.args)
|
||
|
|
||
|
def mk_matchtype(typ):
|
||
|
def matchtype(x):
|
||
|
return (isinstance(x, typ) or
|
||
|
isinstance(x, Compound) and issubclass(x.op, typ))
|
||
|
return matchtype
|
||
|
|
||
|
def deconstruct(s, variables=()):
|
||
|
""" Turn a SymPy object into a Compound """
|
||
|
if s in variables:
|
||
|
return Variable(s)
|
||
|
if isinstance(s, (Variable, CondVariable)):
|
||
|
return s
|
||
|
if not isinstance(s, Basic) or s.is_Atom:
|
||
|
return s
|
||
|
return Compound(s.__class__,
|
||
|
tuple(deconstruct(arg, variables) for arg in s.args))
|
||
|
|
||
|
def construct(t):
|
||
|
""" Turn a Compound into a SymPy object """
|
||
|
if isinstance(t, (Variable, CondVariable)):
|
||
|
return t.arg
|
||
|
if not isinstance(t, Compound):
|
||
|
return t
|
||
|
if any(issubclass(t.op, cls) for cls in eval_false_legal):
|
||
|
return t.op(*map(construct, t.args), evaluate=False)
|
||
|
elif any(issubclass(t.op, cls) for cls in basic_new_legal):
|
||
|
return Basic.__new__(t.op, *map(construct, t.args))
|
||
|
else:
|
||
|
return t.op(*map(construct, t.args))
|
||
|
|
||
|
def rebuild(s):
|
||
|
""" Rebuild a SymPy expression.
|
||
|
|
||
|
This removes harm caused by Expr-Rules interactions.
|
||
|
"""
|
||
|
return construct(deconstruct(s))
|
||
|
|
||
|
def unify(x, y, s=None, variables=(), **kwargs):
|
||
|
""" Structural unification of two expressions/patterns.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.unify.usympy import unify
|
||
|
>>> from sympy import Basic, S
|
||
|
>>> from sympy.abc import x, y, z, p, q
|
||
|
|
||
|
>>> next(unify(Basic(S(1), S(2)), Basic(S(1), x), variables=[x]))
|
||
|
{x: 2}
|
||
|
|
||
|
>>> expr = 2*x + y + z
|
||
|
>>> pattern = 2*p + q
|
||
|
>>> next(unify(expr, pattern, {}, variables=(p, q)))
|
||
|
{p: x, q: y + z}
|
||
|
|
||
|
Unification supports commutative and associative matching
|
||
|
|
||
|
>>> expr = x + y + z
|
||
|
>>> pattern = p + q
|
||
|
>>> len(list(unify(expr, pattern, {}, variables=(p, q))))
|
||
|
12
|
||
|
|
||
|
Symbols not indicated to be variables are treated as literal,
|
||
|
else they are wild-like and match anything in a sub-expression.
|
||
|
|
||
|
>>> expr = x*y*z + 3
|
||
|
>>> pattern = x*y + 3
|
||
|
>>> next(unify(expr, pattern, {}, variables=[x, y]))
|
||
|
{x: y, y: x*z}
|
||
|
|
||
|
The x and y of the pattern above were in a Mul and matched factors
|
||
|
in the Mul of expr. Here, a single symbol matches an entire term:
|
||
|
|
||
|
>>> expr = x*y + 3
|
||
|
>>> pattern = p + 3
|
||
|
>>> next(unify(expr, pattern, {}, variables=[p]))
|
||
|
{p: x*y}
|
||
|
|
||
|
"""
|
||
|
decons = lambda x: deconstruct(x, variables)
|
||
|
s = s or {}
|
||
|
s = {decons(k): decons(v) for k, v in s.items()}
|
||
|
|
||
|
ds = core.unify(decons(x), decons(y), s,
|
||
|
is_associative=is_associative,
|
||
|
is_commutative=is_commutative,
|
||
|
**kwargs)
|
||
|
for d in ds:
|
||
|
yield {construct(k): construct(v) for k, v in d.items()}
|