You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

71 lines
2.2 KiB

5 months ago
from typing import List, Tuple
from torch.distributed.checkpoint.metadata import ChunkStorageMetadata
__all__: List[str] = []
def _check_shard_metadata_pair_overlap(
shard1: ChunkStorageMetadata, shard2: ChunkStorageMetadata
):
"""Check if two shards overlap."""
# For each dim of each shard, check if one shard resides on the other
# end of second shard with respect to that dim. As an example for a 2D
# shard, we would check if one shard is above or on the left of the
# other shard.
ndims = len(shard1.offsets)
for i in range(ndims):
if shard1.offsets[i] >= shard2.offsets[i] + shard2.sizes[i]:
return False
if shard2.offsets[i] >= shard1.offsets[i] + shard1.sizes[i]:
return False
return True
def _shards_get_overlap_region_wrt_saved_tensor(
saved_shard: ChunkStorageMetadata, current_shard: ChunkStorageMetadata
) -> List[Tuple[int, int, int, int]]:
"""
Return the overlapping region between saved_shard and current_shard.
There returned list has the same number of elements as the tensor's dimension.
For each element, we produce a tuple with the following contents:
(dimension, `saved_shard` offset, `current_shard` offset, length)
Offsets are relative to each shard.
"""
narrows = []
for dim, (
saved_shard_offset,
current_shard_offset,
saved_shard_size,
current_shard_size,
) in enumerate(
zip(
saved_shard.offsets,
current_shard.offsets,
saved_shard.sizes,
current_shard.sizes,
)
):
min_range_end = min(
saved_shard_offset + saved_shard_size,
current_shard_offset + current_shard_size,
)
length = min_range_end - max(current_shard_offset, saved_shard_offset)
if saved_shard_offset > current_shard_offset:
offset_for_saved_tensor = 0
offset_for_current_tensor = saved_shard_offset - current_shard_offset
else:
offset_for_saved_tensor = current_shard_offset - saved_shard_offset
offset_for_current_tensor = 0
narrows.append(
(dim, offset_for_saved_tensor, offset_for_current_tensor, length)
)
return narrows