You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
518 lines
15 KiB
518 lines
15 KiB
5 months ago
|
from sympy.vector.coordsysrect import CoordSys3D
|
||
|
from sympy.vector.deloperator import Del
|
||
|
from sympy.vector.scalar import BaseScalar
|
||
|
from sympy.vector.vector import Vector, BaseVector
|
||
|
from sympy.vector.operators import gradient, curl, divergence
|
||
|
from sympy.core.function import diff
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.integrals.integrals import integrate
|
||
|
from sympy.simplify.simplify import simplify
|
||
|
from sympy.core import sympify
|
||
|
from sympy.vector.dyadic import Dyadic
|
||
|
|
||
|
|
||
|
def express(expr, system, system2=None, variables=False):
|
||
|
"""
|
||
|
Global function for 'express' functionality.
|
||
|
|
||
|
Re-expresses a Vector, Dyadic or scalar(sympyfiable) in the given
|
||
|
coordinate system.
|
||
|
|
||
|
If 'variables' is True, then the coordinate variables (base scalars)
|
||
|
of other coordinate systems present in the vector/scalar field or
|
||
|
dyadic are also substituted in terms of the base scalars of the
|
||
|
given system.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
expr : Vector/Dyadic/scalar(sympyfiable)
|
||
|
The expression to re-express in CoordSys3D 'system'
|
||
|
|
||
|
system: CoordSys3D
|
||
|
The coordinate system the expr is to be expressed in
|
||
|
|
||
|
system2: CoordSys3D
|
||
|
The other coordinate system required for re-expression
|
||
|
(only for a Dyadic Expr)
|
||
|
|
||
|
variables : boolean
|
||
|
Specifies whether to substitute the coordinate variables present
|
||
|
in expr, in terms of those of parameter system
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> from sympy import Symbol, cos, sin
|
||
|
>>> N = CoordSys3D('N')
|
||
|
>>> q = Symbol('q')
|
||
|
>>> B = N.orient_new_axis('B', q, N.k)
|
||
|
>>> from sympy.vector import express
|
||
|
>>> express(B.i, N)
|
||
|
(cos(q))*N.i + (sin(q))*N.j
|
||
|
>>> express(N.x, B, variables=True)
|
||
|
B.x*cos(q) - B.y*sin(q)
|
||
|
>>> d = N.i.outer(N.i)
|
||
|
>>> express(d, B, N) == (cos(q))*(B.i|N.i) + (-sin(q))*(B.j|N.i)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
|
||
|
if expr in (0, Vector.zero):
|
||
|
return expr
|
||
|
|
||
|
if not isinstance(system, CoordSys3D):
|
||
|
raise TypeError("system should be a CoordSys3D \
|
||
|
instance")
|
||
|
|
||
|
if isinstance(expr, Vector):
|
||
|
if system2 is not None:
|
||
|
raise ValueError("system2 should not be provided for \
|
||
|
Vectors")
|
||
|
# Given expr is a Vector
|
||
|
if variables:
|
||
|
# If variables attribute is True, substitute
|
||
|
# the coordinate variables in the Vector
|
||
|
system_list = {x.system for x in expr.atoms(BaseScalar, BaseVector)} - {system}
|
||
|
subs_dict = {}
|
||
|
for f in system_list:
|
||
|
subs_dict.update(f.scalar_map(system))
|
||
|
expr = expr.subs(subs_dict)
|
||
|
# Re-express in this coordinate system
|
||
|
outvec = Vector.zero
|
||
|
parts = expr.separate()
|
||
|
for x in parts:
|
||
|
if x != system:
|
||
|
temp = system.rotation_matrix(x) * parts[x].to_matrix(x)
|
||
|
outvec += matrix_to_vector(temp, system)
|
||
|
else:
|
||
|
outvec += parts[x]
|
||
|
return outvec
|
||
|
|
||
|
elif isinstance(expr, Dyadic):
|
||
|
if system2 is None:
|
||
|
system2 = system
|
||
|
if not isinstance(system2, CoordSys3D):
|
||
|
raise TypeError("system2 should be a CoordSys3D \
|
||
|
instance")
|
||
|
outdyad = Dyadic.zero
|
||
|
var = variables
|
||
|
for k, v in expr.components.items():
|
||
|
outdyad += (express(v, system, variables=var) *
|
||
|
(express(k.args[0], system, variables=var) |
|
||
|
express(k.args[1], system2, variables=var)))
|
||
|
|
||
|
return outdyad
|
||
|
|
||
|
else:
|
||
|
if system2 is not None:
|
||
|
raise ValueError("system2 should not be provided for \
|
||
|
Vectors")
|
||
|
if variables:
|
||
|
# Given expr is a scalar field
|
||
|
system_set = set()
|
||
|
expr = sympify(expr)
|
||
|
# Substitute all the coordinate variables
|
||
|
for x in expr.atoms(BaseScalar):
|
||
|
if x.system != system:
|
||
|
system_set.add(x.system)
|
||
|
subs_dict = {}
|
||
|
for f in system_set:
|
||
|
subs_dict.update(f.scalar_map(system))
|
||
|
return expr.subs(subs_dict)
|
||
|
return expr
|
||
|
|
||
|
|
||
|
def directional_derivative(field, direction_vector):
|
||
|
"""
|
||
|
Returns the directional derivative of a scalar or vector field computed
|
||
|
along a given vector in coordinate system which parameters are expressed.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
field : Vector or Scalar
|
||
|
The scalar or vector field to compute the directional derivative of
|
||
|
|
||
|
direction_vector : Vector
|
||
|
The vector to calculated directional derivative along them.
|
||
|
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D, directional_derivative
|
||
|
>>> R = CoordSys3D('R')
|
||
|
>>> f1 = R.x*R.y*R.z
|
||
|
>>> v1 = 3*R.i + 4*R.j + R.k
|
||
|
>>> directional_derivative(f1, v1)
|
||
|
R.x*R.y + 4*R.x*R.z + 3*R.y*R.z
|
||
|
>>> f2 = 5*R.x**2*R.z
|
||
|
>>> directional_derivative(f2, v1)
|
||
|
5*R.x**2 + 30*R.x*R.z
|
||
|
|
||
|
"""
|
||
|
from sympy.vector.operators import _get_coord_systems
|
||
|
coord_sys = _get_coord_systems(field)
|
||
|
if len(coord_sys) > 0:
|
||
|
# TODO: This gets a random coordinate system in case of multiple ones:
|
||
|
coord_sys = next(iter(coord_sys))
|
||
|
field = express(field, coord_sys, variables=True)
|
||
|
i, j, k = coord_sys.base_vectors()
|
||
|
x, y, z = coord_sys.base_scalars()
|
||
|
out = Vector.dot(direction_vector, i) * diff(field, x)
|
||
|
out += Vector.dot(direction_vector, j) * diff(field, y)
|
||
|
out += Vector.dot(direction_vector, k) * diff(field, z)
|
||
|
if out == 0 and isinstance(field, Vector):
|
||
|
out = Vector.zero
|
||
|
return out
|
||
|
elif isinstance(field, Vector):
|
||
|
return Vector.zero
|
||
|
else:
|
||
|
return S.Zero
|
||
|
|
||
|
|
||
|
def laplacian(expr):
|
||
|
"""
|
||
|
Return the laplacian of the given field computed in terms of
|
||
|
the base scalars of the given coordinate system.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
expr : SymPy Expr or Vector
|
||
|
expr denotes a scalar or vector field.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D, laplacian
|
||
|
>>> R = CoordSys3D('R')
|
||
|
>>> f = R.x**2*R.y**5*R.z
|
||
|
>>> laplacian(f)
|
||
|
20*R.x**2*R.y**3*R.z + 2*R.y**5*R.z
|
||
|
>>> f = R.x**2*R.i + R.y**3*R.j + R.z**4*R.k
|
||
|
>>> laplacian(f)
|
||
|
2*R.i + 6*R.y*R.j + 12*R.z**2*R.k
|
||
|
|
||
|
"""
|
||
|
|
||
|
delop = Del()
|
||
|
if expr.is_Vector:
|
||
|
return (gradient(divergence(expr)) - curl(curl(expr))).doit()
|
||
|
return delop.dot(delop(expr)).doit()
|
||
|
|
||
|
|
||
|
def is_conservative(field):
|
||
|
"""
|
||
|
Checks if a field is conservative.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
field : Vector
|
||
|
The field to check for conservative property
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> from sympy.vector import is_conservative
|
||
|
>>> R = CoordSys3D('R')
|
||
|
>>> is_conservative(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
|
||
|
True
|
||
|
>>> is_conservative(R.z*R.j)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Field is conservative irrespective of system
|
||
|
# Take the first coordinate system in the result of the
|
||
|
# separate method of Vector
|
||
|
if not isinstance(field, Vector):
|
||
|
raise TypeError("field should be a Vector")
|
||
|
if field == Vector.zero:
|
||
|
return True
|
||
|
return curl(field).simplify() == Vector.zero
|
||
|
|
||
|
|
||
|
def is_solenoidal(field):
|
||
|
"""
|
||
|
Checks if a field is solenoidal.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
field : Vector
|
||
|
The field to check for solenoidal property
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> from sympy.vector import is_solenoidal
|
||
|
>>> R = CoordSys3D('R')
|
||
|
>>> is_solenoidal(R.y*R.z*R.i + R.x*R.z*R.j + R.x*R.y*R.k)
|
||
|
True
|
||
|
>>> is_solenoidal(R.y * R.j)
|
||
|
False
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Field is solenoidal irrespective of system
|
||
|
# Take the first coordinate system in the result of the
|
||
|
# separate method in Vector
|
||
|
if not isinstance(field, Vector):
|
||
|
raise TypeError("field should be a Vector")
|
||
|
if field == Vector.zero:
|
||
|
return True
|
||
|
return divergence(field).simplify() is S.Zero
|
||
|
|
||
|
|
||
|
def scalar_potential(field, coord_sys):
|
||
|
"""
|
||
|
Returns the scalar potential function of a field in a given
|
||
|
coordinate system (without the added integration constant).
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
field : Vector
|
||
|
The vector field whose scalar potential function is to be
|
||
|
calculated
|
||
|
|
||
|
coord_sys : CoordSys3D
|
||
|
The coordinate system to do the calculation in
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> from sympy.vector import scalar_potential, gradient
|
||
|
>>> R = CoordSys3D('R')
|
||
|
>>> scalar_potential(R.k, R) == R.z
|
||
|
True
|
||
|
>>> scalar_field = 2*R.x**2*R.y*R.z
|
||
|
>>> grad_field = gradient(scalar_field)
|
||
|
>>> scalar_potential(grad_field, R)
|
||
|
2*R.x**2*R.y*R.z
|
||
|
|
||
|
"""
|
||
|
|
||
|
# Check whether field is conservative
|
||
|
if not is_conservative(field):
|
||
|
raise ValueError("Field is not conservative")
|
||
|
if field == Vector.zero:
|
||
|
return S.Zero
|
||
|
# Express the field exntirely in coord_sys
|
||
|
# Substitute coordinate variables also
|
||
|
if not isinstance(coord_sys, CoordSys3D):
|
||
|
raise TypeError("coord_sys must be a CoordSys3D")
|
||
|
field = express(field, coord_sys, variables=True)
|
||
|
dimensions = coord_sys.base_vectors()
|
||
|
scalars = coord_sys.base_scalars()
|
||
|
# Calculate scalar potential function
|
||
|
temp_function = integrate(field.dot(dimensions[0]), scalars[0])
|
||
|
for i, dim in enumerate(dimensions[1:]):
|
||
|
partial_diff = diff(temp_function, scalars[i + 1])
|
||
|
partial_diff = field.dot(dim) - partial_diff
|
||
|
temp_function += integrate(partial_diff, scalars[i + 1])
|
||
|
return temp_function
|
||
|
|
||
|
|
||
|
def scalar_potential_difference(field, coord_sys, point1, point2):
|
||
|
"""
|
||
|
Returns the scalar potential difference between two points in a
|
||
|
certain coordinate system, wrt a given field.
|
||
|
|
||
|
If a scalar field is provided, its values at the two points are
|
||
|
considered. If a conservative vector field is provided, the values
|
||
|
of its scalar potential function at the two points are used.
|
||
|
|
||
|
Returns (potential at point2) - (potential at point1)
|
||
|
|
||
|
The position vectors of the two Points are calculated wrt the
|
||
|
origin of the coordinate system provided.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
field : Vector/Expr
|
||
|
The field to calculate wrt
|
||
|
|
||
|
coord_sys : CoordSys3D
|
||
|
The coordinate system to do the calculations in
|
||
|
|
||
|
point1 : Point
|
||
|
The initial Point in given coordinate system
|
||
|
|
||
|
position2 : Point
|
||
|
The second Point in the given coordinate system
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector import CoordSys3D
|
||
|
>>> from sympy.vector import scalar_potential_difference
|
||
|
>>> R = CoordSys3D('R')
|
||
|
>>> P = R.origin.locate_new('P', R.x*R.i + R.y*R.j + R.z*R.k)
|
||
|
>>> vectfield = 4*R.x*R.y*R.i + 2*R.x**2*R.j
|
||
|
>>> scalar_potential_difference(vectfield, R, R.origin, P)
|
||
|
2*R.x**2*R.y
|
||
|
>>> Q = R.origin.locate_new('O', 3*R.i + R.j + 2*R.k)
|
||
|
>>> scalar_potential_difference(vectfield, R, P, Q)
|
||
|
-2*R.x**2*R.y + 18
|
||
|
|
||
|
"""
|
||
|
|
||
|
if not isinstance(coord_sys, CoordSys3D):
|
||
|
raise TypeError("coord_sys must be a CoordSys3D")
|
||
|
if isinstance(field, Vector):
|
||
|
# Get the scalar potential function
|
||
|
scalar_fn = scalar_potential(field, coord_sys)
|
||
|
else:
|
||
|
# Field is a scalar
|
||
|
scalar_fn = field
|
||
|
# Express positions in required coordinate system
|
||
|
origin = coord_sys.origin
|
||
|
position1 = express(point1.position_wrt(origin), coord_sys,
|
||
|
variables=True)
|
||
|
position2 = express(point2.position_wrt(origin), coord_sys,
|
||
|
variables=True)
|
||
|
# Get the two positions as substitution dicts for coordinate variables
|
||
|
subs_dict1 = {}
|
||
|
subs_dict2 = {}
|
||
|
scalars = coord_sys.base_scalars()
|
||
|
for i, x in enumerate(coord_sys.base_vectors()):
|
||
|
subs_dict1[scalars[i]] = x.dot(position1)
|
||
|
subs_dict2[scalars[i]] = x.dot(position2)
|
||
|
return scalar_fn.subs(subs_dict2) - scalar_fn.subs(subs_dict1)
|
||
|
|
||
|
|
||
|
def matrix_to_vector(matrix, system):
|
||
|
"""
|
||
|
Converts a vector in matrix form to a Vector instance.
|
||
|
|
||
|
It is assumed that the elements of the Matrix represent the
|
||
|
measure numbers of the components of the vector along basis
|
||
|
vectors of 'system'.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
matrix : SymPy Matrix, Dimensions: (3, 1)
|
||
|
The matrix to be converted to a vector
|
||
|
|
||
|
system : CoordSys3D
|
||
|
The coordinate system the vector is to be defined in
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import ImmutableMatrix as Matrix
|
||
|
>>> m = Matrix([1, 2, 3])
|
||
|
>>> from sympy.vector import CoordSys3D, matrix_to_vector
|
||
|
>>> C = CoordSys3D('C')
|
||
|
>>> v = matrix_to_vector(m, C)
|
||
|
>>> v
|
||
|
C.i + 2*C.j + 3*C.k
|
||
|
>>> v.to_matrix(C) == m
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
|
||
|
outvec = Vector.zero
|
||
|
vects = system.base_vectors()
|
||
|
for i, x in enumerate(matrix):
|
||
|
outvec += x * vects[i]
|
||
|
return outvec
|
||
|
|
||
|
|
||
|
def _path(from_object, to_object):
|
||
|
"""
|
||
|
Calculates the 'path' of objects starting from 'from_object'
|
||
|
to 'to_object', along with the index of the first common
|
||
|
ancestor in the tree.
|
||
|
|
||
|
Returns (index, list) tuple.
|
||
|
"""
|
||
|
|
||
|
if from_object._root != to_object._root:
|
||
|
raise ValueError("No connecting path found between " +
|
||
|
str(from_object) + " and " + str(to_object))
|
||
|
|
||
|
other_path = []
|
||
|
obj = to_object
|
||
|
while obj._parent is not None:
|
||
|
other_path.append(obj)
|
||
|
obj = obj._parent
|
||
|
other_path.append(obj)
|
||
|
object_set = set(other_path)
|
||
|
from_path = []
|
||
|
obj = from_object
|
||
|
while obj not in object_set:
|
||
|
from_path.append(obj)
|
||
|
obj = obj._parent
|
||
|
index = len(from_path)
|
||
|
i = other_path.index(obj)
|
||
|
while i >= 0:
|
||
|
from_path.append(other_path[i])
|
||
|
i -= 1
|
||
|
return index, from_path
|
||
|
|
||
|
|
||
|
def orthogonalize(*vlist, orthonormal=False):
|
||
|
"""
|
||
|
Takes a sequence of independent vectors and orthogonalizes them
|
||
|
using the Gram - Schmidt process. Returns a list of
|
||
|
orthogonal or orthonormal vectors.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
vlist : sequence of independent vectors to be made orthogonal.
|
||
|
|
||
|
orthonormal : Optional parameter
|
||
|
Set to True if the vectors returned should be
|
||
|
orthonormal.
|
||
|
Default: False
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.vector.coordsysrect import CoordSys3D
|
||
|
>>> from sympy.vector.functions import orthogonalize
|
||
|
>>> C = CoordSys3D('C')
|
||
|
>>> i, j, k = C.base_vectors()
|
||
|
>>> v1 = i + 2*j
|
||
|
>>> v2 = 2*i + 3*j
|
||
|
>>> orthogonalize(v1, v2)
|
||
|
[C.i + 2*C.j, 2/5*C.i + (-1/5)*C.j]
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Gram-Schmidt_process
|
||
|
|
||
|
"""
|
||
|
|
||
|
if not all(isinstance(vec, Vector) for vec in vlist):
|
||
|
raise TypeError('Each element must be of Type Vector')
|
||
|
|
||
|
ortho_vlist = []
|
||
|
for i, term in enumerate(vlist):
|
||
|
for j in range(i):
|
||
|
term -= ortho_vlist[j].projection(vlist[i])
|
||
|
# TODO : The following line introduces a performance issue
|
||
|
# and needs to be changed once a good solution for issue #10279 is
|
||
|
# found.
|
||
|
if simplify(term).equals(Vector.zero):
|
||
|
raise ValueError("Vector set not linearly independent")
|
||
|
ortho_vlist.append(term)
|
||
|
|
||
|
if orthonormal:
|
||
|
ortho_vlist = [vec.normalize() for vec in ortho_vlist]
|
||
|
|
||
|
return ortho_vlist
|