You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1035 lines
36 KiB
1035 lines
36 KiB
5 months ago
|
from collections.abc import Callable
|
||
|
|
||
|
from sympy.core.basic import Basic
|
||
|
from sympy.core.cache import cacheit
|
||
|
from sympy.core import S, Dummy, Lambda
|
||
|
from sympy.core.symbol import Str
|
||
|
from sympy.core.symbol import symbols
|
||
|
from sympy.matrices.immutable import ImmutableDenseMatrix as Matrix
|
||
|
from sympy.matrices.matrices import MatrixBase
|
||
|
from sympy.solvers import solve
|
||
|
from sympy.vector.scalar import BaseScalar
|
||
|
from sympy.core.containers import Tuple
|
||
|
from sympy.core.function import diff
|
||
|
from sympy.functions.elementary.miscellaneous import sqrt
|
||
|
from sympy.functions.elementary.trigonometric import (acos, atan2, cos, sin)
|
||
|
from sympy.matrices.dense import eye
|
||
|
from sympy.matrices.immutable import ImmutableDenseMatrix
|
||
|
from sympy.simplify.simplify import simplify
|
||
|
from sympy.simplify.trigsimp import trigsimp
|
||
|
import sympy.vector
|
||
|
from sympy.vector.orienters import (Orienter, AxisOrienter, BodyOrienter,
|
||
|
SpaceOrienter, QuaternionOrienter)
|
||
|
|
||
|
|
||
|
class CoordSys3D(Basic):
|
||
|
"""
|
||
|
Represents a coordinate system in 3-D space.
|
||
|
"""
|
||
|
|
||
|
def __new__(cls, name, transformation=None, parent=None, location=None,
|
||
|
rotation_matrix=None, vector_names=None, variable_names=None):
|
||
|
"""
|
||
|
The orientation/location parameters are necessary if this system
|
||
|
is being defined at a certain orientation or location wrt another.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : str
|
||
|
The name of the new CoordSys3D instance.
|
||
|
|
||
|
transformation : Lambda, Tuple, str
|
||
|
Transformation defined by transformation equations or chosen
|
||
|
from predefined ones.
|
||
|
|
||
|
location : Vector
|
||
|
The position vector of the new system's origin wrt the parent
|
||
|
instance.
|
||
|
|
||
|
rotation_matrix : SymPy ImmutableMatrix
|
||
|
The rotation matrix of the new coordinate system with respect
|
||
|
to the parent. In other words, the output of
|
||
|
new_system.rotation_matrix(parent).
|
||
|
|
||
|
parent : CoordSys3D
|
||
|
The coordinate system wrt which the orientation/location
|
||
|
(or both) is being defined.
|
||
|
|
||
|
vector_names, variable_names : iterable(optional)
|
||
|
Iterables of 3 strings each, with custom names for base
|
||
|
vectors and base scalars of the new system respectively.
|
||
|
Used for simple str printing.
|
||
|
|
||
|
"""
|
||
|
|
||
|
name = str(name)
|
||
|
Vector = sympy.vector.Vector
|
||
|
Point = sympy.vector.Point
|
||
|
|
||
|
if not isinstance(name, str):
|
||
|
raise TypeError("name should be a string")
|
||
|
|
||
|
if transformation is not None:
|
||
|
if (location is not None) or (rotation_matrix is not None):
|
||
|
raise ValueError("specify either `transformation` or "
|
||
|
"`location`/`rotation_matrix`")
|
||
|
if isinstance(transformation, (Tuple, tuple, list)):
|
||
|
if isinstance(transformation[0], MatrixBase):
|
||
|
rotation_matrix = transformation[0]
|
||
|
location = transformation[1]
|
||
|
else:
|
||
|
transformation = Lambda(transformation[0],
|
||
|
transformation[1])
|
||
|
elif isinstance(transformation, Callable):
|
||
|
x1, x2, x3 = symbols('x1 x2 x3', cls=Dummy)
|
||
|
transformation = Lambda((x1, x2, x3),
|
||
|
transformation(x1, x2, x3))
|
||
|
elif isinstance(transformation, str):
|
||
|
transformation = Str(transformation)
|
||
|
elif isinstance(transformation, (Str, Lambda)):
|
||
|
pass
|
||
|
else:
|
||
|
raise TypeError("transformation: "
|
||
|
"wrong type {}".format(type(transformation)))
|
||
|
|
||
|
# If orientation information has been provided, store
|
||
|
# the rotation matrix accordingly
|
||
|
if rotation_matrix is None:
|
||
|
rotation_matrix = ImmutableDenseMatrix(eye(3))
|
||
|
else:
|
||
|
if not isinstance(rotation_matrix, MatrixBase):
|
||
|
raise TypeError("rotation_matrix should be an Immutable" +
|
||
|
"Matrix instance")
|
||
|
rotation_matrix = rotation_matrix.as_immutable()
|
||
|
|
||
|
# If location information is not given, adjust the default
|
||
|
# location as Vector.zero
|
||
|
if parent is not None:
|
||
|
if not isinstance(parent, CoordSys3D):
|
||
|
raise TypeError("parent should be a " +
|
||
|
"CoordSys3D/None")
|
||
|
if location is None:
|
||
|
location = Vector.zero
|
||
|
else:
|
||
|
if not isinstance(location, Vector):
|
||
|
raise TypeError("location should be a Vector")
|
||
|
# Check that location does not contain base
|
||
|
# scalars
|
||
|
for x in location.free_symbols:
|
||
|
if isinstance(x, BaseScalar):
|
||
|
raise ValueError("location should not contain" +
|
||
|
" BaseScalars")
|
||
|
origin = parent.origin.locate_new(name + '.origin',
|
||
|
location)
|
||
|
else:
|
||
|
location = Vector.zero
|
||
|
origin = Point(name + '.origin')
|
||
|
|
||
|
if transformation is None:
|
||
|
transformation = Tuple(rotation_matrix, location)
|
||
|
|
||
|
if isinstance(transformation, Tuple):
|
||
|
lambda_transformation = CoordSys3D._compose_rotation_and_translation(
|
||
|
transformation[0],
|
||
|
transformation[1],
|
||
|
parent
|
||
|
)
|
||
|
r, l = transformation
|
||
|
l = l._projections
|
||
|
lambda_lame = CoordSys3D._get_lame_coeff('cartesian')
|
||
|
lambda_inverse = lambda x, y, z: r.inv()*Matrix(
|
||
|
[x-l[0], y-l[1], z-l[2]])
|
||
|
elif isinstance(transformation, Str):
|
||
|
trname = transformation.name
|
||
|
lambda_transformation = CoordSys3D._get_transformation_lambdas(trname)
|
||
|
if parent is not None:
|
||
|
if parent.lame_coefficients() != (S.One, S.One, S.One):
|
||
|
raise ValueError('Parent for pre-defined coordinate '
|
||
|
'system should be Cartesian.')
|
||
|
lambda_lame = CoordSys3D._get_lame_coeff(trname)
|
||
|
lambda_inverse = CoordSys3D._set_inv_trans_equations(trname)
|
||
|
elif isinstance(transformation, Lambda):
|
||
|
if not CoordSys3D._check_orthogonality(transformation):
|
||
|
raise ValueError("The transformation equation does not "
|
||
|
"create orthogonal coordinate system")
|
||
|
lambda_transformation = transformation
|
||
|
lambda_lame = CoordSys3D._calculate_lame_coeff(lambda_transformation)
|
||
|
lambda_inverse = None
|
||
|
else:
|
||
|
lambda_transformation = lambda x, y, z: transformation(x, y, z)
|
||
|
lambda_lame = CoordSys3D._get_lame_coeff(transformation)
|
||
|
lambda_inverse = None
|
||
|
|
||
|
if variable_names is None:
|
||
|
if isinstance(transformation, Lambda):
|
||
|
variable_names = ["x1", "x2", "x3"]
|
||
|
elif isinstance(transformation, Str):
|
||
|
if transformation.name == 'spherical':
|
||
|
variable_names = ["r", "theta", "phi"]
|
||
|
elif transformation.name == 'cylindrical':
|
||
|
variable_names = ["r", "theta", "z"]
|
||
|
else:
|
||
|
variable_names = ["x", "y", "z"]
|
||
|
else:
|
||
|
variable_names = ["x", "y", "z"]
|
||
|
if vector_names is None:
|
||
|
vector_names = ["i", "j", "k"]
|
||
|
|
||
|
# All systems that are defined as 'roots' are unequal, unless
|
||
|
# they have the same name.
|
||
|
# Systems defined at same orientation/position wrt the same
|
||
|
# 'parent' are equal, irrespective of the name.
|
||
|
# This is true even if the same orientation is provided via
|
||
|
# different methods like Axis/Body/Space/Quaternion.
|
||
|
# However, coincident systems may be seen as unequal if
|
||
|
# positioned/oriented wrt different parents, even though
|
||
|
# they may actually be 'coincident' wrt the root system.
|
||
|
if parent is not None:
|
||
|
obj = super().__new__(
|
||
|
cls, Str(name), transformation, parent)
|
||
|
else:
|
||
|
obj = super().__new__(
|
||
|
cls, Str(name), transformation)
|
||
|
obj._name = name
|
||
|
# Initialize the base vectors
|
||
|
|
||
|
_check_strings('vector_names', vector_names)
|
||
|
vector_names = list(vector_names)
|
||
|
latex_vects = [(r'\mathbf{\hat{%s}_{%s}}' % (x, name)) for
|
||
|
x in vector_names]
|
||
|
pretty_vects = ['%s_%s' % (x, name) for x in vector_names]
|
||
|
|
||
|
obj._vector_names = vector_names
|
||
|
|
||
|
v1 = BaseVector(0, obj, pretty_vects[0], latex_vects[0])
|
||
|
v2 = BaseVector(1, obj, pretty_vects[1], latex_vects[1])
|
||
|
v3 = BaseVector(2, obj, pretty_vects[2], latex_vects[2])
|
||
|
|
||
|
obj._base_vectors = (v1, v2, v3)
|
||
|
|
||
|
# Initialize the base scalars
|
||
|
|
||
|
_check_strings('variable_names', vector_names)
|
||
|
variable_names = list(variable_names)
|
||
|
latex_scalars = [(r"\mathbf{{%s}_{%s}}" % (x, name)) for
|
||
|
x in variable_names]
|
||
|
pretty_scalars = ['%s_%s' % (x, name) for x in variable_names]
|
||
|
|
||
|
obj._variable_names = variable_names
|
||
|
obj._vector_names = vector_names
|
||
|
|
||
|
x1 = BaseScalar(0, obj, pretty_scalars[0], latex_scalars[0])
|
||
|
x2 = BaseScalar(1, obj, pretty_scalars[1], latex_scalars[1])
|
||
|
x3 = BaseScalar(2, obj, pretty_scalars[2], latex_scalars[2])
|
||
|
|
||
|
obj._base_scalars = (x1, x2, x3)
|
||
|
|
||
|
obj._transformation = transformation
|
||
|
obj._transformation_lambda = lambda_transformation
|
||
|
obj._lame_coefficients = lambda_lame(x1, x2, x3)
|
||
|
obj._transformation_from_parent_lambda = lambda_inverse
|
||
|
|
||
|
setattr(obj, variable_names[0], x1)
|
||
|
setattr(obj, variable_names[1], x2)
|
||
|
setattr(obj, variable_names[2], x3)
|
||
|
|
||
|
setattr(obj, vector_names[0], v1)
|
||
|
setattr(obj, vector_names[1], v2)
|
||
|
setattr(obj, vector_names[2], v3)
|
||
|
|
||
|
# Assign params
|
||
|
obj._parent = parent
|
||
|
if obj._parent is not None:
|
||
|
obj._root = obj._parent._root
|
||
|
else:
|
||
|
obj._root = obj
|
||
|
|
||
|
obj._parent_rotation_matrix = rotation_matrix
|
||
|
obj._origin = origin
|
||
|
|
||
|
# Return the instance
|
||
|
return obj
|
||
|
|
||
|
def _sympystr(self, printer):
|
||
|
return self._name
|
||
|
|
||
|
def __iter__(self):
|
||
|
return iter(self.base_vectors())
|
||
|
|
||
|
@staticmethod
|
||
|
def _check_orthogonality(equations):
|
||
|
"""
|
||
|
Helper method for _connect_to_cartesian. It checks if
|
||
|
set of transformation equations create orthogonal curvilinear
|
||
|
coordinate system
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
equations : Lambda
|
||
|
Lambda of transformation equations
|
||
|
|
||
|
"""
|
||
|
|
||
|
x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy)
|
||
|
equations = equations(x1, x2, x3)
|
||
|
v1 = Matrix([diff(equations[0], x1),
|
||
|
diff(equations[1], x1), diff(equations[2], x1)])
|
||
|
|
||
|
v2 = Matrix([diff(equations[0], x2),
|
||
|
diff(equations[1], x2), diff(equations[2], x2)])
|
||
|
|
||
|
v3 = Matrix([diff(equations[0], x3),
|
||
|
diff(equations[1], x3), diff(equations[2], x3)])
|
||
|
|
||
|
if any(simplify(i[0] + i[1] + i[2]) == 0 for i in (v1, v2, v3)):
|
||
|
return False
|
||
|
else:
|
||
|
if simplify(v1.dot(v2)) == 0 and simplify(v2.dot(v3)) == 0 \
|
||
|
and simplify(v3.dot(v1)) == 0:
|
||
|
return True
|
||
|
else:
|
||
|
return False
|
||
|
|
||
|
@staticmethod
|
||
|
def _set_inv_trans_equations(curv_coord_name):
|
||
|
"""
|
||
|
Store information about inverse transformation equations for
|
||
|
pre-defined coordinate systems.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
curv_coord_name : str
|
||
|
Name of coordinate system
|
||
|
|
||
|
"""
|
||
|
if curv_coord_name == 'cartesian':
|
||
|
return lambda x, y, z: (x, y, z)
|
||
|
|
||
|
if curv_coord_name == 'spherical':
|
||
|
return lambda x, y, z: (
|
||
|
sqrt(x**2 + y**2 + z**2),
|
||
|
acos(z/sqrt(x**2 + y**2 + z**2)),
|
||
|
atan2(y, x)
|
||
|
)
|
||
|
if curv_coord_name == 'cylindrical':
|
||
|
return lambda x, y, z: (
|
||
|
sqrt(x**2 + y**2),
|
||
|
atan2(y, x),
|
||
|
z
|
||
|
)
|
||
|
raise ValueError('Wrong set of parameters.'
|
||
|
'Type of coordinate system is defined')
|
||
|
|
||
|
def _calculate_inv_trans_equations(self):
|
||
|
"""
|
||
|
Helper method for set_coordinate_type. It calculates inverse
|
||
|
transformation equations for given transformations equations.
|
||
|
|
||
|
"""
|
||
|
x1, x2, x3 = symbols("x1, x2, x3", cls=Dummy, reals=True)
|
||
|
x, y, z = symbols("x, y, z", cls=Dummy)
|
||
|
|
||
|
equations = self._transformation(x1, x2, x3)
|
||
|
|
||
|
solved = solve([equations[0] - x,
|
||
|
equations[1] - y,
|
||
|
equations[2] - z], (x1, x2, x3), dict=True)[0]
|
||
|
solved = solved[x1], solved[x2], solved[x3]
|
||
|
self._transformation_from_parent_lambda = \
|
||
|
lambda x1, x2, x3: tuple(i.subs(list(zip((x, y, z), (x1, x2, x3)))) for i in solved)
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_lame_coeff(curv_coord_name):
|
||
|
"""
|
||
|
Store information about Lame coefficients for pre-defined
|
||
|
coordinate systems.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
curv_coord_name : str
|
||
|
Name of coordinate system
|
||
|
|
||
|
"""
|
||
|
if isinstance(curv_coord_name, str):
|
||
|
if curv_coord_name == 'cartesian':
|
||
|
return lambda x, y, z: (S.One, S.One, S.One)
|
||
|
if curv_coord_name == 'spherical':
|
||
|
return lambda r, theta, phi: (S.One, r, r*sin(theta))
|
||
|
if curv_coord_name == 'cylindrical':
|
||
|
return lambda r, theta, h: (S.One, r, S.One)
|
||
|
raise ValueError('Wrong set of parameters.'
|
||
|
' Type of coordinate system is not defined')
|
||
|
return CoordSys3D._calculate_lame_coefficients(curv_coord_name)
|
||
|
|
||
|
@staticmethod
|
||
|
def _calculate_lame_coeff(equations):
|
||
|
"""
|
||
|
It calculates Lame coefficients
|
||
|
for given transformations equations.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
equations : Lambda
|
||
|
Lambda of transformation equations.
|
||
|
|
||
|
"""
|
||
|
return lambda x1, x2, x3: (
|
||
|
sqrt(diff(equations(x1, x2, x3)[0], x1)**2 +
|
||
|
diff(equations(x1, x2, x3)[1], x1)**2 +
|
||
|
diff(equations(x1, x2, x3)[2], x1)**2),
|
||
|
sqrt(diff(equations(x1, x2, x3)[0], x2)**2 +
|
||
|
diff(equations(x1, x2, x3)[1], x2)**2 +
|
||
|
diff(equations(x1, x2, x3)[2], x2)**2),
|
||
|
sqrt(diff(equations(x1, x2, x3)[0], x3)**2 +
|
||
|
diff(equations(x1, x2, x3)[1], x3)**2 +
|
||
|
diff(equations(x1, x2, x3)[2], x3)**2)
|
||
|
)
|
||
|
|
||
|
def _inverse_rotation_matrix(self):
|
||
|
"""
|
||
|
Returns inverse rotation matrix.
|
||
|
"""
|
||
|
return simplify(self._parent_rotation_matrix**-1)
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_transformation_lambdas(curv_coord_name):
|
||
|
"""
|
||
|
Store information about transformation equations for pre-defined
|
||
|
coordinate systems.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
curv_coord_name : str
|
||
|
Name of coordinate system
|
||
|
|
||
|
"""
|
||
|
if isinstance(curv_coord_name, str):
|
||
|
if curv_coord_name == 'cartesian':
|
||
|
return lambda x, y, z: (x, y, z)
|
||
|
if curv_coord_name == 'spherical':
|
||
|
return lambda r, theta, phi: (
|
||
|
r*sin(theta)*cos(phi),
|
||
|
r*sin(theta)*sin(phi),
|
||
|
r*cos(theta)
|
||
|
)
|
||
|
if curv_coord_name == 'cylindrical':
|
||
|
return lambda r, theta, h: (
|
||
|
r*cos(theta),
|
||
|
r*sin(theta),
|
||
|
h
|
||
|
)
|
||
|
raise ValueError('Wrong set of parameters.'
|
||
|
'Type of coordinate system is defined')
|
||
|
|
||
|
@classmethod
|
||
|
def _rotation_trans_equations(cls, matrix, equations):
|
||
|
"""
|
||
|
Returns the transformation equations obtained from rotation matrix.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
matrix : Matrix
|
||
|
Rotation matrix
|
||
|
|
||
|
equations : tuple
|
||
|
Transformation equations
|
||
|
|
||
|
"""
|
||
|
return tuple(matrix * Matrix(equations))
|
||
|
|
||
|
@property
|
||
|
def origin(self):
|
||
|
return self._origin
|
||
|
|
||
|
def base_vectors(self):
|
||
|
return self._base_vectors
|
||
|
|
||
|
def base_scalars(self):
|
||
|
return self._base_scalars
|
||
|
|
||
|
def lame_coefficients(self):
|
||
|
return self._lame_coefficients
|
||
|
|
||
|
def transformation_to_parent(self):
|
||
|
return self._transformation_lambda(*self.base_scalars())
|
||
|
|
||
|
def transformation_from_parent(self):
|
||
|
if self._parent is None:
|
||
|
raise ValueError("no parent coordinate system, use "
|
||
|
"`transformation_from_parent_function()`")
|
||
|
return self._transformation_from_parent_lambda(
|
||
|
*self._parent.base_scalars())
|
||
|
|
||
|
def transformation_from_parent_function(self):
|
||
|
return self._transformation_from_parent_lambda
|
||
|
|
||
|
def rotation_matrix(self, other):
|
||
|
"""
|
||
|
Returns the direction cosine matrix(DCM), also known as the
|
||
|
'rotation matrix' of this coordinate system with respect to
|
||
|
another system.
|
||
|
|
||
|
If v_a is a vector defined in system 'A' (in matrix format)
|
||
|
and v_b is the same vector defined in system 'B', then
|
||
|
v_a = A.rotation_matrix(B) * v_b.
|
||
|
|
||
|
A SymPy Matrix is returned.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
other : CoordSys3D
|
||
|
The system which the DCM is generated to.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> q1 = symbols('q1')
|
||
|
>>> N = CoordSys3D('N')
|
||
|
>>> A = N.orient_new_axis('A', q1, N.i)
|
||
|
>>> N.rotation_matrix(A)
|
||
|
Matrix([
|
||
|
[1, 0, 0],
|
||
|
[0, cos(q1), -sin(q1)],
|
||
|
[0, sin(q1), cos(q1)]])
|
||
|
|
||
|
"""
|
||
|
from sympy.vector.functions import _path
|
||
|
if not isinstance(other, CoordSys3D):
|
||
|
raise TypeError(str(other) +
|
||
|
" is not a CoordSys3D")
|
||
|
# Handle special cases
|
||
|
if other == self:
|
||
|
return eye(3)
|
||
|
elif other == self._parent:
|
||
|
return self._parent_rotation_matrix
|
||
|
elif other._parent == self:
|
||
|
return other._parent_rotation_matrix.T
|
||
|
# Else, use tree to calculate position
|
||
|
rootindex, path = _path(self, other)
|
||
|
result = eye(3)
|
||
|
i = -1
|
||
|
for i in range(rootindex):
|
||
|
result *= path[i]._parent_rotation_matrix
|
||
|
i += 2
|
||
|
while i < len(path):
|
||
|
result *= path[i]._parent_rotation_matrix.T
|
||
|
i += 1
|
||
|
return result
|
||
|
|
||
|
@cacheit
|
||
|
def position_wrt(self, other):
|
||
|
"""
|
||
|
Returns the position vector of the origin of this coordinate
|
||
|
system with respect to another Point/CoordSys3D.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
other : Point/CoordSys3D
|
||
|
If other is a Point, the position of this system's origin
|
||
|
wrt it is returned. If its an instance of CoordSyRect,
|
||
|
the position wrt its origin is returned.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> N = CoordSys3D('N')
|
||
|
>>> N1 = N.locate_new('N1', 10 * N.i)
|
||
|
>>> N.position_wrt(N1)
|
||
|
(-10)*N.i
|
||
|
|
||
|
"""
|
||
|
return self.origin.position_wrt(other)
|
||
|
|
||
|
def scalar_map(self, other):
|
||
|
"""
|
||
|
Returns a dictionary which expresses the coordinate variables
|
||
|
(base scalars) of this frame in terms of the variables of
|
||
|
otherframe.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
otherframe : CoordSys3D
|
||
|
The other system to map the variables to.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> from sympy import Symbol
|
||
|
>>> A = CoordSys3D('A')
|
||
|
>>> q = Symbol('q')
|
||
|
>>> B = A.orient_new_axis('B', q, A.k)
|
||
|
>>> A.scalar_map(B)
|
||
|
{A.x: B.x*cos(q) - B.y*sin(q), A.y: B.x*sin(q) + B.y*cos(q), A.z: B.z}
|
||
|
|
||
|
"""
|
||
|
|
||
|
origin_coords = tuple(self.position_wrt(other).to_matrix(other))
|
||
|
relocated_scalars = [x - origin_coords[i]
|
||
|
for i, x in enumerate(other.base_scalars())]
|
||
|
|
||
|
vars_matrix = (self.rotation_matrix(other) *
|
||
|
Matrix(relocated_scalars))
|
||
|
return {x: trigsimp(vars_matrix[i])
|
||
|
for i, x in enumerate(self.base_scalars())}
|
||
|
|
||
|
def locate_new(self, name, position, vector_names=None,
|
||
|
variable_names=None):
|
||
|
"""
|
||
|
Returns a CoordSys3D with its origin located at the given
|
||
|
position wrt this coordinate system's origin.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : str
|
||
|
The name of the new CoordSys3D instance.
|
||
|
|
||
|
position : Vector
|
||
|
The position vector of the new system's origin wrt this
|
||
|
one.
|
||
|
|
||
|
vector_names, variable_names : iterable(optional)
|
||
|
Iterables of 3 strings each, with custom names for base
|
||
|
vectors and base scalars of the new system respectively.
|
||
|
Used for simple str printing.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> A = CoordSys3D('A')
|
||
|
>>> B = A.locate_new('B', 10 * A.i)
|
||
|
>>> B.origin.position_wrt(A.origin)
|
||
|
10*A.i
|
||
|
|
||
|
"""
|
||
|
if variable_names is None:
|
||
|
variable_names = self._variable_names
|
||
|
if vector_names is None:
|
||
|
vector_names = self._vector_names
|
||
|
|
||
|
return CoordSys3D(name, location=position,
|
||
|
vector_names=vector_names,
|
||
|
variable_names=variable_names,
|
||
|
parent=self)
|
||
|
|
||
|
def orient_new(self, name, orienters, location=None,
|
||
|
vector_names=None, variable_names=None):
|
||
|
"""
|
||
|
Creates a new CoordSys3D oriented in the user-specified way
|
||
|
with respect to this system.
|
||
|
|
||
|
Please refer to the documentation of the orienter classes
|
||
|
for more information about the orientation procedure.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : str
|
||
|
The name of the new CoordSys3D instance.
|
||
|
|
||
|
orienters : iterable/Orienter
|
||
|
An Orienter or an iterable of Orienters for orienting the
|
||
|
new coordinate system.
|
||
|
If an Orienter is provided, it is applied to get the new
|
||
|
system.
|
||
|
If an iterable is provided, the orienters will be applied
|
||
|
in the order in which they appear in the iterable.
|
||
|
|
||
|
location : Vector(optional)
|
||
|
The location of the new coordinate system's origin wrt this
|
||
|
system's origin. If not specified, the origins are taken to
|
||
|
be coincident.
|
||
|
|
||
|
vector_names, variable_names : iterable(optional)
|
||
|
Iterables of 3 strings each, with custom names for base
|
||
|
vectors and base scalars of the new system respectively.
|
||
|
Used for simple str printing.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
|
||
|
>>> N = CoordSys3D('N')
|
||
|
|
||
|
Using an AxisOrienter
|
||
|
|
||
|
>>> from sympy.vector import AxisOrienter
|
||
|
>>> axis_orienter = AxisOrienter(q1, N.i + 2 * N.j)
|
||
|
>>> A = N.orient_new('A', (axis_orienter, ))
|
||
|
|
||
|
Using a BodyOrienter
|
||
|
|
||
|
>>> from sympy.vector import BodyOrienter
|
||
|
>>> body_orienter = BodyOrienter(q1, q2, q3, '123')
|
||
|
>>> B = N.orient_new('B', (body_orienter, ))
|
||
|
|
||
|
Using a SpaceOrienter
|
||
|
|
||
|
>>> from sympy.vector import SpaceOrienter
|
||
|
>>> space_orienter = SpaceOrienter(q1, q2, q3, '312')
|
||
|
>>> C = N.orient_new('C', (space_orienter, ))
|
||
|
|
||
|
Using a QuaternionOrienter
|
||
|
|
||
|
>>> from sympy.vector import QuaternionOrienter
|
||
|
>>> q_orienter = QuaternionOrienter(q0, q1, q2, q3)
|
||
|
>>> D = N.orient_new('D', (q_orienter, ))
|
||
|
"""
|
||
|
if variable_names is None:
|
||
|
variable_names = self._variable_names
|
||
|
if vector_names is None:
|
||
|
vector_names = self._vector_names
|
||
|
|
||
|
if isinstance(orienters, Orienter):
|
||
|
if isinstance(orienters, AxisOrienter):
|
||
|
final_matrix = orienters.rotation_matrix(self)
|
||
|
else:
|
||
|
final_matrix = orienters.rotation_matrix()
|
||
|
# TODO: trigsimp is needed here so that the matrix becomes
|
||
|
# canonical (scalar_map also calls trigsimp; without this, you can
|
||
|
# end up with the same CoordinateSystem that compares differently
|
||
|
# due to a differently formatted matrix). However, this is
|
||
|
# probably not so good for performance.
|
||
|
final_matrix = trigsimp(final_matrix)
|
||
|
else:
|
||
|
final_matrix = Matrix(eye(3))
|
||
|
for orienter in orienters:
|
||
|
if isinstance(orienter, AxisOrienter):
|
||
|
final_matrix *= orienter.rotation_matrix(self)
|
||
|
else:
|
||
|
final_matrix *= orienter.rotation_matrix()
|
||
|
|
||
|
return CoordSys3D(name, rotation_matrix=final_matrix,
|
||
|
vector_names=vector_names,
|
||
|
variable_names=variable_names,
|
||
|
location=location,
|
||
|
parent=self)
|
||
|
|
||
|
def orient_new_axis(self, name, angle, axis, location=None,
|
||
|
vector_names=None, variable_names=None):
|
||
|
"""
|
||
|
Axis rotation is a rotation about an arbitrary axis by
|
||
|
some angle. The angle is supplied as a SymPy expr scalar, and
|
||
|
the axis is supplied as a Vector.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : string
|
||
|
The name of the new coordinate system
|
||
|
|
||
|
angle : Expr
|
||
|
The angle by which the new system is to be rotated
|
||
|
|
||
|
axis : Vector
|
||
|
The axis around which the rotation has to be performed
|
||
|
|
||
|
location : Vector(optional)
|
||
|
The location of the new coordinate system's origin wrt this
|
||
|
system's origin. If not specified, the origins are taken to
|
||
|
be coincident.
|
||
|
|
||
|
vector_names, variable_names : iterable(optional)
|
||
|
Iterables of 3 strings each, with custom names for base
|
||
|
vectors and base scalars of the new system respectively.
|
||
|
Used for simple str printing.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> q1 = symbols('q1')
|
||
|
>>> N = CoordSys3D('N')
|
||
|
>>> B = N.orient_new_axis('B', q1, N.i + 2 * N.j)
|
||
|
|
||
|
"""
|
||
|
if variable_names is None:
|
||
|
variable_names = self._variable_names
|
||
|
if vector_names is None:
|
||
|
vector_names = self._vector_names
|
||
|
|
||
|
orienter = AxisOrienter(angle, axis)
|
||
|
return self.orient_new(name, orienter,
|
||
|
location=location,
|
||
|
vector_names=vector_names,
|
||
|
variable_names=variable_names)
|
||
|
|
||
|
def orient_new_body(self, name, angle1, angle2, angle3,
|
||
|
rotation_order, location=None,
|
||
|
vector_names=None, variable_names=None):
|
||
|
"""
|
||
|
Body orientation takes this coordinate system through three
|
||
|
successive simple rotations.
|
||
|
|
||
|
Body fixed rotations include both Euler Angles and
|
||
|
Tait-Bryan Angles, see https://en.wikipedia.org/wiki/Euler_angles.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : string
|
||
|
The name of the new coordinate system
|
||
|
|
||
|
angle1, angle2, angle3 : Expr
|
||
|
Three successive angles to rotate the coordinate system by
|
||
|
|
||
|
rotation_order : string
|
||
|
String defining the order of axes for rotation
|
||
|
|
||
|
location : Vector(optional)
|
||
|
The location of the new coordinate system's origin wrt this
|
||
|
system's origin. If not specified, the origins are taken to
|
||
|
be coincident.
|
||
|
|
||
|
vector_names, variable_names : iterable(optional)
|
||
|
Iterables of 3 strings each, with custom names for base
|
||
|
vectors and base scalars of the new system respectively.
|
||
|
Used for simple str printing.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> q1, q2, q3 = symbols('q1 q2 q3')
|
||
|
>>> N = CoordSys3D('N')
|
||
|
|
||
|
A 'Body' fixed rotation is described by three angles and
|
||
|
three body-fixed rotation axes. To orient a coordinate system D
|
||
|
with respect to N, each sequential rotation is always about
|
||
|
the orthogonal unit vectors fixed to D. For example, a '123'
|
||
|
rotation will specify rotations about N.i, then D.j, then
|
||
|
D.k. (Initially, D.i is same as N.i)
|
||
|
Therefore,
|
||
|
|
||
|
>>> D = N.orient_new_body('D', q1, q2, q3, '123')
|
||
|
|
||
|
is same as
|
||
|
|
||
|
>>> D = N.orient_new_axis('D', q1, N.i)
|
||
|
>>> D = D.orient_new_axis('D', q2, D.j)
|
||
|
>>> D = D.orient_new_axis('D', q3, D.k)
|
||
|
|
||
|
Acceptable rotation orders are of length 3, expressed in XYZ or
|
||
|
123, and cannot have a rotation about about an axis twice in a row.
|
||
|
|
||
|
>>> B = N.orient_new_body('B', q1, q2, q3, '123')
|
||
|
>>> B = N.orient_new_body('B', q1, q2, 0, 'ZXZ')
|
||
|
>>> B = N.orient_new_body('B', 0, 0, 0, 'XYX')
|
||
|
|
||
|
"""
|
||
|
|
||
|
orienter = BodyOrienter(angle1, angle2, angle3, rotation_order)
|
||
|
return self.orient_new(name, orienter,
|
||
|
location=location,
|
||
|
vector_names=vector_names,
|
||
|
variable_names=variable_names)
|
||
|
|
||
|
def orient_new_space(self, name, angle1, angle2, angle3,
|
||
|
rotation_order, location=None,
|
||
|
vector_names=None, variable_names=None):
|
||
|
"""
|
||
|
Space rotation is similar to Body rotation, but the rotations
|
||
|
are applied in the opposite order.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : string
|
||
|
The name of the new coordinate system
|
||
|
|
||
|
angle1, angle2, angle3 : Expr
|
||
|
Three successive angles to rotate the coordinate system by
|
||
|
|
||
|
rotation_order : string
|
||
|
String defining the order of axes for rotation
|
||
|
|
||
|
location : Vector(optional)
|
||
|
The location of the new coordinate system's origin wrt this
|
||
|
system's origin. If not specified, the origins are taken to
|
||
|
be coincident.
|
||
|
|
||
|
vector_names, variable_names : iterable(optional)
|
||
|
Iterables of 3 strings each, with custom names for base
|
||
|
vectors and base scalars of the new system respectively.
|
||
|
Used for simple str printing.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
CoordSys3D.orient_new_body : method to orient via Euler
|
||
|
angles
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> q1, q2, q3 = symbols('q1 q2 q3')
|
||
|
>>> N = CoordSys3D('N')
|
||
|
|
||
|
To orient a coordinate system D with respect to N, each
|
||
|
sequential rotation is always about N's orthogonal unit vectors.
|
||
|
For example, a '123' rotation will specify rotations about
|
||
|
N.i, then N.j, then N.k.
|
||
|
Therefore,
|
||
|
|
||
|
>>> D = N.orient_new_space('D', q1, q2, q3, '312')
|
||
|
|
||
|
is same as
|
||
|
|
||
|
>>> B = N.orient_new_axis('B', q1, N.i)
|
||
|
>>> C = B.orient_new_axis('C', q2, N.j)
|
||
|
>>> D = C.orient_new_axis('D', q3, N.k)
|
||
|
|
||
|
"""
|
||
|
|
||
|
orienter = SpaceOrienter(angle1, angle2, angle3, rotation_order)
|
||
|
return self.orient_new(name, orienter,
|
||
|
location=location,
|
||
|
vector_names=vector_names,
|
||
|
variable_names=variable_names)
|
||
|
|
||
|
def orient_new_quaternion(self, name, q0, q1, q2, q3, location=None,
|
||
|
vector_names=None, variable_names=None):
|
||
|
"""
|
||
|
Quaternion orientation orients the new CoordSys3D with
|
||
|
Quaternions, defined as a finite rotation about lambda, a unit
|
||
|
vector, by some amount theta.
|
||
|
|
||
|
This orientation is described by four parameters:
|
||
|
|
||
|
q0 = cos(theta/2)
|
||
|
|
||
|
q1 = lambda_x sin(theta/2)
|
||
|
|
||
|
q2 = lambda_y sin(theta/2)
|
||
|
|
||
|
q3 = lambda_z sin(theta/2)
|
||
|
|
||
|
Quaternion does not take in a rotation order.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : string
|
||
|
The name of the new coordinate system
|
||
|
|
||
|
q0, q1, q2, q3 : Expr
|
||
|
The quaternions to rotate the coordinate system by
|
||
|
|
||
|
location : Vector(optional)
|
||
|
The location of the new coordinate system's origin wrt this
|
||
|
system's origin. If not specified, the origins are taken to
|
||
|
be coincident.
|
||
|
|
||
|
vector_names, variable_names : iterable(optional)
|
||
|
Iterables of 3 strings each, with custom names for base
|
||
|
vectors and base scalars of the new system respectively.
|
||
|
Used for simple str printing.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> from sympy import symbols
|
||
|
>>> q0, q1, q2, q3 = symbols('q0 q1 q2 q3')
|
||
|
>>> N = CoordSys3D('N')
|
||
|
>>> B = N.orient_new_quaternion('B', q0, q1, q2, q3)
|
||
|
|
||
|
"""
|
||
|
|
||
|
orienter = QuaternionOrienter(q0, q1, q2, q3)
|
||
|
return self.orient_new(name, orienter,
|
||
|
location=location,
|
||
|
vector_names=vector_names,
|
||
|
variable_names=variable_names)
|
||
|
|
||
|
def create_new(self, name, transformation, variable_names=None, vector_names=None):
|
||
|
"""
|
||
|
Returns a CoordSys3D which is connected to self by transformation.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : str
|
||
|
The name of the new CoordSys3D instance.
|
||
|
|
||
|
transformation : Lambda, Tuple, str
|
||
|
Transformation defined by transformation equations or chosen
|
||
|
from predefined ones.
|
||
|
|
||
|
vector_names, variable_names : iterable(optional)
|
||
|
Iterables of 3 strings each, with custom names for base
|
||
|
vectors and base scalars of the new system respectively.
|
||
|
Used for simple str printing.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> a = CoordSys3D('a')
|
||
|
>>> b = a.create_new('b', transformation='spherical')
|
||
|
>>> b.transformation_to_parent()
|
||
|
(b.r*sin(b.theta)*cos(b.phi), b.r*sin(b.phi)*sin(b.theta), b.r*cos(b.theta))
|
||
|
>>> b.transformation_from_parent()
|
||
|
(sqrt(a.x**2 + a.y**2 + a.z**2), acos(a.z/sqrt(a.x**2 + a.y**2 + a.z**2)), atan2(a.y, a.x))
|
||
|
|
||
|
"""
|
||
|
return CoordSys3D(name, parent=self, transformation=transformation,
|
||
|
variable_names=variable_names, vector_names=vector_names)
|
||
|
|
||
|
def __init__(self, name, location=None, rotation_matrix=None,
|
||
|
parent=None, vector_names=None, variable_names=None,
|
||
|
latex_vects=None, pretty_vects=None, latex_scalars=None,
|
||
|
pretty_scalars=None, transformation=None):
|
||
|
# Dummy initializer for setting docstring
|
||
|
pass
|
||
|
|
||
|
__init__.__doc__ = __new__.__doc__
|
||
|
|
||
|
@staticmethod
|
||
|
def _compose_rotation_and_translation(rot, translation, parent):
|
||
|
r = lambda x, y, z: CoordSys3D._rotation_trans_equations(rot, (x, y, z))
|
||
|
if parent is None:
|
||
|
return r
|
||
|
|
||
|
dx, dy, dz = [translation.dot(i) for i in parent.base_vectors()]
|
||
|
t = lambda x, y, z: (
|
||
|
x + dx,
|
||
|
y + dy,
|
||
|
z + dz,
|
||
|
)
|
||
|
return lambda x, y, z: t(*r(x, y, z))
|
||
|
|
||
|
|
||
|
def _check_strings(arg_name, arg):
|
||
|
errorstr = arg_name + " must be an iterable of 3 string-types"
|
||
|
if len(arg) != 3:
|
||
|
raise ValueError(errorstr)
|
||
|
for s in arg:
|
||
|
if not isinstance(s, str):
|
||
|
raise TypeError(errorstr)
|
||
|
|
||
|
|
||
|
# Delayed import to avoid cyclic import problems:
|
||
|
from sympy.vector.vector import BaseVector
|