You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
143 lines
6.2 KiB
143 lines
6.2 KiB
5 months ago
|
"""
|
||
|
This closely follows the implementation in NumPyro (https://github.com/pyro-ppl/numpyro).
|
||
|
|
||
|
Original copyright notice:
|
||
|
|
||
|
# Copyright: Contributors to the Pyro project.
|
||
|
# SPDX-License-Identifier: Apache-2.0
|
||
|
"""
|
||
|
|
||
|
import math
|
||
|
|
||
|
import torch
|
||
|
from torch.distributions import Beta, constraints
|
||
|
from torch.distributions.distribution import Distribution
|
||
|
from torch.distributions.utils import broadcast_all
|
||
|
|
||
|
__all__ = ["LKJCholesky"]
|
||
|
|
||
|
|
||
|
class LKJCholesky(Distribution):
|
||
|
r"""
|
||
|
LKJ distribution for lower Cholesky factor of correlation matrices.
|
||
|
The distribution is controlled by ``concentration`` parameter :math:`\eta`
|
||
|
to make the probability of the correlation matrix :math:`M` generated from
|
||
|
a Cholesky factor proportional to :math:`\det(M)^{\eta - 1}`. Because of that,
|
||
|
when ``concentration == 1``, we have a uniform distribution over Cholesky
|
||
|
factors of correlation matrices::
|
||
|
|
||
|
L ~ LKJCholesky(dim, concentration)
|
||
|
X = L @ L' ~ LKJCorr(dim, concentration)
|
||
|
|
||
|
Note that this distribution samples the
|
||
|
Cholesky factor of correlation matrices and not the correlation matrices
|
||
|
themselves and thereby differs slightly from the derivations in [1] for
|
||
|
the `LKJCorr` distribution. For sampling, this uses the Onion method from
|
||
|
[1] Section 3.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> l = LKJCholesky(3, 0.5)
|
||
|
>>> l.sample() # l @ l.T is a sample of a correlation 3x3 matrix
|
||
|
tensor([[ 1.0000, 0.0000, 0.0000],
|
||
|
[ 0.3516, 0.9361, 0.0000],
|
||
|
[-0.1899, 0.4748, 0.8593]])
|
||
|
|
||
|
Args:
|
||
|
dimension (dim): dimension of the matrices
|
||
|
concentration (float or Tensor): concentration/shape parameter of the
|
||
|
distribution (often referred to as eta)
|
||
|
|
||
|
**References**
|
||
|
|
||
|
[1] `Generating random correlation matrices based on vines and extended onion method` (2009),
|
||
|
Daniel Lewandowski, Dorota Kurowicka, Harry Joe.
|
||
|
Journal of Multivariate Analysis. 100. 10.1016/j.jmva.2009.04.008
|
||
|
"""
|
||
|
arg_constraints = {"concentration": constraints.positive}
|
||
|
support = constraints.corr_cholesky
|
||
|
|
||
|
def __init__(self, dim, concentration=1.0, validate_args=None):
|
||
|
if dim < 2:
|
||
|
raise ValueError(
|
||
|
f"Expected dim to be an integer greater than or equal to 2. Found dim={dim}."
|
||
|
)
|
||
|
self.dim = dim
|
||
|
(self.concentration,) = broadcast_all(concentration)
|
||
|
batch_shape = self.concentration.size()
|
||
|
event_shape = torch.Size((dim, dim))
|
||
|
# This is used to draw vectorized samples from the beta distribution in Sec. 3.2 of [1].
|
||
|
marginal_conc = self.concentration + 0.5 * (self.dim - 2)
|
||
|
offset = torch.arange(
|
||
|
self.dim - 1,
|
||
|
dtype=self.concentration.dtype,
|
||
|
device=self.concentration.device,
|
||
|
)
|
||
|
offset = torch.cat([offset.new_zeros((1,)), offset])
|
||
|
beta_conc1 = offset + 0.5
|
||
|
beta_conc0 = marginal_conc.unsqueeze(-1) - 0.5 * offset
|
||
|
self._beta = Beta(beta_conc1, beta_conc0)
|
||
|
super().__init__(batch_shape, event_shape, validate_args)
|
||
|
|
||
|
def expand(self, batch_shape, _instance=None):
|
||
|
new = self._get_checked_instance(LKJCholesky, _instance)
|
||
|
batch_shape = torch.Size(batch_shape)
|
||
|
new.dim = self.dim
|
||
|
new.concentration = self.concentration.expand(batch_shape)
|
||
|
new._beta = self._beta.expand(batch_shape + (self.dim,))
|
||
|
super(LKJCholesky, new).__init__(
|
||
|
batch_shape, self.event_shape, validate_args=False
|
||
|
)
|
||
|
new._validate_args = self._validate_args
|
||
|
return new
|
||
|
|
||
|
def sample(self, sample_shape=torch.Size()):
|
||
|
# This uses the Onion method, but there are a few differences from [1] Sec. 3.2:
|
||
|
# - This vectorizes the for loop and also works for heterogeneous eta.
|
||
|
# - Same algorithm generalizes to n=1.
|
||
|
# - The procedure is simplified since we are sampling the cholesky factor of
|
||
|
# the correlation matrix instead of the correlation matrix itself. As such,
|
||
|
# we only need to generate `w`.
|
||
|
y = self._beta.sample(sample_shape).unsqueeze(-1)
|
||
|
u_normal = torch.randn(
|
||
|
self._extended_shape(sample_shape), dtype=y.dtype, device=y.device
|
||
|
).tril(-1)
|
||
|
u_hypersphere = u_normal / u_normal.norm(dim=-1, keepdim=True)
|
||
|
# Replace NaNs in first row
|
||
|
u_hypersphere[..., 0, :].fill_(0.0)
|
||
|
w = torch.sqrt(y) * u_hypersphere
|
||
|
# Fill diagonal elements; clamp for numerical stability
|
||
|
eps = torch.finfo(w.dtype).tiny
|
||
|
diag_elems = torch.clamp(1 - torch.sum(w**2, dim=-1), min=eps).sqrt()
|
||
|
w += torch.diag_embed(diag_elems)
|
||
|
return w
|
||
|
|
||
|
def log_prob(self, value):
|
||
|
# See: https://mc-stan.org/docs/2_25/functions-reference/cholesky-lkj-correlation-distribution.html
|
||
|
# The probability of a correlation matrix is proportional to
|
||
|
# determinant ** (concentration - 1) = prod(L_ii ^ 2(concentration - 1))
|
||
|
# Additionally, the Jacobian of the transformation from Cholesky factor to
|
||
|
# correlation matrix is:
|
||
|
# prod(L_ii ^ (D - i))
|
||
|
# So the probability of a Cholesky factor is propotional to
|
||
|
# prod(L_ii ^ (2 * concentration - 2 + D - i)) = prod(L_ii ^ order_i)
|
||
|
# with order_i = 2 * concentration - 2 + D - i
|
||
|
if self._validate_args:
|
||
|
self._validate_sample(value)
|
||
|
diag_elems = value.diagonal(dim1=-1, dim2=-2)[..., 1:]
|
||
|
order = torch.arange(2, self.dim + 1, device=self.concentration.device)
|
||
|
order = 2 * (self.concentration - 1).unsqueeze(-1) + self.dim - order
|
||
|
unnormalized_log_pdf = torch.sum(order * diag_elems.log(), dim=-1)
|
||
|
# Compute normalization constant (page 1999 of [1])
|
||
|
dm1 = self.dim - 1
|
||
|
alpha = self.concentration + 0.5 * dm1
|
||
|
denominator = torch.lgamma(alpha) * dm1
|
||
|
numerator = torch.mvlgamma(alpha - 0.5, dm1)
|
||
|
# pi_constant in [1] is D * (D - 1) / 4 * log(pi)
|
||
|
# pi_constant in multigammaln is (D - 1) * (D - 2) / 4 * log(pi)
|
||
|
# hence, we need to add a pi_constant = (D - 1) * log(pi) / 2
|
||
|
pi_constant = 0.5 * dm1 * math.log(math.pi)
|
||
|
normalize_term = pi_constant + numerator - denominator
|
||
|
return unnormalized_log_pdf - normalize_term
|