You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
644 lines
29 KiB
644 lines
29 KiB
5 months ago
|
from collections import defaultdict
|
||
|
|
||
|
from typing import Dict, List, Optional, Sequence, Tuple, Union
|
||
|
|
||
|
import torchgen.api.dispatcher as dispatcher
|
||
|
from torchgen.api.translate import translate
|
||
|
from torchgen.api.types import Binding, DispatcherSignature, Expr
|
||
|
from torchgen.context import with_native_function
|
||
|
from torchgen.model import (
|
||
|
Annotation,
|
||
|
Argument,
|
||
|
BackendIndex,
|
||
|
BackendMetadata,
|
||
|
BaseOperatorName,
|
||
|
BaseTy,
|
||
|
BaseType,
|
||
|
DEFAULT_KERNEL_NAMESPACE,
|
||
|
DeviceCheckType,
|
||
|
DispatchKey,
|
||
|
FunctionSchema,
|
||
|
NativeFunction,
|
||
|
NativeFunctionsGroup,
|
||
|
OperatorName,
|
||
|
Return,
|
||
|
SchemaKind,
|
||
|
Variant,
|
||
|
)
|
||
|
from torchgen.utils import concatMap
|
||
|
|
||
|
# See Note: [Out ops with functional variants that don't get grouped properly]
|
||
|
OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [
|
||
|
# This has a functional variant, but it's currently marked private.
|
||
|
# This function should be marked private as well (*_backward ops aren't exposed to python anyway).
|
||
|
"adaptive_avg_pool3d_backward.grad_input",
|
||
|
# There's a functional variant, _slow_conv2d_backward.output_mask, that isn't grouped properly.
|
||
|
# Maybe we can kill this operator in favor of convolution_backward?
|
||
|
"_slow_conv2d_backward.grad_input",
|
||
|
]
|
||
|
|
||
|
|
||
|
# See Note: [Mutable ops that cannot get an out variant]
|
||
|
MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT = [
|
||
|
# should be out=?
|
||
|
"_cummax_helper",
|
||
|
# should be out=?
|
||
|
"_cummin_helper",
|
||
|
]
|
||
|
|
||
|
# All of these operators don't have any tensor like returns
|
||
|
FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT = [
|
||
|
"_assert_async", # no return
|
||
|
"_assert_async.msg", # no return
|
||
|
"_cslt_sparse_mm_search", # returns an int
|
||
|
"_assert_scalar", # no return
|
||
|
"_dimI", # returns an int
|
||
|
"_dimV", # returns an int
|
||
|
"_has_same_storage_numel", # returns a boolean
|
||
|
"_linalg_check_errors", # no return
|
||
|
"_local_scalar_dense", # returns a Scalar
|
||
|
"_nested_tensor_from_mask_left_aligned", # returns a boolean
|
||
|
"_nnz", # returns an int
|
||
|
"_use_cudnn_ctc_loss", # returns a boolean
|
||
|
"_use_cudnn_ctc_loss.Tensor", # returns a boolean
|
||
|
"_validate_compressed_sparse_indices", # no return
|
||
|
"allclose", # returns a boolean
|
||
|
"dense_dim", # returns an int
|
||
|
"equal", # returns a boolean
|
||
|
"is_coalesced", # returns an boolean
|
||
|
"is_pinned", # returns a boolean
|
||
|
"is_same_size", # returns a boolean
|
||
|
"is_set_to", # returns a boolean
|
||
|
"q_per_channel_axis", # returns an int
|
||
|
"q_scale", # returns a float
|
||
|
"q_zero_point", # returns an int
|
||
|
"qscheme", # returns a QScheme
|
||
|
"record_stream", # no return
|
||
|
"sparse_dim", # returns an int
|
||
|
"sym_constrain_range", # no return
|
||
|
"sym_constrain_range_for_size", # no return
|
||
|
"_nested_tensor_storage_offsets", # returns a vector of ints
|
||
|
"_chunk_grad_outputs_efficient_attention", # returns a bool
|
||
|
"_fused_sdp_choice", # returns an int
|
||
|
"_print", # no return
|
||
|
"_nested_get_ragged_idx", # returns an int
|
||
|
]
|
||
|
|
||
|
INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [
|
||
|
# polygamma and polygamma.out both exist, but have a
|
||
|
# pre-self arg (while polygamma_ does not)
|
||
|
# We should either fix this schema so it can be grouped properly,
|
||
|
# or allow the codegen to generate new functional/out= NativeFunctions for this op
|
||
|
# (which would require changing its overload name to prevent overload ambiguity).
|
||
|
"polygamma_"
|
||
|
]
|
||
|
|
||
|
|
||
|
# Groups "similar" NativeFunctions together
|
||
|
# example add.Tensor, add_.Tensor, add.out
|
||
|
# "similar" NativeFunctions are all expected to have an identical `signature()`,
|
||
|
# But have differing SchemaKinds.
|
||
|
def pre_group_native_functions(
|
||
|
native_functions: Sequence[NativeFunction],
|
||
|
) -> Dict[FunctionSchema, Dict[SchemaKind, NativeFunction]]:
|
||
|
pre_grouped_native_functions: Dict[
|
||
|
FunctionSchema, Dict[SchemaKind, NativeFunction]
|
||
|
] = defaultdict(dict)
|
||
|
for f in native_functions:
|
||
|
d = pre_grouped_native_functions[f.func.signature()]
|
||
|
assert f.func.kind() not in d
|
||
|
d[f.func.kind()] = f
|
||
|
return pre_grouped_native_functions
|
||
|
|
||
|
|
||
|
# Returns the out variant overload name given a base function overload name
|
||
|
def get_expected_out_variant_overload_name(overload_name: Optional[str]) -> str:
|
||
|
return "out" if not overload_name else f"{overload_name}_out"
|
||
|
|
||
|
|
||
|
# Helper function: given an inplace FunctionSchema, generate its corresponding out= variant
|
||
|
# Example before:
|
||
|
# _add_relu_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)
|
||
|
# Example after:
|
||
|
# _add_relu.Scalar_out(Tensor self, Scalar other, Scalar alpha=1, *, Tensor(a!) out)
|
||
|
def self_to_out_signature(func: FunctionSchema) -> FunctionSchema:
|
||
|
# Generating an out= schema from an inplace schema.
|
||
|
assert func.kind() == SchemaKind.inplace
|
||
|
assert func.arguments.self_arg is not None
|
||
|
# The new out= schema has:
|
||
|
# - a new out argument with the same type as "func" (but with a mutable annotation)
|
||
|
# - The returns (if any) now alias the out= argument instead of "func"
|
||
|
# - an "out" overload name
|
||
|
return FunctionSchema(
|
||
|
name=func.name.remove_inplace().with_overload(
|
||
|
get_expected_out_variant_overload_name(func.name.overload_name)
|
||
|
),
|
||
|
arguments=func.arguments.remove_self_annotation().with_out_args(
|
||
|
[
|
||
|
Argument(
|
||
|
name="out",
|
||
|
type=func.arguments.self_arg.argument.type,
|
||
|
default=None,
|
||
|
annotation=func.arguments.self_arg.argument.annotation,
|
||
|
)
|
||
|
]
|
||
|
),
|
||
|
returns=func.returns,
|
||
|
)
|
||
|
|
||
|
|
||
|
# Helper function: given a functional FunctionSchema, generate its corresponding out= variant
|
||
|
# Example before:
|
||
|
# _to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None,
|
||
|
# bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor
|
||
|
# Example after:
|
||
|
# _to_copy._out(Tensor self, *, bool non_blocking=False, MemoryFormat? memory_format=None,
|
||
|
# Tensor(a!) out) -> Tensor(a!)
|
||
|
def functional_to_out_signature(func: FunctionSchema) -> FunctionSchema:
|
||
|
# Generating an out= schema from a functional schema.
|
||
|
assert func.kind() == SchemaKind.functional
|
||
|
|
||
|
new_returns, new_out_args = generate_out_args_from_schema(func)
|
||
|
# The new out= schema has:
|
||
|
# - one or more new out argument(s) with the same type as returns (but with a mutable annotation)
|
||
|
# - The returns now alias the out= arguments
|
||
|
# - an "_out" overload name
|
||
|
return FunctionSchema(
|
||
|
name=func.name.with_overload(
|
||
|
get_expected_out_variant_overload_name(func.name.overload_name)
|
||
|
),
|
||
|
arguments=func.arguments.signature().with_out_args(
|
||
|
new_out_args,
|
||
|
),
|
||
|
returns=tuple(new_returns),
|
||
|
)
|
||
|
|
||
|
|
||
|
# Helper function: given a function schema, generate corresponding out arguments, also the updated return annotations.
|
||
|
def generate_out_args_from_schema(
|
||
|
func: FunctionSchema,
|
||
|
) -> Tuple[List[Return], List[Argument]]:
|
||
|
# More of a sanity check - our existing restrictions on schemas should enforce that
|
||
|
# mutable schema kinds never return their mutable arguments.
|
||
|
assert not any(
|
||
|
r.annotation is not None and r.annotation.is_write for r in func.returns
|
||
|
)
|
||
|
|
||
|
tensorlike_rets = [r for r in func.returns if r.type.is_tensor_like()]
|
||
|
assert len(tensorlike_rets) > 0
|
||
|
|
||
|
used_annotations = concatMap(
|
||
|
lambda a: [] if a.annotation is None else a.annotation.alias_set,
|
||
|
func.arguments.flat_all,
|
||
|
)
|
||
|
valid_annotations = [
|
||
|
x for x in "abcdefghijklmnopqrstuvwxyz" if x not in used_annotations
|
||
|
]
|
||
|
|
||
|
all_rets_are_tensors = all(r.type == BaseType(BaseTy.Tensor) for r in func.returns)
|
||
|
|
||
|
new_out_args: List[Argument] = []
|
||
|
# The end result of new_returns is that:
|
||
|
# - If every return is a plain tensor, then the new returns == the old returns, but with the out= alias annotations added.
|
||
|
# - Otherwise, none of the out arguments show up in the returns (and we're only left with non-tensor-like returns, if any).
|
||
|
new_returns: List[Return] = []
|
||
|
for i, r in enumerate(func.returns):
|
||
|
if r.type.is_tensor_like():
|
||
|
new_out = Argument(
|
||
|
name="out" if len(func.returns) == 1 else f"out{i}",
|
||
|
type=r.type,
|
||
|
default=None,
|
||
|
annotation=Annotation.parse(f"{valid_annotations[i]}!"),
|
||
|
)
|
||
|
new_out_args.append(new_out)
|
||
|
if all_rets_are_tensors:
|
||
|
# The convention for out= schemas is that they only return their out arguments
|
||
|
# if the return is a plain Tensor (or if it's a tuple of plain Tensors)
|
||
|
new_ret = Return(
|
||
|
name=None, type=new_out.type, annotation=new_out.annotation
|
||
|
)
|
||
|
new_returns.append(new_ret)
|
||
|
else:
|
||
|
new_returns.append(r)
|
||
|
return new_returns, new_out_args
|
||
|
|
||
|
|
||
|
# Helper function: given a mutable FunctionSchema, generate its corresponding out= variant
|
||
|
# Example before:
|
||
|
# _fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask) # noqa: B950
|
||
|
# Example after:
|
||
|
# _fused_moving_avg_obs_fq_helper._out(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False, *, Tensor(e!) out0, Tensor(f!) out1) -> (Tensor(e!), Tensor(f!)) # noqa: B950
|
||
|
def mutable_to_out_signature(func: FunctionSchema) -> FunctionSchema:
|
||
|
# Generating an out= schema from a mutable schema.
|
||
|
assert func.kind() == SchemaKind.mutable
|
||
|
# The new out= schema has:
|
||
|
# - Any non-aliased tensor-like returns are converted to mutable, aliased out= arguments
|
||
|
# (if the argument is a tensor then we also return it for method chaining,
|
||
|
# otherwise we return nothing)
|
||
|
# - an "out" overload name
|
||
|
#
|
||
|
# Note that:
|
||
|
# (1) This also means that we can *only* generate an out= variant from a mutable schema
|
||
|
# if the mutable schema has at least one tensor-like non-aliasing return.
|
||
|
# (2) The generated out= variant still has mutable positional arguments,
|
||
|
# but if necessary we could probably add another out= variant that also
|
||
|
# functionalizes the mutable arguments (a functional_out variant)
|
||
|
|
||
|
new_returns, new_out_args = generate_out_args_from_schema(func)
|
||
|
|
||
|
return FunctionSchema(
|
||
|
name=func.name.remove_inplace().with_overload(
|
||
|
get_expected_out_variant_overload_name(func.name.overload_name)
|
||
|
),
|
||
|
arguments=func.arguments.with_out_args(new_out_args),
|
||
|
returns=tuple(new_returns),
|
||
|
)
|
||
|
|
||
|
|
||
|
# This function, given function of one SchemaKind, as well as a target SchemaKind,
|
||
|
# generates a new NativeFunction with the same properties, but using the target SchemaKind.
|
||
|
# We only actually generate functions for either functional or out= SchemaKinds.
|
||
|
# This function returns a tuple, with:
|
||
|
# - The generated NativeFunction
|
||
|
# - a dictionary of `BackendIndex` objects, describing which dispatch keys
|
||
|
# we will generate kernels for, for the new NativeFunction.
|
||
|
# Details are in the function, but we only generate composite kernels (in some cases) today.
|
||
|
def generate_function(
|
||
|
f: NativeFunction, k: SchemaKind
|
||
|
) -> Tuple[NativeFunction, Dict[DispatchKey, Dict["OperatorName", "BackendMetadata"]]]:
|
||
|
from torchgen.api import cpp
|
||
|
|
||
|
if k == SchemaKind.functional:
|
||
|
assert f.func.kind() != SchemaKind.functional
|
||
|
# The new "functional" NativeFunction has:
|
||
|
# - any mutable arguments have been converted into (immutable) returns.
|
||
|
# (if a mutable argument was not also a return, it gets converted to one)
|
||
|
# - "_functional" appended to the base name, ONLY IF this op has a mutable variant.
|
||
|
# See Note [Overload Ambiguity With Functional Variants]
|
||
|
# The default grouping logic in signature() actually already does this,
|
||
|
# so we can piggy-back off it (but we still want return names)
|
||
|
func = f.func.signature(keep_return_names=True).with_name(
|
||
|
OperatorName(
|
||
|
name=BaseOperatorName(
|
||
|
base=f.func.name.name.base,
|
||
|
inplace=False,
|
||
|
dunder_method=f.func.name.name.dunder_method,
|
||
|
# See Note [Overload Ambiguity With Functional Variants]
|
||
|
functional_overload=f.func.kind() == SchemaKind.mutable,
|
||
|
),
|
||
|
overload_name=f.func.name.overload_name,
|
||
|
)
|
||
|
)
|
||
|
elif k == SchemaKind.out:
|
||
|
# We generate out= ops mostly just so that we can pair up NativeFunctions into groups easily,
|
||
|
# but at least today, there is no good reason to actually use them.
|
||
|
# we'll generate a dispatcher entry for them, but won't actually register any kernels for them.
|
||
|
if f.func.kind() == SchemaKind.inplace:
|
||
|
func = self_to_out_signature(f.func)
|
||
|
elif f.func.kind() == SchemaKind.mutable:
|
||
|
func = mutable_to_out_signature(f.func)
|
||
|
elif f.func.kind() == SchemaKind.functional:
|
||
|
func = functional_to_out_signature(f.func)
|
||
|
else:
|
||
|
raise AssertionError(
|
||
|
"We only bother generating out= functions from either inplace or mutable or functional variants"
|
||
|
)
|
||
|
else:
|
||
|
raise AssertionError(
|
||
|
"We currently only generate either functional or out= NativeFunctions"
|
||
|
)
|
||
|
|
||
|
# Generated kernel naming convention for out: <op_name>_<overload_name>. The reason for this is to
|
||
|
# disambiguate operator with the same name but different overload name, e.g., `randn.names_out` and
|
||
|
# `randn.generator_with_names_out`.
|
||
|
kernel_name = (
|
||
|
func.name.unambiguous_name()
|
||
|
if func.kind() == SchemaKind.out
|
||
|
else cpp.name(func)
|
||
|
)
|
||
|
if f.func.has_symint():
|
||
|
kernel_name += "_symint"
|
||
|
backend_metadata = {
|
||
|
DispatchKey.CompositeExplicitAutograd: {
|
||
|
func.name: BackendMetadata(
|
||
|
kernel=kernel_name,
|
||
|
structured=False,
|
||
|
cpp_namespace=DEFAULT_KERNEL_NAMESPACE,
|
||
|
)
|
||
|
}
|
||
|
}
|
||
|
tags = {"generated"} | set(
|
||
|
f.tags & {"nondeterministic_seeded", "view_copy", "pt2_compliant_tag"}
|
||
|
)
|
||
|
|
||
|
return (
|
||
|
NativeFunction(
|
||
|
func=func,
|
||
|
use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors,
|
||
|
# These generated fn's aren't meant to be user friendly- don't generate methods.
|
||
|
variants={Variant.function},
|
||
|
structured=False,
|
||
|
structured_delegate=None,
|
||
|
structured_inherits=None,
|
||
|
precomputed=None,
|
||
|
autogen=[],
|
||
|
ufunc_inner_loop={},
|
||
|
manual_kernel_registration=False,
|
||
|
manual_cpp_binding=False,
|
||
|
python_module=None,
|
||
|
category_override=None,
|
||
|
device_guard=False,
|
||
|
device_check=DeviceCheckType.NoCheck,
|
||
|
loc=f.loc,
|
||
|
cpp_no_default_args=set(),
|
||
|
is_abstract=f.is_abstract,
|
||
|
has_composite_implicit_autograd_kernel=False,
|
||
|
has_composite_implicit_autograd_nested_tensor_kernel=False,
|
||
|
has_composite_explicit_autograd_kernel=True,
|
||
|
has_composite_explicit_autograd_non_functional_kernel=False,
|
||
|
# Every generated NativeFunction gets a "generated" tag, so it's easy to tell
|
||
|
# which NativeFunction objects did not come directly from native_functions.yaml.
|
||
|
tags=tags,
|
||
|
namespace=f.namespace,
|
||
|
),
|
||
|
backend_metadata,
|
||
|
)
|
||
|
|
||
|
|
||
|
# This function is responsible for adding generated NativeFunctions which don't appear
|
||
|
# explicitly in the codegen.
|
||
|
# You can inspect the full list of NativeFunctions yourself with the torchgen package, by running
|
||
|
# torchgen.parse_native_yaml("aten/src/ATen/native/native_functions.yaml", "aten/src/ATen/native/tags.yaml")
|
||
|
# (Maybe we should make a friendly API for this)
|
||
|
#
|
||
|
# Note: this function *mutates* its two inputs,
|
||
|
# adding the new NativeFunctions / BackendMetadata to them
|
||
|
def add_generated_native_functions(
|
||
|
rs: List[NativeFunction],
|
||
|
indices: Dict[DispatchKey, Dict[OperatorName, BackendMetadata]],
|
||
|
) -> None:
|
||
|
# The main code for generating new NativeFunctions
|
||
|
# First we group of NativeFunctions by schema kind,
|
||
|
# then we detect which ones are missing and generate them.
|
||
|
pre_grouped_native_functions = pre_group_native_functions(rs)
|
||
|
for d in pre_grouped_native_functions.values():
|
||
|
has_functional = SchemaKind.functional in d
|
||
|
has_inplace = SchemaKind.inplace in d
|
||
|
has_mutable = SchemaKind.mutable in d
|
||
|
has_out = SchemaKind.out in d
|
||
|
|
||
|
# We automatically generate a few native functions that don't exist in the yaml, for a few reasons:
|
||
|
# (1) If an operator has an inplace/out= variant but no functional variant, we can generate
|
||
|
# a simple functional variant that the functionalization pass can consume.
|
||
|
# (2) If an operator has an inplace or functional but no out= variant, we generate an out=
|
||
|
# variant, mostly so we can easily pair up functions into NativeFunctionsGroup,
|
||
|
# while maintaining the constraint that the out= variant is "required".
|
||
|
if has_mutable or has_inplace or has_out or has_functional:
|
||
|
# Don't bother generating functions trio's for native functions that bypass the dispatcher.
|
||
|
are_manual = all(f.manual_cpp_binding for f in d.values())
|
||
|
# Don't bother generating functional + out= variants for view operators
|
||
|
# set_ is technically an inplace_view, but for now it is treated
|
||
|
# as a normal inplace op in the codegen
|
||
|
has_view_ops = any(
|
||
|
f.is_view_op and str(f.func.name.name) != "set_" for f in d.values()
|
||
|
)
|
||
|
# Don't generate the other variants for CompositeImplicitAutograd operators.
|
||
|
# We could probably do this, but the main benefit of generating the function triplets
|
||
|
# is for transforms that need them, and transforms don't need to act directly
|
||
|
# on CompositeImplicitAutograd operators (since we let them decompose).
|
||
|
are_composite_implicit = all(
|
||
|
f.has_composite_implicit_autograd_kernel for f in d.values()
|
||
|
)
|
||
|
if are_manual or has_view_ops or are_composite_implicit:
|
||
|
continue
|
||
|
if has_out and len(d.values()) == 1:
|
||
|
# Note: [Out ops with functional variants that don't get grouped properly]
|
||
|
# In theory we could validly have an out= operator in native_functions.yaml
|
||
|
# that has no other variants.
|
||
|
# But today, all of the operators where that's the case actually do have
|
||
|
# functional variants, that we are just unable to pair up properly.
|
||
|
# I think banning this all together is probably safer
|
||
|
# (you can always add a functional variant yourself if you want to add a new out= operator).
|
||
|
#
|
||
|
# We should probably fix the existing cases; this check is to prevent us from adding more over time.
|
||
|
if (
|
||
|
str(d[SchemaKind.out].func.name)
|
||
|
not in OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY
|
||
|
):
|
||
|
raise AssertionError(
|
||
|
f"Found an out= operator that we could not find any other variants of: {str(d[SchemaKind.out].func)}"
|
||
|
)
|
||
|
continue
|
||
|
|
||
|
# Some inplace ops that have problematic schemas (that we should fix), which prevent us
|
||
|
# from generating out= and functional variants
|
||
|
if (
|
||
|
has_inplace
|
||
|
and str(d[SchemaKind.inplace].func.name)
|
||
|
in INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY
|
||
|
):
|
||
|
continue
|
||
|
|
||
|
base_fn = (
|
||
|
d[SchemaKind.inplace]
|
||
|
if has_inplace
|
||
|
else d[SchemaKind.mutable]
|
||
|
if has_mutable
|
||
|
else d[SchemaKind.out]
|
||
|
if has_out
|
||
|
else d[SchemaKind.functional]
|
||
|
)
|
||
|
|
||
|
# Note: [Mutable ops that cannot get an out variant]
|
||
|
# We can only generate an out= variant if either:
|
||
|
# - the original function has tensor-like returns (since we can convert them to out kwargs)
|
||
|
# - or it's inplace (since we can convert `self` to an out kwarg)
|
||
|
# There are only two functions that don't fit this criteria today though,
|
||
|
# and they both look like they should be fixed to be out= variants,
|
||
|
# so if feels safer to ban this schema all-together
|
||
|
base_fn_valid = base_fn.func.kind() == SchemaKind.inplace or any(
|
||
|
r.type.is_tensor_like() for r in base_fn.func.returns
|
||
|
)
|
||
|
# Note: [Loosen the assertion that all functional should have out variant]
|
||
|
# By design all functional operators should have our variants. The needs_out check
|
||
|
# is loosening this requirement, changing it to only generate out variant if there's
|
||
|
# an `autogen` block in the native function, in the long run it should be removed.
|
||
|
# FIXME: Remove this after figuring out CI job failures related to min, max, mean
|
||
|
needs_out = any("out" in str(op_name) for op_name in base_fn.autogen)
|
||
|
gets_out_variant = not has_out and base_fn_valid and needs_out
|
||
|
if not has_out and not base_fn_valid:
|
||
|
if (
|
||
|
str(base_fn.func.name)
|
||
|
not in MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT
|
||
|
and str(base_fn.func.name)
|
||
|
not in FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT
|
||
|
):
|
||
|
raise AssertionError(
|
||
|
f"""Found an operator that we could not generate an out= variant for: {str(base_fn.func)}.
|
||
|
This type of operators don't have tensor-like return, making it difficult to generate a proper out= variant. If
|
||
|
out= variant is not needed, please add the function name into FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT list."""
|
||
|
)
|
||
|
|
||
|
# Generate an out= variant
|
||
|
if gets_out_variant:
|
||
|
fn, metadata = generate_function(base_fn, SchemaKind.out)
|
||
|
d[SchemaKind.out] = fn
|
||
|
BackendIndex.grow_index(indices, metadata)
|
||
|
rs.append(fn)
|
||
|
|
||
|
# Generate a functional variant, but only do it if the operator got an out= variant
|
||
|
# (Functional variants are only useful if we can group up the variants,
|
||
|
# which we can only do if they have an out= variant)
|
||
|
if not has_functional and (has_out or gets_out_variant):
|
||
|
fn, metadata = generate_function(base_fn, SchemaKind.functional)
|
||
|
d[SchemaKind.functional] = fn
|
||
|
BackendIndex.grow_index(indices, metadata)
|
||
|
rs.append(fn)
|
||
|
|
||
|
|
||
|
def return_str(rets: Tuple[Return, ...], names: List[str]) -> str:
|
||
|
assert len(rets) == len(names)
|
||
|
if len(rets) == 0:
|
||
|
return ""
|
||
|
elif len(rets) == 1:
|
||
|
return f"return {names[0]};"
|
||
|
else:
|
||
|
return f"return {dispatcher.returns_type(rets).cpp_type()}({', '.join(names)});"
|
||
|
|
||
|
|
||
|
# Given a function, and the name of a variable corresponding to the output of that function,
|
||
|
# gather up all of the individual returns that are not aliased
|
||
|
def gather_nonaliased_inner_rets(func: FunctionSchema, out_var: str) -> List[str]:
|
||
|
aliased_rets = func.aliased_return_names()
|
||
|
non_aliased_names = []
|
||
|
is_out_var_a_tuple = len(func.returns) > 1
|
||
|
for i, r in enumerate(aliased_rets):
|
||
|
if r is None:
|
||
|
non_aliased_names.append(
|
||
|
f"std::get<{i}>({out_var})" if is_out_var_a_tuple else out_var
|
||
|
)
|
||
|
return non_aliased_names
|
||
|
|
||
|
|
||
|
# Generates functional kernels in terms of their inplace.mutable counterparts.
|
||
|
# We only do this for "generated" NativeFunctions
|
||
|
@with_native_function
|
||
|
def gen_composite_functional_kernel(g: NativeFunctionsGroup) -> Optional[str]:
|
||
|
# We should only be generating these for code-generated NativeFunctions
|
||
|
if "generated" not in g.functional.tags:
|
||
|
return None
|
||
|
# And we always write the kernel for a generated op in terms of a non-generated op.
|
||
|
if g.inplace is not None and "generated" not in g.inplace.tags:
|
||
|
target_f = g.inplace
|
||
|
elif g.mutable is not None and "generated" not in g.mutable.tags:
|
||
|
target_f = g.mutable
|
||
|
else:
|
||
|
# We should be guaranteed to have a valid inplace/mutable variant to call into.
|
||
|
# See Note: [Mutable Ops Not Using Functionalization]
|
||
|
raise AssertionError(str(g.functional.func))
|
||
|
|
||
|
sig = DispatcherSignature(g.functional.func)
|
||
|
target_sig = DispatcherSignature(target_f.func)
|
||
|
|
||
|
context: List[Union[Binding, Expr]] = []
|
||
|
clone_mutable_inputs = []
|
||
|
cloned_return_names = []
|
||
|
# We can't just directly pass all of the arguments from the functional op into the mutating op.
|
||
|
# We need to check for which inputs to the mutating operator are mutable,
|
||
|
# and clone those inputs first.
|
||
|
for a_curr, a_tgt in zip(
|
||
|
dispatcher.jit_arguments(g.functional.func),
|
||
|
dispatcher.jit_arguments(target_f.func),
|
||
|
):
|
||
|
if a_tgt.annotation is not None and a_tgt.annotation.is_write:
|
||
|
clone_mutable_inputs.append(
|
||
|
f"auto {a_curr.name}_clone = clone_arg({a_curr.name});"
|
||
|
)
|
||
|
context.append(
|
||
|
Expr(
|
||
|
expr=f"{a_curr.name}_clone",
|
||
|
type=dispatcher.argument_type(a_curr, binds=a_curr.name),
|
||
|
)
|
||
|
)
|
||
|
# Invariant: mutable arguments on the inner mutable op are always returns on the functional op.
|
||
|
cloned_return_names.append(f"{a_curr.name}_clone")
|
||
|
else:
|
||
|
context.append(dispatcher.argument(a_curr))
|
||
|
exprs = ", ".join([e.expr for e in translate(context, target_sig.arguments())])
|
||
|
|
||
|
out_name = "output"
|
||
|
maybe_assign = f"auto {out_name} = " if len(target_f.func.returns) > 0 else ""
|
||
|
inner_return_names = gather_nonaliased_inner_rets(target_f.func, out_name)
|
||
|
ret_str = return_str(
|
||
|
g.functional.func.returns, inner_return_names + cloned_return_names
|
||
|
)
|
||
|
|
||
|
clone_mutable_inputs_str = "\n".join(clone_mutable_inputs)
|
||
|
return f"""
|
||
|
{sig.defn(name=sig.name() + ("_symint" if g.out.func.has_symint() else ""))} {{
|
||
|
{clone_mutable_inputs_str}
|
||
|
{maybe_assign}at::_ops::{target_f.func.name.unambiguous_name()}::call({exprs});
|
||
|
{ret_str}
|
||
|
}}
|
||
|
"""
|
||
|
|
||
|
|
||
|
# Generates out= kernels in terms of their functional counterparts.
|
||
|
# We only do this for "generated" NativeFunctions
|
||
|
@with_native_function
|
||
|
def gen_composite_out_kernel(g: NativeFunctionsGroup) -> Optional[str]:
|
||
|
# We should only be generating these for code-generated NativeFunctions
|
||
|
if "generated" not in g.out.tags:
|
||
|
return None
|
||
|
# And we always write the kernel for the out= op in terms of the functional.
|
||
|
# Note that the functional op might have also been generated, but we don't have to
|
||
|
# worry about cycles, because the generated functional kernels are always implemented
|
||
|
# in terms of non-generated kernels (see gen_composite_functional_kernel).
|
||
|
|
||
|
sig = DispatcherSignature(g.out.func)
|
||
|
target_sig = DispatcherSignature(g.functional.func)
|
||
|
|
||
|
exprs = ", ".join(
|
||
|
[e.expr for e in translate(sig.arguments(), target_sig.arguments())]
|
||
|
)
|
||
|
|
||
|
copy_outs = []
|
||
|
out_name = "tmp_output"
|
||
|
for i, out_arg in enumerate(g.out.func.arguments.out):
|
||
|
functional_return_name = (
|
||
|
out_name
|
||
|
if len(g.functional.func.returns) == 1
|
||
|
else f"std::get<{i}>({out_name})"
|
||
|
)
|
||
|
copy_outs.append(
|
||
|
f"""\
|
||
|
resize_out_helper({out_arg.name}, {functional_return_name});
|
||
|
copy_arg({out_arg.name}, {functional_return_name});"""
|
||
|
)
|
||
|
|
||
|
rets = []
|
||
|
# For each return arg in the calling (out=) operator,
|
||
|
# If it corresponds to an aliased input, return the input.
|
||
|
# Otherwise, return the corresponding output from calling the functional operator.
|
||
|
for i, ret_name in enumerate(g.out.func.aliased_return_names()):
|
||
|
if ret_name is not None:
|
||
|
rets.append(ret_name)
|
||
|
else:
|
||
|
functional_return_name = (
|
||
|
out_name
|
||
|
if len(g.functional.func.returns) == 1
|
||
|
else f"std::get<{i}>({out_name})"
|
||
|
)
|
||
|
rets.append(functional_return_name)
|
||
|
|
||
|
copy_outs_str = "\n".join(copy_outs)
|
||
|
|
||
|
# Kernel name needs to follow the naming convention defined in `generate_function()`
|
||
|
return f"""
|
||
|
{sig.defn(name=g.out.func.name.unambiguous_name() + ("_symint" if g.out.func.has_symint() else ""))} {{
|
||
|
auto {out_name} = at::_ops::{g.functional.func.name.unambiguous_name()}::call({exprs});
|
||
|
{copy_outs_str}
|
||
|
{return_str(g.out.func.returns, rets)}
|
||
|
}}
|
||
|
"""
|