You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
374 lines
13 KiB
374 lines
13 KiB
5 months ago
|
import functools
|
||
|
import re
|
||
|
from collections import deque
|
||
|
from dataclasses import dataclass
|
||
|
from typing import Dict, List
|
||
|
|
||
|
from torch.autograd import _KinetoEvent
|
||
|
from torch.autograd.profiler import profile
|
||
|
|
||
|
from torch.profiler import DeviceType
|
||
|
|
||
|
|
||
|
def _traverse(tree, next_fn, children_fn=lambda x: x.children, reverse: bool = False):
|
||
|
order = reversed if reverse else lambda x: x
|
||
|
remaining = deque(order(tree))
|
||
|
while remaining:
|
||
|
curr_event = next_fn(remaining)
|
||
|
yield curr_event
|
||
|
for child_event in order(children_fn(curr_event)):
|
||
|
remaining.append(child_event)
|
||
|
|
||
|
|
||
|
traverse_dfs = functools.partial(_traverse, next_fn=lambda x: x.pop(), reverse=True)
|
||
|
traverse_bfs = functools.partial(
|
||
|
_traverse, next_fn=lambda x: x.popleft(), reverse=False
|
||
|
)
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class EventMetrics:
|
||
|
duration_time_ns: int = 0
|
||
|
self_time_ns: int = 0
|
||
|
idle_time_ns: int = 0
|
||
|
queue_depth: int = 0
|
||
|
|
||
|
@property
|
||
|
def fraction_idle_time(self):
|
||
|
if self.duration_time_ns == 0:
|
||
|
return 0.0
|
||
|
return self.idle_time_ns / self.duration_time_ns
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class Interval:
|
||
|
start: int
|
||
|
end: int
|
||
|
queue_depth: int = 0
|
||
|
|
||
|
|
||
|
class EventKey:
|
||
|
def __init__(self, event):
|
||
|
self.event = event
|
||
|
|
||
|
def __hash__(self):
|
||
|
return hash(self.event.id)
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return self.event.id == other.event.id
|
||
|
|
||
|
def __repr__(self):
|
||
|
return f"{self.event.name}"
|
||
|
|
||
|
def intervals_overlap(self, intervals: List[Interval]):
|
||
|
overlap_time = 0
|
||
|
intervals = sorted(intervals, key=lambda x: x.start)
|
||
|
|
||
|
if intervals:
|
||
|
overlap_start = max(self.event.start_time_ns, intervals[0].start)
|
||
|
overlap_end = min(self.event.end_time_ns, intervals[0].end)
|
||
|
|
||
|
if overlap_start < overlap_end:
|
||
|
overlap_time += overlap_end - overlap_start
|
||
|
|
||
|
i, j = 0, 1
|
||
|
while j < len(intervals):
|
||
|
prev_interval = intervals[i]
|
||
|
curr_interval = intervals[j]
|
||
|
j += 1
|
||
|
if prev_interval.end > curr_interval.start:
|
||
|
# Completely subsumed by previous interval
|
||
|
if prev_interval.end > curr_interval.end:
|
||
|
j += 1
|
||
|
continue
|
||
|
else:
|
||
|
curr_interval.start = prev_interval.end
|
||
|
i = j
|
||
|
|
||
|
overlap_start = max(self.event.start_time_ns, curr_interval.start)
|
||
|
overlap_end = min(self.event.end_time_ns, curr_interval.end)
|
||
|
if overlap_start < overlap_end:
|
||
|
overlap_time += overlap_end - overlap_start
|
||
|
|
||
|
return overlap_time
|
||
|
|
||
|
|
||
|
class BasicEvaluation:
|
||
|
def __init__(self, prof: profile):
|
||
|
self.profile = prof
|
||
|
self.metrics: Dict[EventKey, EventMetrics] = {}
|
||
|
self.compute_self_time()
|
||
|
self.event_keys = sorted(
|
||
|
(e for e in self.metrics.keys()), key=lambda x: x.event.start_time_ns
|
||
|
)
|
||
|
self.events = [e.event for e in self.event_keys]
|
||
|
self.cuda_events: List[_KinetoEvent] = []
|
||
|
self.queue_depth_list = self.compute_queue_depth()
|
||
|
self.compute_idle_time()
|
||
|
|
||
|
def compute_self_time(self):
|
||
|
"""
|
||
|
Computes event's self time(total time - time in child ops).
|
||
|
"""
|
||
|
assert self.profile.kineto_results is not None
|
||
|
stack = deque(self.profile.kineto_results.experimental_event_tree())
|
||
|
|
||
|
# standard iterating dfs
|
||
|
while stack:
|
||
|
curr_event = stack.pop()
|
||
|
self_time = curr_event.duration_time_ns
|
||
|
for child_event in curr_event.children:
|
||
|
self_time -= child_event.duration_time_ns
|
||
|
stack.append(child_event)
|
||
|
assert (
|
||
|
EventKey(curr_event) not in self.metrics
|
||
|
), f"Duplicate id: {curr_event.id}, {curr_event.name}"
|
||
|
self.metrics[EventKey(curr_event)] = EventMetrics(self_time_ns=self_time)
|
||
|
self.metrics[
|
||
|
EventKey(curr_event)
|
||
|
].duration_time_ns = curr_event.duration_time_ns
|
||
|
|
||
|
def compute_queue_depth(self):
|
||
|
"""
|
||
|
Computes queue_depth at each event. This will calculate the queue depth data for
|
||
|
All the events in the tree.
|
||
|
This will return a list of Interval of queue depth data of cuda launch and kernels.
|
||
|
"""
|
||
|
assert self.profile.kineto_results is not None
|
||
|
cuda_event_list = self.profile.kineto_results.events()
|
||
|
|
||
|
def is_cuda_launch_kernel(e):
|
||
|
# TODO: find a better way to identify cudaLaunchKernel
|
||
|
return e.name == "cudaLaunchKernel"
|
||
|
|
||
|
def is_cuda_kernel(e):
|
||
|
# TODO: find a better way to identify CUDA Kernel
|
||
|
return e.device_type() == DeviceType.CUDA and "mem" not in e.name.lower()
|
||
|
|
||
|
cuda_launch_events = sorted(
|
||
|
(e for e in cuda_event_list if is_cuda_launch_kernel(e)),
|
||
|
key=lambda x: x.start_us(),
|
||
|
)
|
||
|
cuda_kernel_events = sorted(
|
||
|
(e for e in cuda_event_list if is_cuda_kernel(e)),
|
||
|
key=lambda x: x.start_us(),
|
||
|
)
|
||
|
|
||
|
self.cuda_events = sorted(
|
||
|
cuda_launch_events + cuda_kernel_events, key=lambda x: x.start_us()
|
||
|
)
|
||
|
|
||
|
kernel_mapping: Dict[_KinetoEvent, int] = {}
|
||
|
last_mapped_kernel = 0
|
||
|
for cuda_launch_event in cuda_launch_events:
|
||
|
index = index_of_first_match(
|
||
|
cuda_kernel_events,
|
||
|
lambda x: x.linked_correlation_id()
|
||
|
== cuda_launch_event.linked_correlation_id(),
|
||
|
start=last_mapped_kernel,
|
||
|
)
|
||
|
kernel_mapping[cuda_launch_event] = index
|
||
|
last_mapped_kernel = index if index is not None else last_mapped_kernel
|
||
|
|
||
|
current_kernel_index = 0
|
||
|
spawned_kernel_index = -1
|
||
|
|
||
|
all_events = cuda_launch_events + cuda_kernel_events + self.events
|
||
|
|
||
|
def new_old_event_comparator(event):
|
||
|
if hasattr(event, "start_us"):
|
||
|
return event.start_us() * 1000
|
||
|
if hasattr(event, "start_time_ns"):
|
||
|
return event.start_time_ns
|
||
|
raise Exception("Unknown Event Type")
|
||
|
|
||
|
queue_depth_list: List[Interval] = []
|
||
|
all_events.sort(key=new_old_event_comparator)
|
||
|
for event in all_events:
|
||
|
# Find latest cuda kernel event
|
||
|
if hasattr(event, "start_us"):
|
||
|
start_time = event.start_us() * 1000
|
||
|
end_time = (event.start_us() + event.duration_us()) * 1000
|
||
|
# Find current spawned cuda kernel event
|
||
|
if event in kernel_mapping and kernel_mapping[event] is not None:
|
||
|
spawned_kernel_index = kernel_mapping[event]
|
||
|
elif hasattr(event, "start_time_ns"):
|
||
|
start_time = event.start_time_ns # type: ignore[attr-defined]
|
||
|
end_time = event.end_time_ns # type: ignore[attr-defined]
|
||
|
|
||
|
while (
|
||
|
current_kernel_index < len(cuda_kernel_events)
|
||
|
and (cuda_kernel_events[current_kernel_index].start_us()) * 1000
|
||
|
<= start_time # type: ignore[possibly-undefined]
|
||
|
):
|
||
|
current_kernel_index += 1
|
||
|
current_queue_depth = spawned_kernel_index - current_kernel_index + 1
|
||
|
current_queue_depth = max(current_queue_depth, 0)
|
||
|
|
||
|
if hasattr(event, "start_us"):
|
||
|
queue_depth_list.append(
|
||
|
Interval(start_time, end_time, current_queue_depth) # type: ignore[possibly-undefined]
|
||
|
)
|
||
|
elif hasattr(event, "start_time_ns"):
|
||
|
self.metrics[EventKey(event)].queue_depth = current_queue_depth
|
||
|
|
||
|
return queue_depth_list
|
||
|
|
||
|
def compute_idle_time(self):
|
||
|
"""
|
||
|
Computes idle time of the profile.
|
||
|
"""
|
||
|
# Based on queue_depth_list, we can calculate idle time for all the events
|
||
|
idle = False
|
||
|
idle_start = 0
|
||
|
idle_intervals: List[Interval] = []
|
||
|
if self.queue_depth_list and self.events:
|
||
|
idle_intervals += [
|
||
|
Interval(self.events[0].start_time_ns, self.queue_depth_list[0].start),
|
||
|
Interval(self.queue_depth_list[-1].end, self.events[-1].end_time_ns),
|
||
|
]
|
||
|
|
||
|
for data_point in self.queue_depth_list:
|
||
|
if data_point.queue_depth == 0 and not idle:
|
||
|
idle_start = data_point.end
|
||
|
idle = True
|
||
|
if data_point.queue_depth > 0 and idle:
|
||
|
idle_intervals.append(Interval(idle_start, data_point.start))
|
||
|
idle = False
|
||
|
|
||
|
event_list = [e.event for e in self.metrics.keys()]
|
||
|
for event in event_list:
|
||
|
self.metrics[EventKey(event)].idle_time_ns = EventKey(
|
||
|
event
|
||
|
).intervals_overlap(idle_intervals)
|
||
|
|
||
|
def rank_events(self, length):
|
||
|
"""
|
||
|
Filter and Rank the events based on some heuristics:
|
||
|
1) Events that are in the falling phase of the queue depth.
|
||
|
2) Events that have a high idle_time, self_time difference.
|
||
|
|
||
|
Parameters:
|
||
|
length: The number of events to return.
|
||
|
"""
|
||
|
|
||
|
# Find the interval when qd is falling to 0
|
||
|
import torch
|
||
|
|
||
|
queue_depth_list = list(reversed(self.queue_depth_list))
|
||
|
qd_values = [e.queue_depth for e in queue_depth_list]
|
||
|
|
||
|
bottom_threashold = 0
|
||
|
top_threashold = 4
|
||
|
decrease_interval = []
|
||
|
i = 0
|
||
|
while i < len(qd_values):
|
||
|
if qd_values[i] > bottom_threashold:
|
||
|
i += 1
|
||
|
continue
|
||
|
for j in range(i + 1, len(qd_values)):
|
||
|
# Find next zero and if the max value between them exceeds
|
||
|
# the threshold, then we have a falling interval
|
||
|
next_minimum_idx = index_of_first_match(
|
||
|
qd_values, lambda x: x <= bottom_threashold, start=j
|
||
|
)
|
||
|
peak_idx = argmax(qd_values, start=j, end=next_minimum_idx)
|
||
|
|
||
|
# if is a valid peak, we add to list and continue
|
||
|
if peak_idx is not None and qd_values[peak_idx] >= top_threashold:
|
||
|
decrease_interval.append(
|
||
|
Interval(
|
||
|
queue_depth_list[peak_idx].start, queue_depth_list[i].start
|
||
|
)
|
||
|
)
|
||
|
i = next_minimum_idx if next_minimum_idx is not None else i
|
||
|
break
|
||
|
i += 1
|
||
|
# Filter out events that are not in the decrease interval
|
||
|
event_list = [
|
||
|
event
|
||
|
for event in self.metrics.keys()
|
||
|
if event.intervals_overlap(decrease_interval)
|
||
|
]
|
||
|
if event_list:
|
||
|
self_time = torch.tensor(
|
||
|
[self.metrics[event].self_time_ns for event in event_list],
|
||
|
dtype=torch.float32,
|
||
|
)
|
||
|
idle_time = torch.tensor(
|
||
|
[self.metrics[event].fraction_idle_time for event in event_list],
|
||
|
dtype=torch.float32,
|
||
|
)
|
||
|
normalized_gain = (idle_time - torch.mean(idle_time)) / torch.std(idle_time)
|
||
|
normalized_self = (self_time - torch.mean(self_time)) / torch.std(self_time)
|
||
|
heuristic_score_list = normalized_gain + 0.6 * normalized_self
|
||
|
|
||
|
# Sort events by heuristic
|
||
|
event_list = [
|
||
|
event
|
||
|
for _, event in sorted(
|
||
|
zip(heuristic_score_list, event_list),
|
||
|
key=lambda x: x[0],
|
||
|
reverse=True,
|
||
|
)
|
||
|
]
|
||
|
event_list = event_list[:length]
|
||
|
return event_list
|
||
|
|
||
|
def get_optimizable_events(self, length: int = 1, print_enable: bool = True):
|
||
|
event_list = self.rank_events(length)
|
||
|
if not print_enable:
|
||
|
return event_list
|
||
|
output = "Optimizable events:\n" if event_list else "No events to optimize\n"
|
||
|
|
||
|
output += "\n".join(
|
||
|
[
|
||
|
f"""{'-'*80}
|
||
|
Event: {event}
|
||
|
Source code location: {source_code_location(event.event)}
|
||
|
Percentage idle time: {self.metrics[event].fraction_idle_time * 100:.2f}%
|
||
|
{'-'*80}"""
|
||
|
for event in event_list
|
||
|
]
|
||
|
)
|
||
|
if print_enable:
|
||
|
print(output)
|
||
|
return event_list
|
||
|
|
||
|
|
||
|
def index_of_first_match(seq, predicate, start=0, end=None):
|
||
|
if end is None or end >= len(seq):
|
||
|
end = len(seq)
|
||
|
for i in range(start, end):
|
||
|
if predicate(seq[i]):
|
||
|
return i
|
||
|
return None
|
||
|
|
||
|
|
||
|
def argmax(seq, key=lambda x: x, start=0, end=None):
|
||
|
seq = seq[start:end]
|
||
|
if len(seq) == 0:
|
||
|
return None
|
||
|
return seq.index(max(seq, key=key)) + start
|
||
|
|
||
|
|
||
|
def source_code_location(event):
|
||
|
while event is not None:
|
||
|
match = re.search(r"\.py\(.*\)", event.name)
|
||
|
if match is None:
|
||
|
event = event.parent
|
||
|
continue
|
||
|
return event.name
|
||
|
return "No source code location found"
|
||
|
|
||
|
|
||
|
# Provide an OSS workaround for cudagraphs + CUPTI issue
|
||
|
# https://github.com/pytorch/pytorch/issues/75504
|
||
|
# TODO(dberard) - deprecate / remove workaround for CUDA >= 12, when
|
||
|
# we stop supporting older CUDA versions.
|
||
|
def _init_for_cuda_graphs():
|
||
|
from torch.autograd.profiler import profile
|
||
|
|
||
|
with profile():
|
||
|
pass
|