You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1153 lines
36 KiB
1153 lines
36 KiB
5 months ago
|
"""Hypergeometric and Meijer G-functions"""
|
||
|
from functools import reduce
|
||
|
|
||
|
from sympy.core import S, ilcm, Mod
|
||
|
from sympy.core.add import Add
|
||
|
from sympy.core.expr import Expr
|
||
|
from sympy.core.function import Function, Derivative, ArgumentIndexError
|
||
|
|
||
|
from sympy.core.containers import Tuple
|
||
|
from sympy.core.mul import Mul
|
||
|
from sympy.core.numbers import I, pi, oo, zoo
|
||
|
from sympy.core.relational import Ne
|
||
|
from sympy.core.sorting import default_sort_key
|
||
|
from sympy.core.symbol import Dummy
|
||
|
|
||
|
from sympy.functions import (sqrt, exp, log, sin, cos, asin, atan,
|
||
|
sinh, cosh, asinh, acosh, atanh, acoth)
|
||
|
from sympy.functions import factorial, RisingFactorial
|
||
|
from sympy.functions.elementary.complexes import Abs, re, unpolarify
|
||
|
from sympy.functions.elementary.exponential import exp_polar
|
||
|
from sympy.functions.elementary.integers import ceiling
|
||
|
from sympy.functions.elementary.piecewise import Piecewise
|
||
|
from sympy.logic.boolalg import (And, Or)
|
||
|
|
||
|
class TupleArg(Tuple):
|
||
|
def limit(self, x, xlim, dir='+'):
|
||
|
""" Compute limit x->xlim.
|
||
|
"""
|
||
|
from sympy.series.limits import limit
|
||
|
return TupleArg(*[limit(f, x, xlim, dir) for f in self.args])
|
||
|
|
||
|
|
||
|
# TODO should __new__ accept **options?
|
||
|
# TODO should constructors should check if parameters are sensible?
|
||
|
|
||
|
|
||
|
def _prep_tuple(v):
|
||
|
"""
|
||
|
Turn an iterable argument *v* into a tuple and unpolarify, since both
|
||
|
hypergeometric and meijer g-functions are unbranched in their parameters.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.functions.special.hyper import _prep_tuple
|
||
|
>>> _prep_tuple([1, 2, 3])
|
||
|
(1, 2, 3)
|
||
|
>>> _prep_tuple((4, 5))
|
||
|
(4, 5)
|
||
|
>>> _prep_tuple((7, 8, 9))
|
||
|
(7, 8, 9)
|
||
|
|
||
|
"""
|
||
|
return TupleArg(*[unpolarify(x) for x in v])
|
||
|
|
||
|
|
||
|
class TupleParametersBase(Function):
|
||
|
""" Base class that takes care of differentiation, when some of
|
||
|
the arguments are actually tuples. """
|
||
|
# This is not deduced automatically since there are Tuples as arguments.
|
||
|
is_commutative = True
|
||
|
|
||
|
def _eval_derivative(self, s):
|
||
|
try:
|
||
|
res = 0
|
||
|
if self.args[0].has(s) or self.args[1].has(s):
|
||
|
for i, p in enumerate(self._diffargs):
|
||
|
m = self._diffargs[i].diff(s)
|
||
|
if m != 0:
|
||
|
res += self.fdiff((1, i))*m
|
||
|
return res + self.fdiff(3)*self.args[2].diff(s)
|
||
|
except (ArgumentIndexError, NotImplementedError):
|
||
|
return Derivative(self, s)
|
||
|
|
||
|
|
||
|
class hyper(TupleParametersBase):
|
||
|
r"""
|
||
|
The generalized hypergeometric function is defined by a series where
|
||
|
the ratios of successive terms are a rational function of the summation
|
||
|
index. When convergent, it is continued analytically to the largest
|
||
|
possible domain.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The hypergeometric function depends on two vectors of parameters, called
|
||
|
the numerator parameters $a_p$, and the denominator parameters
|
||
|
$b_q$. It also has an argument $z$. The series definition is
|
||
|
|
||
|
.. math ::
|
||
|
{}_pF_q\left(\begin{matrix} a_1, \cdots, a_p \\ b_1, \cdots, b_q \end{matrix}
|
||
|
\middle| z \right)
|
||
|
= \sum_{n=0}^\infty \frac{(a_1)_n \cdots (a_p)_n}{(b_1)_n \cdots (b_q)_n}
|
||
|
\frac{z^n}{n!},
|
||
|
|
||
|
where $(a)_n = (a)(a+1)\cdots(a+n-1)$ denotes the rising factorial.
|
||
|
|
||
|
If one of the $b_q$ is a non-positive integer then the series is
|
||
|
undefined unless one of the $a_p$ is a larger (i.e., smaller in
|
||
|
magnitude) non-positive integer. If none of the $b_q$ is a
|
||
|
non-positive integer and one of the $a_p$ is a non-positive
|
||
|
integer, then the series reduces to a polynomial. To simplify the
|
||
|
following discussion, we assume that none of the $a_p$ or
|
||
|
$b_q$ is a non-positive integer. For more details, see the
|
||
|
references.
|
||
|
|
||
|
The series converges for all $z$ if $p \le q$, and thus
|
||
|
defines an entire single-valued function in this case. If $p =
|
||
|
q+1$ the series converges for $|z| < 1$, and can be continued
|
||
|
analytically into a half-plane. If $p > q+1$ the series is
|
||
|
divergent for all $z$.
|
||
|
|
||
|
Please note the hypergeometric function constructor currently does *not*
|
||
|
check if the parameters actually yield a well-defined function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
The parameters $a_p$ and $b_q$ can be passed as arbitrary
|
||
|
iterables, for example:
|
||
|
|
||
|
>>> from sympy import hyper
|
||
|
>>> from sympy.abc import x, n, a
|
||
|
>>> hyper((1, 2, 3), [3, 4], x)
|
||
|
hyper((1, 2, 3), (3, 4), x)
|
||
|
|
||
|
There is also pretty printing (it looks better using Unicode):
|
||
|
|
||
|
>>> from sympy import pprint
|
||
|
>>> pprint(hyper((1, 2, 3), [3, 4], x), use_unicode=False)
|
||
|
_
|
||
|
|_ /1, 2, 3 | \
|
||
|
| | | x|
|
||
|
3 2 \ 3, 4 | /
|
||
|
|
||
|
The parameters must always be iterables, even if they are vectors of
|
||
|
length one or zero:
|
||
|
|
||
|
>>> hyper((1, ), [], x)
|
||
|
hyper((1,), (), x)
|
||
|
|
||
|
But of course they may be variables (but if they depend on $x$ then you
|
||
|
should not expect much implemented functionality):
|
||
|
|
||
|
>>> hyper((n, a), (n**2,), x)
|
||
|
hyper((n, a), (n**2,), x)
|
||
|
|
||
|
The hypergeometric function generalizes many named special functions.
|
||
|
The function ``hyperexpand()`` tries to express a hypergeometric function
|
||
|
using named special functions. For example:
|
||
|
|
||
|
>>> from sympy import hyperexpand
|
||
|
>>> hyperexpand(hyper([], [], x))
|
||
|
exp(x)
|
||
|
|
||
|
You can also use ``expand_func()``:
|
||
|
|
||
|
>>> from sympy import expand_func
|
||
|
>>> expand_func(x*hyper([1, 1], [2], -x))
|
||
|
log(x + 1)
|
||
|
|
||
|
More examples:
|
||
|
|
||
|
>>> from sympy import S
|
||
|
>>> hyperexpand(hyper([], [S(1)/2], -x**2/4))
|
||
|
cos(x)
|
||
|
>>> hyperexpand(x*hyper([S(1)/2, S(1)/2], [S(3)/2], x**2))
|
||
|
asin(x)
|
||
|
|
||
|
We can also sometimes ``hyperexpand()`` parametric functions:
|
||
|
|
||
|
>>> from sympy.abc import a
|
||
|
>>> hyperexpand(hyper([-a], [], x))
|
||
|
(1 - x)**a
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.simplify.hyperexpand
|
||
|
gamma
|
||
|
meijerg
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations,
|
||
|
Volume 1
|
||
|
.. [2] https://en.wikipedia.org/wiki/Generalized_hypergeometric_function
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
def __new__(cls, ap, bq, z, **kwargs):
|
||
|
# TODO should we check convergence conditions?
|
||
|
return Function.__new__(cls, _prep_tuple(ap), _prep_tuple(bq), z, **kwargs)
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, ap, bq, z):
|
||
|
if len(ap) <= len(bq) or (len(ap) == len(bq) + 1 and (Abs(z) <= 1) == True):
|
||
|
nz = unpolarify(z)
|
||
|
if z != nz:
|
||
|
return hyper(ap, bq, nz)
|
||
|
|
||
|
def fdiff(self, argindex=3):
|
||
|
if argindex != 3:
|
||
|
raise ArgumentIndexError(self, argindex)
|
||
|
nap = Tuple(*[a + 1 for a in self.ap])
|
||
|
nbq = Tuple(*[b + 1 for b in self.bq])
|
||
|
fac = Mul(*self.ap)/Mul(*self.bq)
|
||
|
return fac*hyper(nap, nbq, self.argument)
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
from sympy.functions.special.gamma_functions import gamma
|
||
|
from sympy.simplify.hyperexpand import hyperexpand
|
||
|
if len(self.ap) == 2 and len(self.bq) == 1 and self.argument == 1:
|
||
|
a, b = self.ap
|
||
|
c = self.bq[0]
|
||
|
return gamma(c)*gamma(c - a - b)/gamma(c - a)/gamma(c - b)
|
||
|
return hyperexpand(self)
|
||
|
|
||
|
def _eval_rewrite_as_Sum(self, ap, bq, z, **kwargs):
|
||
|
from sympy.concrete.summations import Sum
|
||
|
n = Dummy("n", integer=True)
|
||
|
rfap = [RisingFactorial(a, n) for a in ap]
|
||
|
rfbq = [RisingFactorial(b, n) for b in bq]
|
||
|
coeff = Mul(*rfap) / Mul(*rfbq)
|
||
|
return Piecewise((Sum(coeff * z**n / factorial(n), (n, 0, oo)),
|
||
|
self.convergence_statement), (self, True))
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
arg = self.args[2]
|
||
|
x0 = arg.subs(x, 0)
|
||
|
if x0 is S.NaN:
|
||
|
x0 = arg.limit(x, 0, dir='-' if re(cdir).is_negative else '+')
|
||
|
|
||
|
if x0 is S.Zero:
|
||
|
return S.One
|
||
|
return super()._eval_as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
|
||
|
def _eval_nseries(self, x, n, logx, cdir=0):
|
||
|
|
||
|
from sympy.series.order import Order
|
||
|
|
||
|
arg = self.args[2]
|
||
|
x0 = arg.limit(x, 0)
|
||
|
ap = self.args[0]
|
||
|
bq = self.args[1]
|
||
|
|
||
|
if x0 != 0:
|
||
|
return super()._eval_nseries(x, n, logx)
|
||
|
|
||
|
terms = []
|
||
|
|
||
|
for i in range(n):
|
||
|
num = Mul(*[RisingFactorial(a, i) for a in ap])
|
||
|
den = Mul(*[RisingFactorial(b, i) for b in bq])
|
||
|
terms.append(((num/den) * (arg**i)) / factorial(i))
|
||
|
|
||
|
return (Add(*terms) + Order(x**n,x))
|
||
|
|
||
|
@property
|
||
|
def argument(self):
|
||
|
""" Argument of the hypergeometric function. """
|
||
|
return self.args[2]
|
||
|
|
||
|
@property
|
||
|
def ap(self):
|
||
|
""" Numerator parameters of the hypergeometric function. """
|
||
|
return Tuple(*self.args[0])
|
||
|
|
||
|
@property
|
||
|
def bq(self):
|
||
|
""" Denominator parameters of the hypergeometric function. """
|
||
|
return Tuple(*self.args[1])
|
||
|
|
||
|
@property
|
||
|
def _diffargs(self):
|
||
|
return self.ap + self.bq
|
||
|
|
||
|
@property
|
||
|
def eta(self):
|
||
|
""" A quantity related to the convergence of the series. """
|
||
|
return sum(self.ap) - sum(self.bq)
|
||
|
|
||
|
@property
|
||
|
def radius_of_convergence(self):
|
||
|
"""
|
||
|
Compute the radius of convergence of the defining series.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Note that even if this is not ``oo``, the function may still be
|
||
|
evaluated outside of the radius of convergence by analytic
|
||
|
continuation. But if this is zero, then the function is not actually
|
||
|
defined anywhere else.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import hyper
|
||
|
>>> from sympy.abc import z
|
||
|
>>> hyper((1, 2), [3], z).radius_of_convergence
|
||
|
1
|
||
|
>>> hyper((1, 2, 3), [4], z).radius_of_convergence
|
||
|
0
|
||
|
>>> hyper((1, 2), (3, 4), z).radius_of_convergence
|
||
|
oo
|
||
|
|
||
|
"""
|
||
|
if any(a.is_integer and (a <= 0) == True for a in self.ap + self.bq):
|
||
|
aints = [a for a in self.ap if a.is_Integer and (a <= 0) == True]
|
||
|
bints = [a for a in self.bq if a.is_Integer and (a <= 0) == True]
|
||
|
if len(aints) < len(bints):
|
||
|
return S.Zero
|
||
|
popped = False
|
||
|
for b in bints:
|
||
|
cancelled = False
|
||
|
while aints:
|
||
|
a = aints.pop()
|
||
|
if a >= b:
|
||
|
cancelled = True
|
||
|
break
|
||
|
popped = True
|
||
|
if not cancelled:
|
||
|
return S.Zero
|
||
|
if aints or popped:
|
||
|
# There are still non-positive numerator parameters.
|
||
|
# This is a polynomial.
|
||
|
return oo
|
||
|
if len(self.ap) == len(self.bq) + 1:
|
||
|
return S.One
|
||
|
elif len(self.ap) <= len(self.bq):
|
||
|
return oo
|
||
|
else:
|
||
|
return S.Zero
|
||
|
|
||
|
@property
|
||
|
def convergence_statement(self):
|
||
|
""" Return a condition on z under which the series converges. """
|
||
|
R = self.radius_of_convergence
|
||
|
if R == 0:
|
||
|
return False
|
||
|
if R == oo:
|
||
|
return True
|
||
|
# The special functions and their approximations, page 44
|
||
|
e = self.eta
|
||
|
z = self.argument
|
||
|
c1 = And(re(e) < 0, abs(z) <= 1)
|
||
|
c2 = And(0 <= re(e), re(e) < 1, abs(z) <= 1, Ne(z, 1))
|
||
|
c3 = And(re(e) >= 1, abs(z) < 1)
|
||
|
return Or(c1, c2, c3)
|
||
|
|
||
|
def _eval_simplify(self, **kwargs):
|
||
|
from sympy.simplify.hyperexpand import hyperexpand
|
||
|
return hyperexpand(self)
|
||
|
|
||
|
|
||
|
class meijerg(TupleParametersBase):
|
||
|
r"""
|
||
|
The Meijer G-function is defined by a Mellin-Barnes type integral that
|
||
|
resembles an inverse Mellin transform. It generalizes the hypergeometric
|
||
|
functions.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The Meijer G-function depends on four sets of parameters. There are
|
||
|
"*numerator parameters*"
|
||
|
$a_1, \ldots, a_n$ and $a_{n+1}, \ldots, a_p$, and there are
|
||
|
"*denominator parameters*"
|
||
|
$b_1, \ldots, b_m$ and $b_{m+1}, \ldots, b_q$.
|
||
|
Confusingly, it is traditionally denoted as follows (note the position
|
||
|
of $m$, $n$, $p$, $q$, and how they relate to the lengths of the four
|
||
|
parameter vectors):
|
||
|
|
||
|
.. math ::
|
||
|
G_{p,q}^{m,n} \left(\begin{matrix}a_1, \cdots, a_n & a_{n+1}, \cdots, a_p \\
|
||
|
b_1, \cdots, b_m & b_{m+1}, \cdots, b_q
|
||
|
\end{matrix} \middle| z \right).
|
||
|
|
||
|
However, in SymPy the four parameter vectors are always available
|
||
|
separately (see examples), so that there is no need to keep track of the
|
||
|
decorating sub- and super-scripts on the G symbol.
|
||
|
|
||
|
The G function is defined as the following integral:
|
||
|
|
||
|
.. math ::
|
||
|
\frac{1}{2 \pi i} \int_L \frac{\prod_{j=1}^m \Gamma(b_j - s)
|
||
|
\prod_{j=1}^n \Gamma(1 - a_j + s)}{\prod_{j=m+1}^q \Gamma(1- b_j +s)
|
||
|
\prod_{j=n+1}^p \Gamma(a_j - s)} z^s \mathrm{d}s,
|
||
|
|
||
|
where $\Gamma(z)$ is the gamma function. There are three possible
|
||
|
contours which we will not describe in detail here (see the references).
|
||
|
If the integral converges along more than one of them, the definitions
|
||
|
agree. The contours all separate the poles of $\Gamma(1-a_j+s)$
|
||
|
from the poles of $\Gamma(b_k-s)$, so in particular the G function
|
||
|
is undefined if $a_j - b_k \in \mathbb{Z}_{>0}$ for some
|
||
|
$j \le n$ and $k \le m$.
|
||
|
|
||
|
The conditions under which one of the contours yields a convergent integral
|
||
|
are complicated and we do not state them here, see the references.
|
||
|
|
||
|
Please note currently the Meijer G-function constructor does *not* check any
|
||
|
convergence conditions.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
You can pass the parameters either as four separate vectors:
|
||
|
|
||
|
>>> from sympy import meijerg, Tuple, pprint
|
||
|
>>> from sympy.abc import x, a
|
||
|
>>> pprint(meijerg((1, 2), (a, 4), (5,), [], x), use_unicode=False)
|
||
|
__1, 2 /1, 2 a, 4 | \
|
||
|
/__ | | x|
|
||
|
\_|4, 1 \ 5 | /
|
||
|
|
||
|
Or as two nested vectors:
|
||
|
|
||
|
>>> pprint(meijerg([(1, 2), (3, 4)], ([5], Tuple()), x), use_unicode=False)
|
||
|
__1, 2 /1, 2 3, 4 | \
|
||
|
/__ | | x|
|
||
|
\_|4, 1 \ 5 | /
|
||
|
|
||
|
As with the hypergeometric function, the parameters may be passed as
|
||
|
arbitrary iterables. Vectors of length zero and one also have to be
|
||
|
passed as iterables. The parameters need not be constants, but if they
|
||
|
depend on the argument then not much implemented functionality should be
|
||
|
expected.
|
||
|
|
||
|
All the subvectors of parameters are available:
|
||
|
|
||
|
>>> from sympy import pprint
|
||
|
>>> g = meijerg([1], [2], [3], [4], x)
|
||
|
>>> pprint(g, use_unicode=False)
|
||
|
__1, 1 /1 2 | \
|
||
|
/__ | | x|
|
||
|
\_|2, 2 \3 4 | /
|
||
|
>>> g.an
|
||
|
(1,)
|
||
|
>>> g.ap
|
||
|
(1, 2)
|
||
|
>>> g.aother
|
||
|
(2,)
|
||
|
>>> g.bm
|
||
|
(3,)
|
||
|
>>> g.bq
|
||
|
(3, 4)
|
||
|
>>> g.bother
|
||
|
(4,)
|
||
|
|
||
|
The Meijer G-function generalizes the hypergeometric functions.
|
||
|
In some cases it can be expressed in terms of hypergeometric functions,
|
||
|
using Slater's theorem. For example:
|
||
|
|
||
|
>>> from sympy import hyperexpand
|
||
|
>>> from sympy.abc import a, b, c
|
||
|
>>> hyperexpand(meijerg([a], [], [c], [b], x), allow_hyper=True)
|
||
|
x**c*gamma(-a + c + 1)*hyper((-a + c + 1,),
|
||
|
(-b + c + 1,), -x)/gamma(-b + c + 1)
|
||
|
|
||
|
Thus the Meijer G-function also subsumes many named functions as special
|
||
|
cases. You can use ``expand_func()`` or ``hyperexpand()`` to (try to)
|
||
|
rewrite a Meijer G-function in terms of named special functions. For
|
||
|
example:
|
||
|
|
||
|
>>> from sympy import expand_func, S
|
||
|
>>> expand_func(meijerg([[],[]], [[0],[]], -x))
|
||
|
exp(x)
|
||
|
>>> hyperexpand(meijerg([[],[]], [[S(1)/2],[0]], (x/2)**2))
|
||
|
sin(x)/sqrt(pi)
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
hyper
|
||
|
sympy.simplify.hyperexpand
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] Luke, Y. L. (1969), The Special Functions and Their Approximations,
|
||
|
Volume 1
|
||
|
.. [2] https://en.wikipedia.org/wiki/Meijer_G-function
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
def __new__(cls, *args, **kwargs):
|
||
|
if len(args) == 5:
|
||
|
args = [(args[0], args[1]), (args[2], args[3]), args[4]]
|
||
|
if len(args) != 3:
|
||
|
raise TypeError("args must be either as, as', bs, bs', z or "
|
||
|
"as, bs, z")
|
||
|
|
||
|
def tr(p):
|
||
|
if len(p) != 2:
|
||
|
raise TypeError("wrong argument")
|
||
|
return TupleArg(_prep_tuple(p[0]), _prep_tuple(p[1]))
|
||
|
|
||
|
arg0, arg1 = tr(args[0]), tr(args[1])
|
||
|
if Tuple(arg0, arg1).has(oo, zoo, -oo):
|
||
|
raise ValueError("G-function parameters must be finite")
|
||
|
if any((a - b).is_Integer and a - b > 0
|
||
|
for a in arg0[0] for b in arg1[0]):
|
||
|
raise ValueError("no parameter a1, ..., an may differ from "
|
||
|
"any b1, ..., bm by a positive integer")
|
||
|
|
||
|
# TODO should we check convergence conditions?
|
||
|
return Function.__new__(cls, arg0, arg1, args[2], **kwargs)
|
||
|
|
||
|
def fdiff(self, argindex=3):
|
||
|
if argindex != 3:
|
||
|
return self._diff_wrt_parameter(argindex[1])
|
||
|
if len(self.an) >= 1:
|
||
|
a = list(self.an)
|
||
|
a[0] -= 1
|
||
|
G = meijerg(a, self.aother, self.bm, self.bother, self.argument)
|
||
|
return 1/self.argument * ((self.an[0] - 1)*self + G)
|
||
|
elif len(self.bm) >= 1:
|
||
|
b = list(self.bm)
|
||
|
b[0] += 1
|
||
|
G = meijerg(self.an, self.aother, b, self.bother, self.argument)
|
||
|
return 1/self.argument * (self.bm[0]*self - G)
|
||
|
else:
|
||
|
return S.Zero
|
||
|
|
||
|
def _diff_wrt_parameter(self, idx):
|
||
|
# Differentiation wrt a parameter can only be done in very special
|
||
|
# cases. In particular, if we want to differentiate with respect to
|
||
|
# `a`, all other gamma factors have to reduce to rational functions.
|
||
|
#
|
||
|
# Let MT denote mellin transform. Suppose T(-s) is the gamma factor
|
||
|
# appearing in the definition of G. Then
|
||
|
#
|
||
|
# MT(log(z)G(z)) = d/ds T(s) = d/da T(s) + ...
|
||
|
#
|
||
|
# Thus d/da G(z) = log(z)G(z) - ...
|
||
|
# The ... can be evaluated as a G function under the above conditions,
|
||
|
# the formula being most easily derived by using
|
||
|
#
|
||
|
# d Gamma(s + n) Gamma(s + n) / 1 1 1 \
|
||
|
# -- ------------ = ------------ | - + ---- + ... + --------- |
|
||
|
# ds Gamma(s) Gamma(s) \ s s + 1 s + n - 1 /
|
||
|
#
|
||
|
# which follows from the difference equation of the digamma function.
|
||
|
# (There is a similar equation for -n instead of +n).
|
||
|
|
||
|
# We first figure out how to pair the parameters.
|
||
|
an = list(self.an)
|
||
|
ap = list(self.aother)
|
||
|
bm = list(self.bm)
|
||
|
bq = list(self.bother)
|
||
|
if idx < len(an):
|
||
|
an.pop(idx)
|
||
|
else:
|
||
|
idx -= len(an)
|
||
|
if idx < len(ap):
|
||
|
ap.pop(idx)
|
||
|
else:
|
||
|
idx -= len(ap)
|
||
|
if idx < len(bm):
|
||
|
bm.pop(idx)
|
||
|
else:
|
||
|
bq.pop(idx - len(bm))
|
||
|
pairs1 = []
|
||
|
pairs2 = []
|
||
|
for l1, l2, pairs in [(an, bq, pairs1), (ap, bm, pairs2)]:
|
||
|
while l1:
|
||
|
x = l1.pop()
|
||
|
found = None
|
||
|
for i, y in enumerate(l2):
|
||
|
if not Mod((x - y).simplify(), 1):
|
||
|
found = i
|
||
|
break
|
||
|
if found is None:
|
||
|
raise NotImplementedError('Derivative not expressible '
|
||
|
'as G-function?')
|
||
|
y = l2[i]
|
||
|
l2.pop(i)
|
||
|
pairs.append((x, y))
|
||
|
|
||
|
# Now build the result.
|
||
|
res = log(self.argument)*self
|
||
|
|
||
|
for a, b in pairs1:
|
||
|
sign = 1
|
||
|
n = a - b
|
||
|
base = b
|
||
|
if n < 0:
|
||
|
sign = -1
|
||
|
n = b - a
|
||
|
base = a
|
||
|
for k in range(n):
|
||
|
res -= sign*meijerg(self.an + (base + k + 1,), self.aother,
|
||
|
self.bm, self.bother + (base + k + 0,),
|
||
|
self.argument)
|
||
|
|
||
|
for a, b in pairs2:
|
||
|
sign = 1
|
||
|
n = b - a
|
||
|
base = a
|
||
|
if n < 0:
|
||
|
sign = -1
|
||
|
n = a - b
|
||
|
base = b
|
||
|
for k in range(n):
|
||
|
res -= sign*meijerg(self.an, self.aother + (base + k + 1,),
|
||
|
self.bm + (base + k + 0,), self.bother,
|
||
|
self.argument)
|
||
|
|
||
|
return res
|
||
|
|
||
|
def get_period(self):
|
||
|
"""
|
||
|
Return a number $P$ such that $G(x*exp(I*P)) == G(x)$.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import meijerg, pi, S
|
||
|
>>> from sympy.abc import z
|
||
|
|
||
|
>>> meijerg([1], [], [], [], z).get_period()
|
||
|
2*pi
|
||
|
>>> meijerg([pi], [], [], [], z).get_period()
|
||
|
oo
|
||
|
>>> meijerg([1, 2], [], [], [], z).get_period()
|
||
|
oo
|
||
|
>>> meijerg([1,1], [2], [1, S(1)/2, S(1)/3], [1], z).get_period()
|
||
|
12*pi
|
||
|
|
||
|
"""
|
||
|
# This follows from slater's theorem.
|
||
|
def compute(l):
|
||
|
# first check that no two differ by an integer
|
||
|
for i, b in enumerate(l):
|
||
|
if not b.is_Rational:
|
||
|
return oo
|
||
|
for j in range(i + 1, len(l)):
|
||
|
if not Mod((b - l[j]).simplify(), 1):
|
||
|
return oo
|
||
|
return reduce(ilcm, (x.q for x in l), 1)
|
||
|
beta = compute(self.bm)
|
||
|
alpha = compute(self.an)
|
||
|
p, q = len(self.ap), len(self.bq)
|
||
|
if p == q:
|
||
|
if oo in (alpha, beta):
|
||
|
return oo
|
||
|
return 2*pi*ilcm(alpha, beta)
|
||
|
elif p < q:
|
||
|
return 2*pi*beta
|
||
|
else:
|
||
|
return 2*pi*alpha
|
||
|
|
||
|
def _eval_expand_func(self, **hints):
|
||
|
from sympy.simplify.hyperexpand import hyperexpand
|
||
|
return hyperexpand(self)
|
||
|
|
||
|
def _eval_evalf(self, prec):
|
||
|
# The default code is insufficient for polar arguments.
|
||
|
# mpmath provides an optional argument "r", which evaluates
|
||
|
# G(z**(1/r)). I am not sure what its intended use is, but we hijack it
|
||
|
# here in the following way: to evaluate at a number z of |argument|
|
||
|
# less than (say) n*pi, we put r=1/n, compute z' = root(z, n)
|
||
|
# (carefully so as not to loose the branch information), and evaluate
|
||
|
# G(z'**(1/r)) = G(z'**n) = G(z).
|
||
|
import mpmath
|
||
|
znum = self.argument._eval_evalf(prec)
|
||
|
if znum.has(exp_polar):
|
||
|
znum, branch = znum.as_coeff_mul(exp_polar)
|
||
|
if len(branch) != 1:
|
||
|
return
|
||
|
branch = branch[0].args[0]/I
|
||
|
else:
|
||
|
branch = S.Zero
|
||
|
n = ceiling(abs(branch/pi)) + 1
|
||
|
znum = znum**(S.One/n)*exp(I*branch / n)
|
||
|
|
||
|
# Convert all args to mpf or mpc
|
||
|
try:
|
||
|
[z, r, ap, bq] = [arg._to_mpmath(prec)
|
||
|
for arg in [znum, 1/n, self.args[0], self.args[1]]]
|
||
|
except ValueError:
|
||
|
return
|
||
|
|
||
|
with mpmath.workprec(prec):
|
||
|
v = mpmath.meijerg(ap, bq, z, r)
|
||
|
|
||
|
return Expr._from_mpmath(v, prec)
|
||
|
|
||
|
def _eval_as_leading_term(self, x, logx=None, cdir=0):
|
||
|
from sympy.simplify.hyperexpand import hyperexpand
|
||
|
return hyperexpand(self).as_leading_term(x, logx=logx, cdir=cdir)
|
||
|
|
||
|
def integrand(self, s):
|
||
|
""" Get the defining integrand D(s). """
|
||
|
from sympy.functions.special.gamma_functions import gamma
|
||
|
return self.argument**s \
|
||
|
* Mul(*(gamma(b - s) for b in self.bm)) \
|
||
|
* Mul(*(gamma(1 - a + s) for a in self.an)) \
|
||
|
/ Mul(*(gamma(1 - b + s) for b in self.bother)) \
|
||
|
/ Mul(*(gamma(a - s) for a in self.aother))
|
||
|
|
||
|
@property
|
||
|
def argument(self):
|
||
|
""" Argument of the Meijer G-function. """
|
||
|
return self.args[2]
|
||
|
|
||
|
@property
|
||
|
def an(self):
|
||
|
""" First set of numerator parameters. """
|
||
|
return Tuple(*self.args[0][0])
|
||
|
|
||
|
@property
|
||
|
def ap(self):
|
||
|
""" Combined numerator parameters. """
|
||
|
return Tuple(*(self.args[0][0] + self.args[0][1]))
|
||
|
|
||
|
@property
|
||
|
def aother(self):
|
||
|
""" Second set of numerator parameters. """
|
||
|
return Tuple(*self.args[0][1])
|
||
|
|
||
|
@property
|
||
|
def bm(self):
|
||
|
""" First set of denominator parameters. """
|
||
|
return Tuple(*self.args[1][0])
|
||
|
|
||
|
@property
|
||
|
def bq(self):
|
||
|
""" Combined denominator parameters. """
|
||
|
return Tuple(*(self.args[1][0] + self.args[1][1]))
|
||
|
|
||
|
@property
|
||
|
def bother(self):
|
||
|
""" Second set of denominator parameters. """
|
||
|
return Tuple(*self.args[1][1])
|
||
|
|
||
|
@property
|
||
|
def _diffargs(self):
|
||
|
return self.ap + self.bq
|
||
|
|
||
|
@property
|
||
|
def nu(self):
|
||
|
""" A quantity related to the convergence region of the integral,
|
||
|
c.f. references. """
|
||
|
return sum(self.bq) - sum(self.ap)
|
||
|
|
||
|
@property
|
||
|
def delta(self):
|
||
|
""" A quantity related to the convergence region of the integral,
|
||
|
c.f. references. """
|
||
|
return len(self.bm) + len(self.an) - S(len(self.ap) + len(self.bq))/2
|
||
|
|
||
|
@property
|
||
|
def is_number(self):
|
||
|
""" Returns true if expression has numeric data only. """
|
||
|
return not self.free_symbols
|
||
|
|
||
|
|
||
|
class HyperRep(Function):
|
||
|
"""
|
||
|
A base class for "hyper representation functions".
|
||
|
|
||
|
This is used exclusively in ``hyperexpand()``, but fits more logically here.
|
||
|
|
||
|
pFq is branched at 1 if p == q+1. For use with slater-expansion, we want
|
||
|
define an "analytic continuation" to all polar numbers, which is
|
||
|
continuous on circles and on the ray t*exp_polar(I*pi). Moreover, we want
|
||
|
a "nice" expression for the various cases.
|
||
|
|
||
|
This base class contains the core logic, concrete derived classes only
|
||
|
supply the actual functions.
|
||
|
|
||
|
"""
|
||
|
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, *args):
|
||
|
newargs = tuple(map(unpolarify, args[:-1])) + args[-1:]
|
||
|
if args != newargs:
|
||
|
return cls(*newargs)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small(cls, x):
|
||
|
""" An expression for F(x) which holds for |x| < 1. """
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small_minus(cls, x):
|
||
|
""" An expression for F(-x) which holds for |x| < 1. """
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big(cls, x, n):
|
||
|
""" An expression for F(exp_polar(2*I*pi*n)*x), |x| > 1. """
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big_minus(cls, x, n):
|
||
|
""" An expression for F(exp_polar(2*I*pi*n + pi*I)*x), |x| > 1. """
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def _eval_rewrite_as_nonrep(self, *args, **kwargs):
|
||
|
x, n = self.args[-1].extract_branch_factor(allow_half=True)
|
||
|
minus = False
|
||
|
newargs = self.args[:-1] + (x,)
|
||
|
if not n.is_Integer:
|
||
|
minus = True
|
||
|
n -= S.Half
|
||
|
newerargs = newargs + (n,)
|
||
|
if minus:
|
||
|
small = self._expr_small_minus(*newargs)
|
||
|
big = self._expr_big_minus(*newerargs)
|
||
|
else:
|
||
|
small = self._expr_small(*newargs)
|
||
|
big = self._expr_big(*newerargs)
|
||
|
|
||
|
if big == small:
|
||
|
return small
|
||
|
return Piecewise((big, abs(x) > 1), (small, True))
|
||
|
|
||
|
def _eval_rewrite_as_nonrepsmall(self, *args, **kwargs):
|
||
|
x, n = self.args[-1].extract_branch_factor(allow_half=True)
|
||
|
args = self.args[:-1] + (x,)
|
||
|
if not n.is_Integer:
|
||
|
return self._expr_small_minus(*args)
|
||
|
return self._expr_small(*args)
|
||
|
|
||
|
|
||
|
class HyperRep_power1(HyperRep):
|
||
|
""" Return a representative for hyper([-a], [], z) == (1 - z)**a. """
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small(cls, a, x):
|
||
|
return (1 - x)**a
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small_minus(cls, a, x):
|
||
|
return (1 + x)**a
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big(cls, a, x, n):
|
||
|
if a.is_integer:
|
||
|
return cls._expr_small(a, x)
|
||
|
return (x - 1)**a*exp((2*n - 1)*pi*I*a)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big_minus(cls, a, x, n):
|
||
|
if a.is_integer:
|
||
|
return cls._expr_small_minus(a, x)
|
||
|
return (1 + x)**a*exp(2*n*pi*I*a)
|
||
|
|
||
|
|
||
|
class HyperRep_power2(HyperRep):
|
||
|
""" Return a representative for hyper([a, a - 1/2], [2*a], z). """
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small(cls, a, x):
|
||
|
return 2**(2*a - 1)*(1 + sqrt(1 - x))**(1 - 2*a)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small_minus(cls, a, x):
|
||
|
return 2**(2*a - 1)*(1 + sqrt(1 + x))**(1 - 2*a)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big(cls, a, x, n):
|
||
|
sgn = -1
|
||
|
if n.is_odd:
|
||
|
sgn = 1
|
||
|
n -= 1
|
||
|
return 2**(2*a - 1)*(1 + sgn*I*sqrt(x - 1))**(1 - 2*a) \
|
||
|
*exp(-2*n*pi*I*a)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big_minus(cls, a, x, n):
|
||
|
sgn = 1
|
||
|
if n.is_odd:
|
||
|
sgn = -1
|
||
|
return sgn*2**(2*a - 1)*(sqrt(1 + x) + sgn)**(1 - 2*a)*exp(-2*pi*I*a*n)
|
||
|
|
||
|
|
||
|
class HyperRep_log1(HyperRep):
|
||
|
""" Represent -z*hyper([1, 1], [2], z) == log(1 - z). """
|
||
|
@classmethod
|
||
|
def _expr_small(cls, x):
|
||
|
return log(1 - x)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small_minus(cls, x):
|
||
|
return log(1 + x)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big(cls, x, n):
|
||
|
return log(x - 1) + (2*n - 1)*pi*I
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big_minus(cls, x, n):
|
||
|
return log(1 + x) + 2*n*pi*I
|
||
|
|
||
|
|
||
|
class HyperRep_atanh(HyperRep):
|
||
|
""" Represent hyper([1/2, 1], [3/2], z) == atanh(sqrt(z))/sqrt(z). """
|
||
|
@classmethod
|
||
|
def _expr_small(cls, x):
|
||
|
return atanh(sqrt(x))/sqrt(x)
|
||
|
|
||
|
def _expr_small_minus(cls, x):
|
||
|
return atan(sqrt(x))/sqrt(x)
|
||
|
|
||
|
def _expr_big(cls, x, n):
|
||
|
if n.is_even:
|
||
|
return (acoth(sqrt(x)) + I*pi/2)/sqrt(x)
|
||
|
else:
|
||
|
return (acoth(sqrt(x)) - I*pi/2)/sqrt(x)
|
||
|
|
||
|
def _expr_big_minus(cls, x, n):
|
||
|
if n.is_even:
|
||
|
return atan(sqrt(x))/sqrt(x)
|
||
|
else:
|
||
|
return (atan(sqrt(x)) - pi)/sqrt(x)
|
||
|
|
||
|
|
||
|
class HyperRep_asin1(HyperRep):
|
||
|
""" Represent hyper([1/2, 1/2], [3/2], z) == asin(sqrt(z))/sqrt(z). """
|
||
|
@classmethod
|
||
|
def _expr_small(cls, z):
|
||
|
return asin(sqrt(z))/sqrt(z)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small_minus(cls, z):
|
||
|
return asinh(sqrt(z))/sqrt(z)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big(cls, z, n):
|
||
|
return S.NegativeOne**n*((S.Half - n)*pi/sqrt(z) + I*acosh(sqrt(z))/sqrt(z))
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big_minus(cls, z, n):
|
||
|
return S.NegativeOne**n*(asinh(sqrt(z))/sqrt(z) + n*pi*I/sqrt(z))
|
||
|
|
||
|
|
||
|
class HyperRep_asin2(HyperRep):
|
||
|
""" Represent hyper([1, 1], [3/2], z) == asin(sqrt(z))/sqrt(z)/sqrt(1-z). """
|
||
|
# TODO this can be nicer
|
||
|
@classmethod
|
||
|
def _expr_small(cls, z):
|
||
|
return HyperRep_asin1._expr_small(z) \
|
||
|
/HyperRep_power1._expr_small(S.Half, z)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small_minus(cls, z):
|
||
|
return HyperRep_asin1._expr_small_minus(z) \
|
||
|
/HyperRep_power1._expr_small_minus(S.Half, z)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big(cls, z, n):
|
||
|
return HyperRep_asin1._expr_big(z, n) \
|
||
|
/HyperRep_power1._expr_big(S.Half, z, n)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big_minus(cls, z, n):
|
||
|
return HyperRep_asin1._expr_big_minus(z, n) \
|
||
|
/HyperRep_power1._expr_big_minus(S.Half, z, n)
|
||
|
|
||
|
|
||
|
class HyperRep_sqrts1(HyperRep):
|
||
|
""" Return a representative for hyper([-a, 1/2 - a], [1/2], z). """
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small(cls, a, z):
|
||
|
return ((1 - sqrt(z))**(2*a) + (1 + sqrt(z))**(2*a))/2
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small_minus(cls, a, z):
|
||
|
return (1 + z)**a*cos(2*a*atan(sqrt(z)))
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big(cls, a, z, n):
|
||
|
if n.is_even:
|
||
|
return ((sqrt(z) + 1)**(2*a)*exp(2*pi*I*n*a) +
|
||
|
(sqrt(z) - 1)**(2*a)*exp(2*pi*I*(n - 1)*a))/2
|
||
|
else:
|
||
|
n -= 1
|
||
|
return ((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) +
|
||
|
(sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))/2
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big_minus(cls, a, z, n):
|
||
|
if n.is_even:
|
||
|
return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z)))
|
||
|
else:
|
||
|
return (1 + z)**a*exp(2*pi*I*n*a)*cos(2*a*atan(sqrt(z)) - 2*pi*a)
|
||
|
|
||
|
|
||
|
class HyperRep_sqrts2(HyperRep):
|
||
|
""" Return a representative for
|
||
|
sqrt(z)/2*[(1-sqrt(z))**2a - (1 + sqrt(z))**2a]
|
||
|
== -2*z/(2*a+1) d/dz hyper([-a - 1/2, -a], [1/2], z)"""
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small(cls, a, z):
|
||
|
return sqrt(z)*((1 - sqrt(z))**(2*a) - (1 + sqrt(z))**(2*a))/2
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small_minus(cls, a, z):
|
||
|
return sqrt(z)*(1 + z)**a*sin(2*a*atan(sqrt(z)))
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big(cls, a, z, n):
|
||
|
if n.is_even:
|
||
|
return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n - 1)) -
|
||
|
(sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))
|
||
|
else:
|
||
|
n -= 1
|
||
|
return sqrt(z)/2*((sqrt(z) - 1)**(2*a)*exp(2*pi*I*a*(n + 1)) -
|
||
|
(sqrt(z) + 1)**(2*a)*exp(2*pi*I*a*n))
|
||
|
|
||
|
def _expr_big_minus(cls, a, z, n):
|
||
|
if n.is_even:
|
||
|
return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z)*sin(2*a*atan(sqrt(z)))
|
||
|
else:
|
||
|
return (1 + z)**a*exp(2*pi*I*n*a)*sqrt(z) \
|
||
|
*sin(2*a*atan(sqrt(z)) - 2*pi*a)
|
||
|
|
||
|
|
||
|
class HyperRep_log2(HyperRep):
|
||
|
""" Represent log(1/2 + sqrt(1 - z)/2) == -z/4*hyper([3/2, 1, 1], [2, 2], z) """
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small(cls, z):
|
||
|
return log(S.Half + sqrt(1 - z)/2)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small_minus(cls, z):
|
||
|
return log(S.Half + sqrt(1 + z)/2)
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big(cls, z, n):
|
||
|
if n.is_even:
|
||
|
return (n - S.Half)*pi*I + log(sqrt(z)/2) + I*asin(1/sqrt(z))
|
||
|
else:
|
||
|
return (n - S.Half)*pi*I + log(sqrt(z)/2) - I*asin(1/sqrt(z))
|
||
|
|
||
|
def _expr_big_minus(cls, z, n):
|
||
|
if n.is_even:
|
||
|
return pi*I*n + log(S.Half + sqrt(1 + z)/2)
|
||
|
else:
|
||
|
return pi*I*n + log(sqrt(1 + z)/2 - S.Half)
|
||
|
|
||
|
|
||
|
class HyperRep_cosasin(HyperRep):
|
||
|
""" Represent hyper([a, -a], [1/2], z) == cos(2*a*asin(sqrt(z))). """
|
||
|
# Note there are many alternative expressions, e.g. as powers of a sum of
|
||
|
# square roots.
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small(cls, a, z):
|
||
|
return cos(2*a*asin(sqrt(z)))
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small_minus(cls, a, z):
|
||
|
return cosh(2*a*asinh(sqrt(z)))
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big(cls, a, z, n):
|
||
|
return cosh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1))
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big_minus(cls, a, z, n):
|
||
|
return cosh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n)
|
||
|
|
||
|
|
||
|
class HyperRep_sinasin(HyperRep):
|
||
|
""" Represent 2*a*z*hyper([1 - a, 1 + a], [3/2], z)
|
||
|
== sqrt(z)/sqrt(1-z)*sin(2*a*asin(sqrt(z))) """
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small(cls, a, z):
|
||
|
return sqrt(z)/sqrt(1 - z)*sin(2*a*asin(sqrt(z)))
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_small_minus(cls, a, z):
|
||
|
return -sqrt(z)/sqrt(1 + z)*sinh(2*a*asinh(sqrt(z)))
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big(cls, a, z, n):
|
||
|
return -1/sqrt(1 - 1/z)*sinh(2*a*acosh(sqrt(z)) + a*pi*I*(2*n - 1))
|
||
|
|
||
|
@classmethod
|
||
|
def _expr_big_minus(cls, a, z, n):
|
||
|
return -1/sqrt(1 + 1/z)*sinh(2*a*asinh(sqrt(z)) + 2*a*pi*I*n)
|
||
|
|
||
|
class appellf1(Function):
|
||
|
r"""
|
||
|
This is the Appell hypergeometric function of two variables as:
|
||
|
|
||
|
.. math ::
|
||
|
F_1(a,b_1,b_2,c,x,y) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
|
||
|
\frac{(a)_{m+n} (b_1)_m (b_2)_n}{(c)_{m+n}}
|
||
|
\frac{x^m y^n}{m! n!}.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import appellf1, symbols
|
||
|
>>> x, y, a, b1, b2, c = symbols('x y a b1 b2 c')
|
||
|
>>> appellf1(2., 1., 6., 4., 5., 6.)
|
||
|
0.0063339426292673
|
||
|
>>> appellf1(12., 12., 6., 4., 0.5, 0.12)
|
||
|
172870711.659936
|
||
|
>>> appellf1(40, 2, 6, 4, 15, 60)
|
||
|
appellf1(40, 2, 6, 4, 15, 60)
|
||
|
>>> appellf1(20., 12., 10., 3., 0.5, 0.12)
|
||
|
15605338197184.4
|
||
|
>>> appellf1(40, 2, 6, 4, x, y)
|
||
|
appellf1(40, 2, 6, 4, x, y)
|
||
|
>>> appellf1(a, b1, b2, c, x, y)
|
||
|
appellf1(a, b1, b2, c, x, y)
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Appell_series
|
||
|
.. [2] https://functions.wolfram.com/HypergeometricFunctions/AppellF1/
|
||
|
|
||
|
"""
|
||
|
|
||
|
@classmethod
|
||
|
def eval(cls, a, b1, b2, c, x, y):
|
||
|
if default_sort_key(b1) > default_sort_key(b2):
|
||
|
b1, b2 = b2, b1
|
||
|
x, y = y, x
|
||
|
return cls(a, b1, b2, c, x, y)
|
||
|
elif b1 == b2 and default_sort_key(x) > default_sort_key(y):
|
||
|
x, y = y, x
|
||
|
return cls(a, b1, b2, c, x, y)
|
||
|
if x == 0 and y == 0:
|
||
|
return S.One
|
||
|
|
||
|
def fdiff(self, argindex=5):
|
||
|
a, b1, b2, c, x, y = self.args
|
||
|
if argindex == 5:
|
||
|
return (a*b1/c)*appellf1(a + 1, b1 + 1, b2, c + 1, x, y)
|
||
|
elif argindex == 6:
|
||
|
return (a*b2/c)*appellf1(a + 1, b1, b2 + 1, c + 1, x, y)
|
||
|
elif argindex in (1, 2, 3, 4):
|
||
|
return Derivative(self, self.args[argindex-1])
|
||
|
else:
|
||
|
raise ArgumentIndexError(self, argindex)
|