You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
333 lines
10 KiB
333 lines
10 KiB
5 months ago
|
# TODO: don't use round
|
||
|
|
||
|
from __future__ import division
|
||
|
|
||
|
import pytest
|
||
|
from mpmath import *
|
||
|
xrange = libmp.backend.xrange
|
||
|
|
||
|
# XXX: these shouldn't be visible(?)
|
||
|
LU_decomp = mp.LU_decomp
|
||
|
L_solve = mp.L_solve
|
||
|
U_solve = mp.U_solve
|
||
|
householder = mp.householder
|
||
|
improve_solution = mp.improve_solution
|
||
|
|
||
|
A1 = matrix([[3, 1, 6],
|
||
|
[2, 1, 3],
|
||
|
[1, 1, 1]])
|
||
|
b1 = [2, 7, 4]
|
||
|
|
||
|
A2 = matrix([[ 2, -1, -1, 2],
|
||
|
[ 6, -2, 3, -1],
|
||
|
[-4, 2, 3, -2],
|
||
|
[ 2, 0, 4, -3]])
|
||
|
b2 = [3, -3, -2, -1]
|
||
|
|
||
|
A3 = matrix([[ 1, 0, -1, -1, 0],
|
||
|
[ 0, 1, 1, 0, -1],
|
||
|
[ 4, -5, 2, 0, 0],
|
||
|
[ 0, 0, -2, 9,-12],
|
||
|
[ 0, 5, 0, 0, 12]])
|
||
|
b3 = [0, 0, 0, 0, 50]
|
||
|
|
||
|
A4 = matrix([[10.235, -4.56, 0., -0.035, 5.67],
|
||
|
[-2.463, 1.27, 3.97, -8.63, 1.08],
|
||
|
[-6.58, 0.86, -0.257, 9.32, -43.6 ],
|
||
|
[ 9.83, 7.39, -17.25, 0.036, 24.86],
|
||
|
[-9.31, 34.9, 78.56, 1.07, 65.8 ]])
|
||
|
b4 = [8.95, 20.54, 7.42, 5.60, 58.43]
|
||
|
|
||
|
A5 = matrix([[ 1, 2, -4],
|
||
|
[-2, -3, 5],
|
||
|
[ 3, 5, -8]])
|
||
|
|
||
|
A6 = matrix([[ 1.377360, 2.481400, 5.359190],
|
||
|
[ 2.679280, -1.229560, 25.560210],
|
||
|
[-1.225280+1.e6, 9.910180, -35.049900-1.e6]])
|
||
|
b6 = [23.500000, -15.760000, 2.340000]
|
||
|
|
||
|
A7 = matrix([[1, -0.5],
|
||
|
[2, 1],
|
||
|
[-2, 6]])
|
||
|
b7 = [3, 2, -4]
|
||
|
|
||
|
A8 = matrix([[1, 2, 3],
|
||
|
[-1, 0, 1],
|
||
|
[-1, -2, -1],
|
||
|
[1, 0, -1]])
|
||
|
b8 = [1, 2, 3, 4]
|
||
|
|
||
|
A9 = matrix([[ 4, 2, -2],
|
||
|
[ 2, 5, -4],
|
||
|
[-2, -4, 5.5]])
|
||
|
b9 = [10, 16, -15.5]
|
||
|
|
||
|
A10 = matrix([[1.0 + 1.0j, 2.0, 2.0],
|
||
|
[4.0, 5.0, 6.0],
|
||
|
[7.0, 8.0, 9.0]])
|
||
|
b10 = [1.0, 1.0 + 1.0j, 1.0]
|
||
|
|
||
|
|
||
|
def test_LU_decomp():
|
||
|
A = A3.copy()
|
||
|
b = b3
|
||
|
A, p = LU_decomp(A)
|
||
|
y = L_solve(A, b, p)
|
||
|
x = U_solve(A, y)
|
||
|
assert p == [2, 1, 2, 3]
|
||
|
assert [round(i, 14) for i in x] == [3.78953107960742, 2.9989094874591098,
|
||
|
-0.081788440567070006, 3.8713195201744801, 2.9171210468920399]
|
||
|
A = A4.copy()
|
||
|
b = b4
|
||
|
A, p = LU_decomp(A)
|
||
|
y = L_solve(A, b, p)
|
||
|
x = U_solve(A, y)
|
||
|
assert p == [0, 3, 4, 3]
|
||
|
assert [round(i, 14) for i in x] == [2.6383625899619201, 2.6643834462368399,
|
||
|
0.79208015947958998, -2.5088376454101899, -1.0567657691375001]
|
||
|
A = randmatrix(3)
|
||
|
bak = A.copy()
|
||
|
LU_decomp(A, overwrite=1)
|
||
|
assert A != bak
|
||
|
|
||
|
def test_inverse():
|
||
|
for A in [A1, A2, A5]:
|
||
|
inv = inverse(A)
|
||
|
assert mnorm(A*inv - eye(A.rows), 1) < 1.e-14
|
||
|
|
||
|
def test_householder():
|
||
|
mp.dps = 15
|
||
|
A, b = A8, b8
|
||
|
H, p, x, r = householder(extend(A, b))
|
||
|
assert H == matrix(
|
||
|
[[mpf('3.0'), mpf('-2.0'), mpf('-1.0'), 0],
|
||
|
[-1.0,mpf('3.333333333333333'),mpf('-2.9999999999999991'),mpf('2.0')],
|
||
|
[-1.0, mpf('-0.66666666666666674'),mpf('2.8142135623730948'),
|
||
|
mpf('-2.8284271247461898')],
|
||
|
[1.0, mpf('-1.3333333333333333'),mpf('-0.20000000000000018'),
|
||
|
mpf('4.2426406871192857')]])
|
||
|
assert p == [-2, -2, mpf('-1.4142135623730949')]
|
||
|
assert round(norm(r, 2), 10) == 4.2426406870999998
|
||
|
|
||
|
y = [102.102, 58.344, 36.463, 24.310, 17.017, 12.376, 9.282, 7.140, 5.610,
|
||
|
4.488, 3.6465, 3.003]
|
||
|
|
||
|
def coeff(n):
|
||
|
# similiar to Hilbert matrix
|
||
|
A = []
|
||
|
for i in range(1, 13):
|
||
|
A.append([1. / (i + j - 1) for j in range(1, n + 1)])
|
||
|
return matrix(A)
|
||
|
|
||
|
residuals = []
|
||
|
refres = []
|
||
|
for n in range(2, 7):
|
||
|
A = coeff(n)
|
||
|
H, p, x, r = householder(extend(A, y))
|
||
|
x = matrix(x)
|
||
|
y = matrix(y)
|
||
|
residuals.append(norm(r, 2))
|
||
|
refres.append(norm(residual(A, x, y), 2))
|
||
|
assert [round(res, 10) for res in residuals] == [15.1733888877,
|
||
|
0.82378073210000002, 0.302645887, 0.0260109244,
|
||
|
0.00058653999999999998]
|
||
|
assert norm(matrix(residuals) - matrix(refres), inf) < 1.e-13
|
||
|
|
||
|
def hilbert_cmplx(n):
|
||
|
# Complexified Hilbert matrix
|
||
|
A = hilbert(2*n,n)
|
||
|
v = randmatrix(2*n, 2, min=-1, max=1)
|
||
|
v = v.apply(lambda x: exp(1J*pi()*x))
|
||
|
A = diag(v[:,0])*A*diag(v[:n,1])
|
||
|
return A
|
||
|
|
||
|
residuals_cmplx = []
|
||
|
refres_cmplx = []
|
||
|
for n in range(2, 10):
|
||
|
A = hilbert_cmplx(n)
|
||
|
H, p, x, r = householder(A.copy())
|
||
|
residuals_cmplx.append(norm(r, 2))
|
||
|
refres_cmplx.append(norm(residual(A[:,:n-1], x, A[:,n-1]), 2))
|
||
|
assert norm(matrix(residuals_cmplx) - matrix(refres_cmplx), inf) < 1.e-13
|
||
|
|
||
|
def test_factorization():
|
||
|
A = randmatrix(5)
|
||
|
P, L, U = lu(A)
|
||
|
assert mnorm(P*A - L*U, 1) < 1.e-15
|
||
|
|
||
|
def test_solve():
|
||
|
assert norm(residual(A6, lu_solve(A6, b6), b6), inf) < 1.e-10
|
||
|
assert norm(residual(A7, lu_solve(A7, b7), b7), inf) < 1.5
|
||
|
assert norm(residual(A8, lu_solve(A8, b8), b8), inf) <= 3 + 1.e-10
|
||
|
assert norm(residual(A6, qr_solve(A6, b6)[0], b6), inf) < 1.e-10
|
||
|
assert norm(residual(A7, qr_solve(A7, b7)[0], b7), inf) < 1.5
|
||
|
assert norm(residual(A8, qr_solve(A8, b8)[0], b8), 2) <= 4.3
|
||
|
assert norm(residual(A10, lu_solve(A10, b10), b10), 2) < 1.e-10
|
||
|
assert norm(residual(A10, qr_solve(A10, b10)[0], b10), 2) < 1.e-10
|
||
|
|
||
|
def test_solve_overdet_complex():
|
||
|
A = matrix([[1, 2j], [3, 4j], [5, 6]])
|
||
|
b = matrix([1 + j, 2, -j])
|
||
|
assert norm(residual(A, lu_solve(A, b), b)) < 1.0208
|
||
|
|
||
|
def test_singular():
|
||
|
mp.dps = 15
|
||
|
A = [[5.6, 1.2], [7./15, .1]]
|
||
|
B = repr(zeros(2))
|
||
|
b = [1, 2]
|
||
|
for i in ['lu_solve(%s, %s)' % (A, b), 'lu_solve(%s, %s)' % (B, b),
|
||
|
'qr_solve(%s, %s)' % (A, b), 'qr_solve(%s, %s)' % (B, b)]:
|
||
|
pytest.raises((ZeroDivisionError, ValueError), lambda: eval(i))
|
||
|
|
||
|
def test_cholesky():
|
||
|
assert fp.cholesky(fp.matrix(A9)) == fp.matrix([[2, 0, 0], [1, 2, 0], [-1, -3/2, 3/2]])
|
||
|
x = fp.cholesky_solve(A9, b9)
|
||
|
assert fp.norm(fp.residual(A9, x, b9), fp.inf) == 0
|
||
|
|
||
|
def test_det():
|
||
|
assert det(A1) == 1
|
||
|
assert round(det(A2), 14) == 8
|
||
|
assert round(det(A3)) == 1834
|
||
|
assert round(det(A4)) == 4443376
|
||
|
assert det(A5) == 1
|
||
|
assert round(det(A6)) == 78356463
|
||
|
assert det(zeros(3)) == 0
|
||
|
|
||
|
def test_cond():
|
||
|
mp.dps = 15
|
||
|
A = matrix([[1.2969, 0.8648], [0.2161, 0.1441]])
|
||
|
assert cond(A, lambda x: mnorm(x,1)) == mpf('327065209.73817754')
|
||
|
assert cond(A, lambda x: mnorm(x,inf)) == mpf('327065209.73817754')
|
||
|
assert cond(A, lambda x: mnorm(x,'F')) == mpf('249729266.80008656')
|
||
|
|
||
|
@extradps(50)
|
||
|
def test_precision():
|
||
|
A = randmatrix(10, 10)
|
||
|
assert mnorm(inverse(inverse(A)) - A, 1) < 1.e-45
|
||
|
|
||
|
def test_interval_matrix():
|
||
|
mp.dps = 15
|
||
|
iv.dps = 15
|
||
|
a = iv.matrix([['0.1','0.3','1.0'],['7.1','5.5','4.8'],['3.2','4.4','5.6']])
|
||
|
b = iv.matrix(['4','0.6','0.5'])
|
||
|
c = iv.lu_solve(a, b)
|
||
|
assert c[0].delta < 1e-13
|
||
|
assert c[1].delta < 1e-13
|
||
|
assert c[2].delta < 1e-13
|
||
|
assert 5.25823271130625686059275 in c[0]
|
||
|
assert -13.155049396267837541163 in c[1]
|
||
|
assert 7.42069154774972557628979 in c[2]
|
||
|
|
||
|
def test_LU_cache():
|
||
|
A = randmatrix(3)
|
||
|
LU = LU_decomp(A)
|
||
|
assert A._LU == LU_decomp(A)
|
||
|
A[0,0] = -1000
|
||
|
assert A._LU is None
|
||
|
|
||
|
def test_improve_solution():
|
||
|
A = randmatrix(5, min=1e-20, max=1e20)
|
||
|
b = randmatrix(5, 1, min=-1000, max=1000)
|
||
|
x1 = lu_solve(A, b) + randmatrix(5, 1, min=-1e-5, max=1.e-5)
|
||
|
x2 = improve_solution(A, x1, b)
|
||
|
assert norm(residual(A, x2, b), 2) < norm(residual(A, x1, b), 2)
|
||
|
|
||
|
def test_exp_pade():
|
||
|
for i in range(3):
|
||
|
dps = 15
|
||
|
extra = 15
|
||
|
mp.dps = dps + extra
|
||
|
dm = 0
|
||
|
N = 3
|
||
|
dg = range(1,N+1)
|
||
|
a = diag(dg)
|
||
|
expa = diag([exp(x) for x in dg])
|
||
|
# choose a random matrix not close to be singular
|
||
|
# to avoid adding too much extra precision in computing
|
||
|
# m**-1 * M * m
|
||
|
while abs(dm) < 0.01:
|
||
|
m = randmatrix(N)
|
||
|
dm = det(m)
|
||
|
m = m/dm
|
||
|
a1 = m**-1 * a * m
|
||
|
e2 = m**-1 * expa * m
|
||
|
mp.dps = dps
|
||
|
e1 = expm(a1, method='pade')
|
||
|
mp.dps = dps + extra
|
||
|
d = e2 - e1
|
||
|
#print d
|
||
|
mp.dps = dps
|
||
|
assert norm(d, inf).ae(0)
|
||
|
mp.dps = 15
|
||
|
|
||
|
def test_qr():
|
||
|
mp.dps = 15 # used default value for dps
|
||
|
lowlimit = -9 # lower limit of matrix element value
|
||
|
uplimit = 9 # uppter limit of matrix element value
|
||
|
maxm = 4 # max matrix size
|
||
|
flg = False # toggle to create real vs complex matrix
|
||
|
zero = mpf('0.0')
|
||
|
|
||
|
for k in xrange(0,10):
|
||
|
exdps = 0
|
||
|
mode = 'full'
|
||
|
flg = bool(k % 2)
|
||
|
|
||
|
# generate arbitrary matrix size (2 to maxm)
|
||
|
num1 = nint(maxm*rand())
|
||
|
num2 = nint(maxm*rand())
|
||
|
m = int(max(num1, num2))
|
||
|
n = int(min(num1, num2))
|
||
|
|
||
|
# create matrix
|
||
|
A = mp.matrix(m,n)
|
||
|
|
||
|
# populate matrix values with arbitrary integers
|
||
|
if flg:
|
||
|
flg = False
|
||
|
dtype = 'complex'
|
||
|
for j in xrange(0,n):
|
||
|
for i in xrange(0,m):
|
||
|
val = nint(lowlimit + (uplimit-lowlimit)*rand())
|
||
|
val2 = nint(lowlimit + (uplimit-lowlimit)*rand())
|
||
|
A[i,j] = mpc(val, val2)
|
||
|
else:
|
||
|
flg = True
|
||
|
dtype = 'real'
|
||
|
for j in xrange(0,n):
|
||
|
for i in xrange(0,m):
|
||
|
val = nint(lowlimit + (uplimit-lowlimit)*rand())
|
||
|
A[i,j] = mpf(val)
|
||
|
|
||
|
# perform A -> QR decomposition
|
||
|
Q, R = qr(A, mode, edps = exdps)
|
||
|
|
||
|
#print('\n\n A = \n', nstr(A, 4))
|
||
|
#print('\n Q = \n', nstr(Q, 4))
|
||
|
#print('\n R = \n', nstr(R, 4))
|
||
|
#print('\n Q*R = \n', nstr(Q*R, 4))
|
||
|
|
||
|
maxnorm = mpf('1.0E-11')
|
||
|
n1 = norm(A - Q * R)
|
||
|
#print '\n Norm of A - Q * R = ', n1
|
||
|
assert n1 <= maxnorm
|
||
|
|
||
|
if dtype == 'real':
|
||
|
n1 = norm(eye(m) - Q.T * Q)
|
||
|
#print ' Norm of I - Q.T * Q = ', n1
|
||
|
assert n1 <= maxnorm
|
||
|
|
||
|
n1 = norm(eye(m) - Q * Q.T)
|
||
|
#print ' Norm of I - Q * Q.T = ', n1
|
||
|
assert n1 <= maxnorm
|
||
|
|
||
|
if dtype == 'complex':
|
||
|
n1 = norm(eye(m) - Q.T * Q.conjugate())
|
||
|
#print ' Norm of I - Q.T * Q.conjugate() = ', n1
|
||
|
assert n1 <= maxnorm
|
||
|
|
||
|
n1 = norm(eye(m) - Q.conjugate() * Q.T)
|
||
|
#print ' Norm of I - Q.conjugate() * Q.T = ', n1
|
||
|
assert n1 <= maxnorm
|