You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
5513 lines
221 KiB
5513 lines
221 KiB
5 months ago
|
"""Functional interface."""
|
||
|
from typing import Callable, List, Optional, Tuple, Union
|
||
|
import math
|
||
|
import warnings
|
||
|
import importlib
|
||
|
|
||
|
try:
|
||
|
import numpy as np
|
||
|
except ModuleNotFoundError:
|
||
|
np = None
|
||
|
|
||
|
import torch
|
||
|
from torch import _VF
|
||
|
from torch import sym_int as _sym_int
|
||
|
from torch._C import _infer_size, _add_docstr
|
||
|
from torch._torch_docs import reproducibility_notes, tf32_notes, sparse_support_notes
|
||
|
# A workaround to support both TorchScript and MyPy:
|
||
|
from typing import TYPE_CHECKING
|
||
|
if TYPE_CHECKING:
|
||
|
from torch.types import _dtype as DType
|
||
|
else:
|
||
|
# The JIT doesn't understand Union, nor torch.dtype here
|
||
|
DType = int
|
||
|
|
||
|
from .._jit_internal import boolean_dispatch, _overload, BroadcastingList1, BroadcastingList2, BroadcastingList3
|
||
|
from ..overrides import (
|
||
|
has_torch_function, has_torch_function_unary, has_torch_function_variadic,
|
||
|
handle_torch_function)
|
||
|
from . import _reduction as _Reduction
|
||
|
from . import grad # noqa: F401
|
||
|
from .modules import utils
|
||
|
from .modules.utils import _single, _pair, _triple, _list_with_default
|
||
|
|
||
|
Tensor = torch.Tensor
|
||
|
|
||
|
conv1d = _add_docstr(
|
||
|
torch.conv1d,
|
||
|
r"""
|
||
|
conv1d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
|
||
|
|
||
|
Applies a 1D convolution over an input signal composed of several input
|
||
|
planes.
|
||
|
|
||
|
{tf32_note}
|
||
|
|
||
|
See :class:`~torch.nn.Conv1d` for details and output shape.
|
||
|
|
||
|
Note:
|
||
|
{cudnn_reproducibility_note}
|
||
|
|
||
|
Note:
|
||
|
This operator supports complex data types i.e. ``complex32, complex64, complex128``.
|
||
|
""".format(
|
||
|
**reproducibility_notes, **tf32_notes
|
||
|
)
|
||
|
+ r"""
|
||
|
|
||
|
Args:
|
||
|
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
|
||
|
weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kW)`
|
||
|
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: ``None``
|
||
|
stride: the stride of the convolving kernel. Can be a single number or
|
||
|
a one-element tuple `(sW,)`. Default: 1
|
||
|
padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'},
|
||
|
single number or a one-element tuple `(padW,)`. Default: 0
|
||
|
``padding='valid'`` is the same as no padding. ``padding='same'`` pads
|
||
|
the input so the output has the same shape as the input. However, this mode
|
||
|
doesn't support any stride values other than 1.
|
||
|
|
||
|
.. warning::
|
||
|
For ``padding='same'``, if the ``weight`` is even-length and
|
||
|
``dilation`` is odd in any dimension, a full :func:`pad` operation
|
||
|
may be needed internally. Lowering performance.
|
||
|
dilation: the spacing between kernel elements. Can be a single number or
|
||
|
a one-element tuple `(dW,)`. Default: 1
|
||
|
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by
|
||
|
the number of groups. Default: 1
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> inputs = torch.randn(33, 16, 30)
|
||
|
>>> filters = torch.randn(20, 16, 5)
|
||
|
>>> F.conv1d(inputs, filters)
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
conv2d = _add_docstr(
|
||
|
torch.conv2d,
|
||
|
r"""
|
||
|
conv2d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
|
||
|
|
||
|
Applies a 2D convolution over an input image composed of several input
|
||
|
planes.
|
||
|
|
||
|
{tf32_note}
|
||
|
|
||
|
See :class:`~torch.nn.Conv2d` for details and output shape.
|
||
|
|
||
|
Note:
|
||
|
{cudnn_reproducibility_note}
|
||
|
|
||
|
Note:
|
||
|
This operator supports complex data types i.e. ``complex32, complex64, complex128``.
|
||
|
""".format(
|
||
|
**reproducibility_notes, **tf32_notes
|
||
|
)
|
||
|
+ r"""
|
||
|
|
||
|
Args:
|
||
|
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
||
|
weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kH , kW)`
|
||
|
bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: ``None``
|
||
|
stride: the stride of the convolving kernel. Can be a single number or a
|
||
|
tuple `(sH, sW)`. Default: 1
|
||
|
padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'},
|
||
|
single number or a tuple `(padH, padW)`. Default: 0
|
||
|
``padding='valid'`` is the same as no padding. ``padding='same'`` pads
|
||
|
the input so the output has the same shape as the input. However, this mode
|
||
|
doesn't support any stride values other than 1.
|
||
|
|
||
|
.. warning::
|
||
|
For ``padding='same'``, if the ``weight`` is even-length and
|
||
|
``dilation`` is odd in any dimension, a full :func:`pad` operation
|
||
|
may be needed internally. Lowering performance.
|
||
|
|
||
|
dilation: the spacing between kernel elements. Can be a single number or
|
||
|
a tuple `(dH, dW)`. Default: 1
|
||
|
groups: split input into groups, both :math:`\text{in\_channels}` and :math:`\text{out\_channels}`
|
||
|
should be divisible by the number of groups. Default: 1
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # With square kernels and equal stride
|
||
|
>>> filters = torch.randn(8, 4, 3, 3)
|
||
|
>>> inputs = torch.randn(1, 4, 5, 5)
|
||
|
>>> F.conv2d(inputs, filters, padding=1)
|
||
|
""",
|
||
|
) # noqa: E501
|
||
|
|
||
|
conv3d = _add_docstr(
|
||
|
torch.conv3d,
|
||
|
r"""
|
||
|
conv3d(input, weight, bias=None, stride=1, padding=0, dilation=1, groups=1) -> Tensor
|
||
|
|
||
|
Applies a 3D convolution over an input image composed of several input
|
||
|
planes.
|
||
|
|
||
|
{tf32_note}
|
||
|
|
||
|
See :class:`~torch.nn.Conv3d` for details and output shape.
|
||
|
|
||
|
Note:
|
||
|
{cudnn_reproducibility_note}
|
||
|
|
||
|
Note:
|
||
|
This operator supports complex data types i.e. ``complex32, complex64, complex128``.
|
||
|
""".format(
|
||
|
**reproducibility_notes, **tf32_notes
|
||
|
)
|
||
|
+ r"""
|
||
|
|
||
|
Args:
|
||
|
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)`
|
||
|
weight: filters of shape :math:`(\text{out\_channels} , \frac{\text{in\_channels}}{\text{groups}} , kT , kH , kW)`
|
||
|
bias: optional bias tensor of shape :math:`(\text{out\_channels})`. Default: None
|
||
|
stride: the stride of the convolving kernel. Can be a single number or a
|
||
|
tuple `(sT, sH, sW)`. Default: 1
|
||
|
padding: implicit paddings on both sides of the input. Can be a string {'valid', 'same'},
|
||
|
single number or a tuple `(padT, padH, padW)`. Default: 0
|
||
|
``padding='valid'`` is the same as no padding. ``padding='same'`` pads
|
||
|
the input so the output has the same shape as the input. However, this mode
|
||
|
doesn't support any stride values other than 1.
|
||
|
|
||
|
.. warning::
|
||
|
For ``padding='same'``, if the ``weight`` is even-length and
|
||
|
``dilation`` is odd in any dimension, a full :func:`pad` operation
|
||
|
may be needed internally. Lowering performance.
|
||
|
|
||
|
dilation: the spacing between kernel elements. Can be a single number or
|
||
|
a tuple `(dT, dH, dW)`. Default: 1
|
||
|
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by
|
||
|
the number of groups. Default: 1
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> filters = torch.randn(33, 16, 3, 3, 3)
|
||
|
>>> inputs = torch.randn(20, 16, 50, 10, 20)
|
||
|
>>> F.conv3d(inputs, filters)
|
||
|
""",
|
||
|
) # noqa: E501
|
||
|
|
||
|
conv_transpose1d = _add_docstr(
|
||
|
torch.conv_transpose1d,
|
||
|
r"""
|
||
|
conv_transpose1d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
|
||
|
|
||
|
Applies a 1D transposed convolution operator over an input signal
|
||
|
composed of several input planes, sometimes also called "deconvolution".
|
||
|
|
||
|
{tf32_note}
|
||
|
|
||
|
See :class:`~torch.nn.ConvTranspose1d` for details and output shape.
|
||
|
|
||
|
Note:
|
||
|
{cudnn_reproducibility_note}
|
||
|
""".format(
|
||
|
**reproducibility_notes, **tf32_notes
|
||
|
)
|
||
|
+ r"""
|
||
|
|
||
|
Args:
|
||
|
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
|
||
|
weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kW)`
|
||
|
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
|
||
|
stride: the stride of the convolving kernel. Can be a single number or a
|
||
|
tuple ``(sW,)``. Default: 1
|
||
|
padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both
|
||
|
sides of each dimension in the input. Can be a single number or a tuple
|
||
|
``(padW,)``. Default: 0
|
||
|
output_padding: additional size added to one side of each dimension in the
|
||
|
output shape. Can be a single number or a tuple ``(out_padW)``. Default: 0
|
||
|
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
|
||
|
number of groups. Default: 1
|
||
|
dilation: the spacing between kernel elements. Can be a single number or
|
||
|
a tuple ``(dW,)``. Default: 1
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> inputs = torch.randn(20, 16, 50)
|
||
|
>>> weights = torch.randn(16, 33, 5)
|
||
|
>>> F.conv_transpose1d(inputs, weights)
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
conv_transpose2d = _add_docstr(
|
||
|
torch.conv_transpose2d,
|
||
|
r"""
|
||
|
conv_transpose2d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
|
||
|
|
||
|
Applies a 2D transposed convolution operator over an input image
|
||
|
composed of several input planes, sometimes also called "deconvolution".
|
||
|
|
||
|
{tf32_note}
|
||
|
|
||
|
See :class:`~torch.nn.ConvTranspose2d` for details and output shape.
|
||
|
|
||
|
Note:
|
||
|
{cudnn_reproducibility_note}
|
||
|
""".format(
|
||
|
**reproducibility_notes, **tf32_notes
|
||
|
)
|
||
|
+ r"""
|
||
|
|
||
|
Args:
|
||
|
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
||
|
weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kH , kW)`
|
||
|
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
|
||
|
stride: the stride of the convolving kernel. Can be a single number or a
|
||
|
tuple ``(sH, sW)``. Default: 1
|
||
|
padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both
|
||
|
sides of each dimension in the input. Can be a single number or a tuple
|
||
|
``(padH, padW)``. Default: 0
|
||
|
output_padding: additional size added to one side of each dimension in the
|
||
|
output shape. Can be a single number or a tuple ``(out_padH, out_padW)``.
|
||
|
Default: 0
|
||
|
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
|
||
|
number of groups. Default: 1
|
||
|
dilation: the spacing between kernel elements. Can be a single number or
|
||
|
a tuple ``(dH, dW)``. Default: 1
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # With square kernels and equal stride
|
||
|
>>> inputs = torch.randn(1, 4, 5, 5)
|
||
|
>>> weights = torch.randn(4, 8, 3, 3)
|
||
|
>>> F.conv_transpose2d(inputs, weights, padding=1)
|
||
|
""",
|
||
|
) # noqa: E501
|
||
|
|
||
|
conv_transpose3d = _add_docstr(
|
||
|
torch.conv_transpose3d,
|
||
|
r"""
|
||
|
conv_transpose3d(input, weight, bias=None, stride=1, padding=0, output_padding=0, groups=1, dilation=1) -> Tensor
|
||
|
|
||
|
Applies a 3D transposed convolution operator over an input image
|
||
|
composed of several input planes, sometimes also called "deconvolution"
|
||
|
|
||
|
{tf32_note}
|
||
|
|
||
|
See :class:`~torch.nn.ConvTranspose3d` for details and output shape.
|
||
|
|
||
|
Note:
|
||
|
{cudnn_reproducibility_note}
|
||
|
""".format(
|
||
|
**reproducibility_notes, **tf32_notes
|
||
|
)
|
||
|
+ r"""
|
||
|
|
||
|
Args:
|
||
|
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iT , iH , iW)`
|
||
|
weight: filters of shape :math:`(\text{in\_channels} , \frac{\text{out\_channels}}{\text{groups}} , kT , kH , kW)`
|
||
|
bias: optional bias of shape :math:`(\text{out\_channels})`. Default: None
|
||
|
stride: the stride of the convolving kernel. Can be a single number or a
|
||
|
tuple ``(sT, sH, sW)``. Default: 1
|
||
|
padding: ``dilation * (kernel_size - 1) - padding`` zero-padding will be added to both
|
||
|
sides of each dimension in the input. Can be a single number or a tuple
|
||
|
``(padT, padH, padW)``. Default: 0
|
||
|
output_padding: additional size added to one side of each dimension in the
|
||
|
output shape. Can be a single number or a tuple
|
||
|
``(out_padT, out_padH, out_padW)``. Default: 0
|
||
|
groups: split input into groups, :math:`\text{in\_channels}` should be divisible by the
|
||
|
number of groups. Default: 1
|
||
|
dilation: the spacing between kernel elements. Can be a single number or
|
||
|
a tuple `(dT, dH, dW)`. Default: 1
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> inputs = torch.randn(20, 16, 50, 10, 20)
|
||
|
>>> weights = torch.randn(16, 33, 3, 3, 3)
|
||
|
>>> F.conv_transpose3d(inputs, weights)
|
||
|
""",
|
||
|
) # noqa: E501
|
||
|
|
||
|
conv_tbc = _add_docstr(
|
||
|
torch.conv_tbc,
|
||
|
r"""
|
||
|
Applies a 1-dimensional sequence convolution over an input sequence.
|
||
|
Input and output dimensions are (Time, Batch, Channels) - hence TBC.
|
||
|
|
||
|
Args:
|
||
|
input: input tensor of shape :math:`(\text{sequence length} \times batch \times \text{in\_channels})`
|
||
|
weight: filter of shape (:math:`\text{kernel width} \times \text{in\_channels} \times \text{out\_channels}`)
|
||
|
bias: bias of shape (:math:`\text{out\_channels}`)
|
||
|
pad: number of timesteps to pad. Default: 0
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
# Pooling
|
||
|
avg_pool1d = _add_docstr(
|
||
|
torch.avg_pool1d,
|
||
|
r"""
|
||
|
avg_pool1d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True) -> Tensor
|
||
|
|
||
|
Applies a 1D average pooling over an input signal composed of several
|
||
|
input planes.
|
||
|
|
||
|
See :class:`~torch.nn.AvgPool1d` for details and output shape.
|
||
|
|
||
|
Args:
|
||
|
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`
|
||
|
kernel_size: the size of the window. Can be a single number or a
|
||
|
tuple `(kW,)`
|
||
|
stride: the stride of the window. Can be a single number or a tuple
|
||
|
`(sW,)`. Default: :attr:`kernel_size`
|
||
|
padding: implicit zero paddings on both sides of the input. Can be a
|
||
|
single number or a tuple `(padW,)`. Default: 0
|
||
|
ceil_mode: when True, will use `ceil` instead of `floor` to compute the
|
||
|
output shape. Default: ``False``
|
||
|
count_include_pad: when True, will include the zero-padding in the
|
||
|
averaging calculation. Default: ``True``
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # pool of square window of size=3, stride=2
|
||
|
>>> input = torch.tensor([[[1, 2, 3, 4, 5, 6, 7]]], dtype=torch.float32)
|
||
|
>>> F.avg_pool1d(input, kernel_size=3, stride=2)
|
||
|
tensor([[[ 2., 4., 6.]]])
|
||
|
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
avg_pool2d = _add_docstr(
|
||
|
torch._C._nn.avg_pool2d,
|
||
|
r"""
|
||
|
avg_pool2d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) -> Tensor
|
||
|
|
||
|
Applies 2D average-pooling operation in :math:`kH \times kW` regions by step size
|
||
|
:math:`sH \times sW` steps. The number of output features is equal to the number of
|
||
|
input planes.
|
||
|
|
||
|
See :class:`~torch.nn.AvgPool2d` for details and output shape.
|
||
|
|
||
|
Args:
|
||
|
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`
|
||
|
kernel_size: size of the pooling region. Can be a single number or a
|
||
|
tuple `(kH, kW)`
|
||
|
stride: stride of the pooling operation. Can be a single number or a
|
||
|
tuple `(sH, sW)`. Default: :attr:`kernel_size`
|
||
|
padding: implicit zero paddings on both sides of the input. Can be a
|
||
|
single number or a tuple `(padH, padW)`. Default: 0
|
||
|
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
|
||
|
to compute the output shape. Default: ``False``
|
||
|
count_include_pad: when True, will include the zero-padding in the
|
||
|
averaging calculation. Default: ``True``
|
||
|
divisor_override: if specified, it will be used as divisor, otherwise
|
||
|
size of the pooling region will be used. Default: None
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
avg_pool3d = _add_docstr(
|
||
|
torch._C._nn.avg_pool3d,
|
||
|
r"""
|
||
|
avg_pool3d(input, kernel_size, stride=None, padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None) -> Tensor
|
||
|
|
||
|
Applies 3D average-pooling operation in :math:`kT \times kH \times kW` regions by step
|
||
|
size :math:`sT \times sH \times sW` steps. The number of output features is equal to
|
||
|
:math:`\lfloor\frac{\text{input planes}}{sT}\rfloor`.
|
||
|
|
||
|
See :class:`~torch.nn.AvgPool3d` for details and output shape.
|
||
|
|
||
|
Args:
|
||
|
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iT \times iH , iW)`
|
||
|
kernel_size: size of the pooling region. Can be a single number or a
|
||
|
tuple `(kT, kH, kW)`
|
||
|
stride: stride of the pooling operation. Can be a single number or a
|
||
|
tuple `(sT, sH, sW)`. Default: :attr:`kernel_size`
|
||
|
padding: implicit zero paddings on both sides of the input. Can be a
|
||
|
single number or a tuple `(padT, padH, padW)`, Default: 0
|
||
|
ceil_mode: when True, will use `ceil` instead of `floor` in the formula
|
||
|
to compute the output shape
|
||
|
count_include_pad: when True, will include the zero-padding in the
|
||
|
averaging calculation
|
||
|
divisor_override: if specified, it will be used as divisor, otherwise
|
||
|
size of the pooling region will be used. Default: None
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
def fractional_max_pool2d_with_indices(
|
||
|
input: Tensor, kernel_size: BroadcastingList2[int],
|
||
|
output_size: Optional[BroadcastingList2[int]] = None,
|
||
|
output_ratio: Optional[BroadcastingList2[float]] = None,
|
||
|
return_indices: bool = False,
|
||
|
_random_samples: Optional[Tensor] = None
|
||
|
) -> Tuple[Tensor, Tensor]: # noqa: D400
|
||
|
r"""
|
||
|
fractional_max_pool2d(input, kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None)
|
||
|
|
||
|
Applies 2D fractional max pooling over an input signal composed of several input planes.
|
||
|
|
||
|
Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham
|
||
|
|
||
|
The max-pooling operation is applied in :math:`kH \times kW` regions by a stochastic
|
||
|
step size determined by the target output size.
|
||
|
The number of output features is equal to the number of input planes.
|
||
|
|
||
|
Args:
|
||
|
kernel_size: the size of the window to take a max over.
|
||
|
Can be a single number :math:`k` (for a square kernel of :math:`k \times k`)
|
||
|
or a tuple `(kH, kW)`
|
||
|
output_size: the target output size of the image of the form :math:`oH \times oW`.
|
||
|
Can be a tuple `(oH, oW)` or a single number :math:`oH` for a square image :math:`oH \times oH`
|
||
|
output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given.
|
||
|
This has to be a number or tuple in the range (0, 1)
|
||
|
return_indices: if ``True``, will return the indices along with the outputs.
|
||
|
Useful to pass to :func:`~torch.nn.functional.max_unpool2d`.
|
||
|
|
||
|
Examples::
|
||
|
>>> input = torch.randn(20, 16, 50, 32)
|
||
|
>>> # pool of square window of size=3, and target output size 13x12
|
||
|
>>> F.fractional_max_pool2d(input, 3, output_size=(13, 12))
|
||
|
>>> # pool of square window and target output size being half of input image size
|
||
|
>>> F.fractional_max_pool2d(input, 3, output_ratio=(0.5, 0.5))
|
||
|
|
||
|
.. _Fractional MaxPooling:
|
||
|
http://arxiv.org/abs/1412.6071
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, _random_samples):
|
||
|
return handle_torch_function(
|
||
|
fractional_max_pool2d_with_indices,
|
||
|
(input, _random_samples),
|
||
|
input,
|
||
|
kernel_size,
|
||
|
output_size=output_size,
|
||
|
output_ratio=output_ratio,
|
||
|
return_indices=return_indices,
|
||
|
_random_samples=_random_samples,
|
||
|
)
|
||
|
if output_size is None and output_ratio is None:
|
||
|
raise ValueError("fractional_max_pool2d requires specifying either an output_size or an output_ratio")
|
||
|
if output_size is None:
|
||
|
assert output_ratio is not None
|
||
|
if len(output_ratio) > 2:
|
||
|
raise ValueError("fractional_max_pool2d requires output_ratio to either be a single Int or tuple of Ints.")
|
||
|
_output_ratio = _pair(output_ratio)
|
||
|
output_size = [int(input.size(-2) * _output_ratio[0]), int(input.size(-1) * _output_ratio[1])]
|
||
|
|
||
|
if _random_samples is None:
|
||
|
n_batch = 1 if input.dim() == 3 else input.size(0)
|
||
|
_random_samples = torch.rand(n_batch, input.size(-3), 2, dtype=input.dtype, device=input.device)
|
||
|
return torch._C._nn.fractional_max_pool2d(input, kernel_size, output_size, _random_samples)
|
||
|
|
||
|
|
||
|
def _fractional_max_pool2d(
|
||
|
input: Tensor, kernel_size: BroadcastingList2[int],
|
||
|
output_size: Optional[BroadcastingList2[int]] = None,
|
||
|
output_ratio: Optional[BroadcastingList2[float]] = None,
|
||
|
return_indices: bool = False,
|
||
|
_random_samples: Optional[Tensor] = None
|
||
|
) -> Tensor:
|
||
|
if has_torch_function_variadic(input, _random_samples):
|
||
|
return handle_torch_function(
|
||
|
fractional_max_pool2d,
|
||
|
(input, _random_samples),
|
||
|
input,
|
||
|
kernel_size,
|
||
|
output_size=output_size,
|
||
|
output_ratio=output_ratio,
|
||
|
return_indices=return_indices,
|
||
|
_random_samples=_random_samples,
|
||
|
)
|
||
|
return fractional_max_pool2d_with_indices(
|
||
|
input, kernel_size, output_size, output_ratio, return_indices, _random_samples
|
||
|
)[0]
|
||
|
|
||
|
|
||
|
fractional_max_pool2d = boolean_dispatch(
|
||
|
arg_name="return_indices",
|
||
|
arg_index=4,
|
||
|
default=False,
|
||
|
if_true=fractional_max_pool2d_with_indices,
|
||
|
if_false=_fractional_max_pool2d,
|
||
|
module_name=__name__,
|
||
|
func_name="fractional_max_pool2d",
|
||
|
)
|
||
|
|
||
|
|
||
|
def fractional_max_pool3d_with_indices(
|
||
|
input: Tensor, kernel_size: BroadcastingList3[int],
|
||
|
output_size: Optional[BroadcastingList3[int]] = None,
|
||
|
output_ratio: Optional[BroadcastingList3[float]] = None,
|
||
|
return_indices: bool = False,
|
||
|
_random_samples: Optional[Tensor] = None
|
||
|
) -> Tuple[Tensor, Tensor]: # noqa: D400
|
||
|
r"""
|
||
|
fractional_max_pool3d(input, kernel_size, output_size=None, output_ratio=None, return_indices=False, _random_samples=None)
|
||
|
|
||
|
Applies 3D fractional max pooling over an input signal composed of several input planes.
|
||
|
|
||
|
Fractional MaxPooling is described in detail in the paper `Fractional MaxPooling`_ by Ben Graham
|
||
|
|
||
|
The max-pooling operation is applied in :math:`kT \times kH \times kW` regions by a stochastic
|
||
|
step size determined by the target output size.
|
||
|
The number of output features is equal to the number of input planes.
|
||
|
|
||
|
Args:
|
||
|
kernel_size: the size of the window to take a max over.
|
||
|
Can be a single number :math:`k` (for a square kernel of :math:`k \times k \times k`)
|
||
|
or a tuple `(kT, kH, kW)`
|
||
|
output_size: the target output size of the form :math:`oT \times oH \times oW`.
|
||
|
Can be a tuple `(oT, oH, oW)` or a single number :math:`oH` for a cubic output
|
||
|
:math:`oH \times oH \times oH`
|
||
|
output_ratio: If one wants to have an output size as a ratio of the input size, this option can be given.
|
||
|
This has to be a number or tuple in the range (0, 1)
|
||
|
return_indices: if ``True``, will return the indices along with the outputs.
|
||
|
Useful to pass to :func:`~torch.nn.functional.max_unpool3d`.
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, T_{in}, H_{in}, W_{in})` or :math:`(C, T_{in}, H_{in}, W_{in})`.
|
||
|
- Output: :math:`(N, C, T_{out}, H_{out}, W_{out})` or :math:`(C, T_{out}, H_{out}, W_{out})`, where
|
||
|
:math:`(T_{out}, H_{out}, W_{out})=\text{output\_size}` or
|
||
|
:math:`(T_{out}, H_{out}, W_{out})=\text{output\_ratio} \times (T_{in}, H_{in}, W_{in})`
|
||
|
|
||
|
Examples::
|
||
|
>>> input = torch.randn(20, 16, 50, 32, 16)
|
||
|
>>> # pool of cubic window of size=3, and target output size 13x12x11
|
||
|
>>> F.fractional_max_pool3d(input, 3, output_size=(13, 12, 11))
|
||
|
>>> # pool of cubic window and target output size being half of input size
|
||
|
>>> F.fractional_max_pool3d(input, 3, output_ratio=(0.5, 0.5, 0.5))
|
||
|
|
||
|
.. _Fractional MaxPooling:
|
||
|
http://arxiv.org/abs/1412.6071
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, _random_samples):
|
||
|
return handle_torch_function(
|
||
|
fractional_max_pool3d_with_indices,
|
||
|
(input, _random_samples),
|
||
|
input,
|
||
|
kernel_size,
|
||
|
output_size=output_size,
|
||
|
output_ratio=output_ratio,
|
||
|
return_indices=return_indices,
|
||
|
_random_samples=_random_samples,
|
||
|
)
|
||
|
if output_size is None and output_ratio is None:
|
||
|
raise ValueError("fractional_max_pool3d requires specifying either an output_size or an output_ratio")
|
||
|
if output_size is None:
|
||
|
assert output_ratio is not None
|
||
|
_output_ratio = _triple(output_ratio)
|
||
|
output_size = [
|
||
|
int(input.size(-3) * _output_ratio[0]),
|
||
|
int(input.size(-2) * _output_ratio[1]),
|
||
|
int(input.size(-1) * _output_ratio[2]),
|
||
|
]
|
||
|
|
||
|
if _random_samples is None:
|
||
|
n_batch = 1 if input.dim() == 4 else input.size(0)
|
||
|
_random_samples = torch.rand(n_batch, input.size(-4), 3, dtype=input.dtype, device=input.device)
|
||
|
return torch._C._nn.fractional_max_pool3d(input, kernel_size, output_size, _random_samples)
|
||
|
|
||
|
|
||
|
def _fractional_max_pool3d(
|
||
|
input: Tensor, kernel_size: BroadcastingList3[int],
|
||
|
output_size: Optional[BroadcastingList3[int]] = None,
|
||
|
output_ratio: Optional[BroadcastingList3[float]] = None,
|
||
|
return_indices: bool = False,
|
||
|
_random_samples: Optional[Tensor] = None
|
||
|
) -> Tensor:
|
||
|
if has_torch_function_variadic(input, _random_samples):
|
||
|
return handle_torch_function(
|
||
|
fractional_max_pool3d,
|
||
|
(input, _random_samples),
|
||
|
input,
|
||
|
kernel_size,
|
||
|
output_size=output_size,
|
||
|
output_ratio=output_ratio,
|
||
|
return_indices=return_indices,
|
||
|
_random_samples=_random_samples,
|
||
|
)
|
||
|
return fractional_max_pool3d_with_indices(
|
||
|
input, kernel_size, output_size, output_ratio, return_indices, _random_samples
|
||
|
)[0]
|
||
|
|
||
|
|
||
|
fractional_max_pool3d = boolean_dispatch(
|
||
|
arg_name="return_indices",
|
||
|
arg_index=4,
|
||
|
default=False,
|
||
|
if_true=fractional_max_pool3d_with_indices,
|
||
|
if_false=_fractional_max_pool3d,
|
||
|
module_name=__name__,
|
||
|
func_name="fractional_max_pool3d",
|
||
|
)
|
||
|
|
||
|
|
||
|
def max_pool1d_with_indices(
|
||
|
input: Tensor, kernel_size: BroadcastingList1[int],
|
||
|
stride: Optional[BroadcastingList1[int]] = None,
|
||
|
padding: BroadcastingList1[int] = 0,
|
||
|
dilation: BroadcastingList1[int] = 1,
|
||
|
ceil_mode: bool = False,
|
||
|
return_indices: bool = False
|
||
|
) -> Tuple[Tensor, Tensor]: # noqa: D400
|
||
|
r"""
|
||
|
max_pool1d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)
|
||
|
|
||
|
Applies a 1D max pooling over an input signal composed of several input
|
||
|
planes.
|
||
|
|
||
|
.. note::
|
||
|
The order of :attr:`ceil_mode` and :attr:`return_indices` is different from
|
||
|
what seen in :class:`~torch.nn.MaxPool1d`, and will change in a future release.
|
||
|
|
||
|
See :class:`~torch.nn.MaxPool1d` for details.
|
||
|
|
||
|
Args:
|
||
|
input: input tensor of shape :math:`(\text{minibatch} , \text{in\_channels} , iW)`, minibatch dim optional.
|
||
|
kernel_size: the size of the window. Can be a single number or a
|
||
|
tuple `(kW,)`
|
||
|
stride: the stride of the window. Can be a single number or a tuple
|
||
|
`(sW,)`. Default: :attr:`kernel_size`
|
||
|
padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2.
|
||
|
dilation: The stride between elements within a sliding window, must be > 0.
|
||
|
ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This
|
||
|
ensures that every element in the input tensor is covered by a sliding window.
|
||
|
return_indices: If ``True``, will return the argmax along with the max values.
|
||
|
Useful for :class:`torch.nn.functional.max_unpool1d` later
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
max_pool1d_with_indices,
|
||
|
(input,),
|
||
|
input,
|
||
|
kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
dilation=dilation,
|
||
|
ceil_mode=ceil_mode,
|
||
|
return_indices=return_indices,
|
||
|
)
|
||
|
if stride is None:
|
||
|
stride = torch.jit.annotate(List[int], [])
|
||
|
return torch.max_pool1d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode)
|
||
|
|
||
|
|
||
|
def _max_pool1d(
|
||
|
input: Tensor, kernel_size: BroadcastingList1[int],
|
||
|
stride: Optional[BroadcastingList1[int]] = None,
|
||
|
padding: BroadcastingList1[int] = 0,
|
||
|
dilation: BroadcastingList1[int] = 1,
|
||
|
ceil_mode: bool = False,
|
||
|
return_indices: bool = False
|
||
|
) -> Tensor:
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
max_pool1d,
|
||
|
(input,),
|
||
|
input,
|
||
|
kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
dilation=dilation,
|
||
|
ceil_mode=ceil_mode,
|
||
|
return_indices=return_indices,
|
||
|
)
|
||
|
if stride is None:
|
||
|
stride = torch.jit.annotate(List[int], [])
|
||
|
return torch.max_pool1d(input, kernel_size, stride, padding, dilation, ceil_mode)
|
||
|
|
||
|
|
||
|
max_pool1d = boolean_dispatch(
|
||
|
arg_name="return_indices",
|
||
|
arg_index=6,
|
||
|
default=False,
|
||
|
if_true=max_pool1d_with_indices,
|
||
|
if_false=_max_pool1d,
|
||
|
module_name=__name__,
|
||
|
func_name="max_pool1d",
|
||
|
)
|
||
|
|
||
|
|
||
|
def max_pool2d_with_indices(
|
||
|
input: Tensor, kernel_size: BroadcastingList2[int],
|
||
|
stride: Optional[BroadcastingList2[int]] = None,
|
||
|
padding: BroadcastingList2[int] = 0,
|
||
|
dilation: BroadcastingList2[int] = 1,
|
||
|
ceil_mode: bool = False,
|
||
|
return_indices: bool = False
|
||
|
) -> Tuple[Tensor, Tensor]: # noqa: D400
|
||
|
r"""
|
||
|
max_pool2d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)
|
||
|
|
||
|
Applies a 2D max pooling over an input signal composed of several input
|
||
|
planes.
|
||
|
|
||
|
.. note::
|
||
|
The order of :attr:`ceil_mode` and :attr:`return_indices` is different from
|
||
|
what seen in :class:`~torch.nn.MaxPool2d`, and will change in a future release.
|
||
|
|
||
|
See :class:`~torch.nn.MaxPool2d` for details.
|
||
|
|
||
|
Args:
|
||
|
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iH , iW)`, minibatch dim optional.
|
||
|
kernel_size: size of the pooling region. Can be a single number or a
|
||
|
tuple `(kH, kW)`
|
||
|
stride: stride of the pooling operation. Can be a single number or a
|
||
|
tuple `(sH, sW)`. Default: :attr:`kernel_size`
|
||
|
padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2.
|
||
|
dilation: The stride between elements within a sliding window, must be > 0.
|
||
|
ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This
|
||
|
ensures that every element in the input tensor is covered by a sliding window.
|
||
|
return_indices: If ``True``, will return the argmax along with the max values.
|
||
|
Useful for :class:`torch.nn.functional.max_unpool2d` later
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
max_pool2d_with_indices,
|
||
|
(input,),
|
||
|
input,
|
||
|
kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
dilation=dilation,
|
||
|
ceil_mode=ceil_mode,
|
||
|
return_indices=return_indices,
|
||
|
)
|
||
|
if stride is None:
|
||
|
stride = torch.jit.annotate(List[int], [])
|
||
|
return torch._C._nn.max_pool2d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode)
|
||
|
|
||
|
|
||
|
def _max_pool2d(
|
||
|
input: Tensor, kernel_size: BroadcastingList2[int],
|
||
|
stride: Optional[BroadcastingList2[int]] = None,
|
||
|
padding: BroadcastingList2[int] = 0,
|
||
|
dilation: BroadcastingList2[int] = 1,
|
||
|
ceil_mode: bool = False,
|
||
|
return_indices: bool = False
|
||
|
) -> Tensor:
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
max_pool2d,
|
||
|
(input,),
|
||
|
input,
|
||
|
kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
dilation=dilation,
|
||
|
ceil_mode=ceil_mode,
|
||
|
return_indices=return_indices,
|
||
|
)
|
||
|
if stride is None:
|
||
|
stride = torch.jit.annotate(List[int], [])
|
||
|
return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
|
||
|
|
||
|
|
||
|
max_pool2d = boolean_dispatch(
|
||
|
arg_name="return_indices",
|
||
|
arg_index=6,
|
||
|
default=False,
|
||
|
if_true=max_pool2d_with_indices,
|
||
|
if_false=_max_pool2d,
|
||
|
module_name=__name__,
|
||
|
func_name="max_pool2d",
|
||
|
)
|
||
|
|
||
|
|
||
|
def max_pool3d_with_indices(
|
||
|
input: Tensor, kernel_size: BroadcastingList3[int],
|
||
|
stride: Optional[BroadcastingList3[int]] = None,
|
||
|
padding: BroadcastingList3[int] = 0,
|
||
|
dilation: BroadcastingList3[int] = 1,
|
||
|
ceil_mode: bool = False,
|
||
|
return_indices: bool = False
|
||
|
) -> Tuple[Tensor, Tensor]: # noqa: D400
|
||
|
r"""
|
||
|
max_pool3d(input, kernel_size, stride=None, padding=0, dilation=1, ceil_mode=False, return_indices=False)
|
||
|
|
||
|
Applies a 3D max pooling over an input signal composed of several input
|
||
|
planes.
|
||
|
|
||
|
.. note::
|
||
|
The order of :attr:`ceil_mode` and :attr:`return_indices` is different from
|
||
|
what seen in :class:`~torch.nn.MaxPool3d`, and will change in a future release.
|
||
|
|
||
|
See :class:`~torch.nn.MaxPool3d` for details.
|
||
|
|
||
|
Args:
|
||
|
input: input tensor :math:`(\text{minibatch} , \text{in\_channels} , iD, iH , iW)`, minibatch dim optional.
|
||
|
kernel_size: size of the pooling region. Can be a single number or a
|
||
|
tuple `(kT, kH, kW)`
|
||
|
stride: stride of the pooling operation. Can be a single number or a
|
||
|
tuple `(sT, sH, sW)`. Default: :attr:`kernel_size`
|
||
|
padding: Implicit negative infinity padding to be added on both sides, must be >= 0 and <= kernel_size / 2.
|
||
|
dilation: The stride between elements within a sliding window, must be > 0.
|
||
|
ceil_mode: If ``True``, will use `ceil` instead of `floor` to compute the output shape. This
|
||
|
ensures that every element in the input tensor is covered by a sliding window.
|
||
|
return_indices: If ``True``, will return the argmax along with the max values.
|
||
|
Useful for :class:`torch.nn.functional.max_unpool3d` later
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
max_pool3d_with_indices,
|
||
|
(input,),
|
||
|
input,
|
||
|
kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
dilation=dilation,
|
||
|
ceil_mode=ceil_mode,
|
||
|
return_indices=return_indices,
|
||
|
)
|
||
|
if stride is None:
|
||
|
stride = torch.jit.annotate(List[int], [])
|
||
|
return torch._C._nn.max_pool3d_with_indices(input, kernel_size, stride, padding, dilation, ceil_mode)
|
||
|
|
||
|
|
||
|
def _max_pool3d(
|
||
|
input: Tensor, kernel_size: BroadcastingList3[int],
|
||
|
stride: Optional[BroadcastingList3[int]] = None,
|
||
|
padding: BroadcastingList3[int] = 0,
|
||
|
dilation: BroadcastingList3[int] = 1,
|
||
|
ceil_mode: bool = False,
|
||
|
return_indices: bool = False
|
||
|
) -> Tensor:
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
max_pool3d,
|
||
|
(input,),
|
||
|
input,
|
||
|
kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
dilation=dilation,
|
||
|
ceil_mode=ceil_mode,
|
||
|
return_indices=return_indices,
|
||
|
)
|
||
|
if stride is None:
|
||
|
stride = torch.jit.annotate(List[int], [])
|
||
|
return torch.max_pool3d(input, kernel_size, stride, padding, dilation, ceil_mode)
|
||
|
|
||
|
|
||
|
max_pool3d = boolean_dispatch(
|
||
|
arg_name="return_indices",
|
||
|
arg_index=6,
|
||
|
default=False,
|
||
|
if_true=max_pool3d_with_indices,
|
||
|
if_false=_max_pool3d,
|
||
|
module_name=__name__,
|
||
|
func_name="max_pool3d",
|
||
|
)
|
||
|
|
||
|
|
||
|
def _unpool_output_size(
|
||
|
input: Tensor, kernel_size: List[int], stride: List[int], padding: List[int], output_size: Optional[List[int]]
|
||
|
) -> List[int]:
|
||
|
input_size = input.size()
|
||
|
default_size = torch.jit.annotate(List[int], [])
|
||
|
for d in range(len(kernel_size)):
|
||
|
default_size.append((input_size[-len(kernel_size) + d] - 1) * stride[d] + kernel_size[d] - 2 * padding[d])
|
||
|
if output_size is None:
|
||
|
ret = default_size
|
||
|
else:
|
||
|
if len(output_size) == len(kernel_size) + 2:
|
||
|
output_size = output_size[2:]
|
||
|
if len(output_size) != len(kernel_size):
|
||
|
raise ValueError(
|
||
|
"output_size should be a sequence containing "
|
||
|
f"{len(kernel_size)} or {len(kernel_size) + 2} elements, but it has a length of '{len(output_size)}'"
|
||
|
)
|
||
|
for d in range(len(kernel_size)):
|
||
|
min_size = default_size[d] - stride[d]
|
||
|
max_size = default_size[d] + stride[d]
|
||
|
if not (min_size < output_size[d] < max_size):
|
||
|
raise ValueError(
|
||
|
f'invalid output_size "{output_size}" (dim {d} must be between {min_size} and {max_size})'
|
||
|
)
|
||
|
|
||
|
ret = output_size
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def max_unpool1d(
|
||
|
input: Tensor, indices: Tensor,
|
||
|
kernel_size: BroadcastingList1[int],
|
||
|
stride: Optional[BroadcastingList1[int]] = None,
|
||
|
padding: BroadcastingList1[int] = 0,
|
||
|
output_size: Optional[BroadcastingList1[int]] = None
|
||
|
) -> Tensor:
|
||
|
r"""Compute a partial inverse of :class:`MaxPool1d`.
|
||
|
|
||
|
See :class:`~torch.nn.MaxUnpool1d` for details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
max_unpool1d,
|
||
|
(input,),
|
||
|
input,
|
||
|
indices,
|
||
|
kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
output_size=output_size,
|
||
|
)
|
||
|
kernel_size = _single(kernel_size)
|
||
|
if stride is not None:
|
||
|
_stride = _single(stride)
|
||
|
else:
|
||
|
_stride = kernel_size
|
||
|
padding = _single(padding)
|
||
|
output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size)
|
||
|
if isinstance(output_size, list):
|
||
|
output_size = output_size + [1]
|
||
|
else:
|
||
|
output_size = output_size + (1,)
|
||
|
return torch._C._nn.max_unpool2d(input.unsqueeze(-1), indices.unsqueeze(-1), output_size).squeeze(-1)
|
||
|
|
||
|
|
||
|
def max_unpool2d(
|
||
|
input: Tensor, indices: Tensor,
|
||
|
kernel_size: BroadcastingList2[int],
|
||
|
stride: Optional[BroadcastingList2[int]] = None,
|
||
|
padding: BroadcastingList2[int] = 0,
|
||
|
output_size: Optional[BroadcastingList2[int]] = None
|
||
|
) -> Tensor:
|
||
|
r"""Compute a partial inverse of :class:`MaxPool2d`.
|
||
|
|
||
|
See :class:`~torch.nn.MaxUnpool2d` for details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
max_unpool2d,
|
||
|
(input,),
|
||
|
input,
|
||
|
indices,
|
||
|
kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
output_size=output_size,
|
||
|
)
|
||
|
kernel_size = _pair(kernel_size)
|
||
|
if stride is not None:
|
||
|
_stride = _pair(stride)
|
||
|
else:
|
||
|
_stride = kernel_size
|
||
|
padding = _pair(padding)
|
||
|
output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size)
|
||
|
return torch._C._nn.max_unpool2d(input, indices, output_size)
|
||
|
|
||
|
|
||
|
def max_unpool3d(
|
||
|
input: Tensor, indices: Tensor,
|
||
|
kernel_size: BroadcastingList3[int],
|
||
|
stride: Optional[BroadcastingList3[int]] = None,
|
||
|
padding: BroadcastingList3[int] = 0,
|
||
|
output_size: Optional[BroadcastingList3[int]] = None
|
||
|
) -> Tensor:
|
||
|
r"""Compute a partial inverse of :class:`MaxPool3d`.
|
||
|
|
||
|
See :class:`~torch.nn.MaxUnpool3d` for details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
max_unpool3d,
|
||
|
(input,),
|
||
|
input,
|
||
|
indices,
|
||
|
kernel_size,
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
output_size=output_size,
|
||
|
)
|
||
|
kernel_size = _triple(kernel_size)
|
||
|
if stride is not None:
|
||
|
_stride = _triple(stride)
|
||
|
else:
|
||
|
_stride = kernel_size
|
||
|
padding = _triple(padding)
|
||
|
output_size = _unpool_output_size(input, kernel_size, _stride, padding, output_size)
|
||
|
return torch._C._nn.max_unpool3d(input, indices, output_size, _stride, padding)
|
||
|
|
||
|
|
||
|
def lp_pool3d(
|
||
|
input: Tensor, norm_type: Union[int, float],
|
||
|
kernel_size: BroadcastingList3[int],
|
||
|
stride: Optional[BroadcastingList3[int]] = None,
|
||
|
ceil_mode: bool = False
|
||
|
) -> Tensor:
|
||
|
r"""
|
||
|
Apply a 3D power-average pooling over an input signal composed of several input planes.
|
||
|
|
||
|
If the sum of all inputs to the power of `p` is
|
||
|
zero, the gradient is set to zero as well.
|
||
|
|
||
|
See :class:`~torch.nn.LPPool3d` for details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
lp_pool3d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode
|
||
|
)
|
||
|
kd, kw, kh = utils._triple(kernel_size)
|
||
|
if stride is not None:
|
||
|
out = avg_pool3d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
|
||
|
else:
|
||
|
out = avg_pool3d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)
|
||
|
|
||
|
return (torch.sign(out) * relu(torch.abs(out))).mul(kd * kw * kh).pow(1.0 / norm_type)
|
||
|
|
||
|
|
||
|
def lp_pool2d(
|
||
|
input: Tensor, norm_type: Union[int, float],
|
||
|
kernel_size: BroadcastingList2[int],
|
||
|
stride: Optional[BroadcastingList2[int]] = None,
|
||
|
ceil_mode: bool = False
|
||
|
) -> Tensor:
|
||
|
r"""
|
||
|
Apply a 2D power-average pooling over an input signal composed of several input planes.
|
||
|
|
||
|
If the sum of all inputs to the power of `p` is
|
||
|
zero, the gradient is set to zero as well.
|
||
|
|
||
|
See :class:`~torch.nn.LPPool2d` for details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
lp_pool2d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode
|
||
|
)
|
||
|
kw, kh = utils._pair(kernel_size)
|
||
|
if stride is not None:
|
||
|
out = avg_pool2d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
|
||
|
else:
|
||
|
out = avg_pool2d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)
|
||
|
|
||
|
return (torch.sign(out) * relu(torch.abs(out))).mul(kw * kh).pow(1.0 / norm_type)
|
||
|
|
||
|
|
||
|
def lp_pool1d(
|
||
|
input: Tensor, norm_type: Union[int, float],
|
||
|
kernel_size: int,
|
||
|
stride: Optional[BroadcastingList1[int]] = None,
|
||
|
ceil_mode: bool = False
|
||
|
) -> Tensor:
|
||
|
r"""Apply a 1D power-average pooling over an input signal composed of several input planes.
|
||
|
|
||
|
If the sum of all inputs to the power of `p` is
|
||
|
zero, the gradient is set to zero as well.
|
||
|
|
||
|
See :class:`~torch.nn.LPPool1d` for details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
lp_pool1d, (input,), input, norm_type, kernel_size, stride=stride, ceil_mode=ceil_mode
|
||
|
)
|
||
|
if stride is not None:
|
||
|
out = avg_pool1d(input.pow(norm_type), kernel_size, stride, 0, ceil_mode)
|
||
|
else:
|
||
|
out = avg_pool1d(input.pow(norm_type), kernel_size, padding=0, ceil_mode=ceil_mode)
|
||
|
|
||
|
return (torch.sign(out) * relu(torch.abs(out))).mul(kernel_size).pow(1.0 / norm_type)
|
||
|
|
||
|
|
||
|
def adaptive_max_pool1d_with_indices(
|
||
|
input: Tensor, output_size: BroadcastingList1[int], return_indices: bool = False
|
||
|
) -> Tuple[Tensor, Tensor]: # noqa: D400
|
||
|
r"""
|
||
|
adaptive_max_pool1d(input, output_size, return_indices=False)
|
||
|
|
||
|
Applies a 1D adaptive max pooling over an input signal composed of
|
||
|
several input planes.
|
||
|
|
||
|
See :class:`~torch.nn.AdaptiveMaxPool1d` for details and output shape.
|
||
|
|
||
|
Args:
|
||
|
output_size: the target output size (single integer)
|
||
|
return_indices: whether to return pooling indices. Default: ``False``
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
adaptive_max_pool1d_with_indices, (input,), input, output_size, return_indices=return_indices
|
||
|
)
|
||
|
return torch.adaptive_max_pool1d(input, output_size)
|
||
|
|
||
|
|
||
|
def _adaptive_max_pool1d(input: Tensor, output_size: BroadcastingList1[int], return_indices: bool = False) -> Tensor:
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
adaptive_max_pool1d, (input,), input, output_size, return_indices=return_indices
|
||
|
)
|
||
|
return adaptive_max_pool1d_with_indices(input, output_size)[0]
|
||
|
|
||
|
|
||
|
adaptive_max_pool1d = boolean_dispatch(
|
||
|
arg_name="return_indices",
|
||
|
arg_index=2,
|
||
|
default=False,
|
||
|
if_true=adaptive_max_pool1d_with_indices,
|
||
|
if_false=_adaptive_max_pool1d,
|
||
|
module_name=__name__,
|
||
|
func_name="adaptive_max_pool1d",
|
||
|
)
|
||
|
|
||
|
|
||
|
def adaptive_max_pool2d_with_indices(
|
||
|
input: Tensor, output_size: BroadcastingList2[int],
|
||
|
return_indices: bool = False
|
||
|
) -> Tuple[Tensor, Tensor]: # noqa: D400
|
||
|
r"""adaptive_max_pool2d(input, output_size, return_indices=False)
|
||
|
|
||
|
Applies a 2D adaptive max pooling over an input signal composed of
|
||
|
several input planes.
|
||
|
|
||
|
See :class:`~torch.nn.AdaptiveMaxPool2d` for details and output shape.
|
||
|
|
||
|
Args:
|
||
|
output_size: the target output size (single integer or
|
||
|
double-integer tuple)
|
||
|
return_indices: whether to return pooling indices. Default: ``False``
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
adaptive_max_pool2d_with_indices, (input,), input, output_size, return_indices=return_indices
|
||
|
)
|
||
|
output_size = _list_with_default(output_size, input.size())
|
||
|
return torch._C._nn.adaptive_max_pool2d(input, output_size)
|
||
|
|
||
|
|
||
|
def _adaptive_max_pool2d(input: Tensor, output_size: BroadcastingList2[int], return_indices: bool = False) -> Tensor:
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
adaptive_max_pool2d, (input,), input, output_size, return_indices=return_indices
|
||
|
)
|
||
|
return adaptive_max_pool2d_with_indices(input, output_size)[0]
|
||
|
|
||
|
|
||
|
adaptive_max_pool2d = boolean_dispatch(
|
||
|
arg_name="return_indices",
|
||
|
arg_index=2,
|
||
|
default=False,
|
||
|
if_true=adaptive_max_pool2d_with_indices,
|
||
|
if_false=_adaptive_max_pool2d,
|
||
|
module_name=__name__,
|
||
|
func_name="adaptive_max_pool2d",
|
||
|
)
|
||
|
|
||
|
|
||
|
def adaptive_max_pool3d_with_indices(
|
||
|
input: Tensor, output_size: BroadcastingList3[int],
|
||
|
return_indices: bool = False
|
||
|
) -> Tuple[Tensor, Tensor]: # noqa: D400
|
||
|
r"""
|
||
|
adaptive_max_pool3d(input, output_size, return_indices=False)
|
||
|
|
||
|
Applies a 3D adaptive max pooling over an input signal composed of
|
||
|
several input planes.
|
||
|
|
||
|
See :class:`~torch.nn.AdaptiveMaxPool3d` for details and output shape.
|
||
|
|
||
|
Args:
|
||
|
output_size: the target output size (single integer or
|
||
|
triple-integer tuple)
|
||
|
return_indices: whether to return pooling indices. Default: ``False``
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
adaptive_max_pool3d_with_indices, (input,), input, output_size, return_indices=return_indices
|
||
|
)
|
||
|
output_size = _list_with_default(output_size, input.size())
|
||
|
return torch._C._nn.adaptive_max_pool3d(input, output_size)
|
||
|
|
||
|
|
||
|
def _adaptive_max_pool3d(input: Tensor, output_size: BroadcastingList3[int], return_indices: bool = False) -> Tensor:
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
adaptive_max_pool3d, (input,), input, output_size, return_indices=return_indices
|
||
|
)
|
||
|
return adaptive_max_pool3d_with_indices(input, output_size)[0]
|
||
|
|
||
|
|
||
|
adaptive_max_pool3d = boolean_dispatch(
|
||
|
arg_name="return_indices",
|
||
|
arg_index=2,
|
||
|
default=False,
|
||
|
if_true=adaptive_max_pool3d_with_indices,
|
||
|
if_false=_adaptive_max_pool3d,
|
||
|
module_name=__name__,
|
||
|
func_name="adaptive_max_pool3d",
|
||
|
)
|
||
|
|
||
|
|
||
|
adaptive_avg_pool1d = _add_docstr(
|
||
|
torch.adaptive_avg_pool1d,
|
||
|
r"""
|
||
|
adaptive_avg_pool1d(input, output_size) -> Tensor
|
||
|
|
||
|
Applies a 1D adaptive average pooling over an input signal composed of
|
||
|
several input planes.
|
||
|
|
||
|
See :class:`~torch.nn.AdaptiveAvgPool1d` for details and output shape.
|
||
|
|
||
|
Args:
|
||
|
output_size: the target output size (single integer)
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
def adaptive_avg_pool2d(input: Tensor, output_size: BroadcastingList2[int]) -> Tensor:
|
||
|
r"""Apply a 2D adaptive average pooling over an input signal composed of several input planes.
|
||
|
|
||
|
See :class:`~torch.nn.AdaptiveAvgPool2d` for details and output shape.
|
||
|
|
||
|
Args:
|
||
|
output_size: the target output size (single integer or
|
||
|
double-integer tuple)
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(adaptive_avg_pool2d, (input,), input, output_size)
|
||
|
_output_size = _list_with_default(output_size, input.size())
|
||
|
return torch._C._nn.adaptive_avg_pool2d(input, _output_size)
|
||
|
|
||
|
|
||
|
def adaptive_avg_pool3d(input: Tensor, output_size: BroadcastingList3[int]) -> Tensor:
|
||
|
r"""Apply a 3D adaptive average pooling over an input signal composed of several input planes.
|
||
|
|
||
|
See :class:`~torch.nn.AdaptiveAvgPool3d` for details and output shape.
|
||
|
|
||
|
Args:
|
||
|
output_size: the target output size (single integer or
|
||
|
triple-integer tuple)
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(adaptive_avg_pool3d, (input,), input, output_size)
|
||
|
_output_size = _list_with_default(output_size, input.size())
|
||
|
return torch._C._nn.adaptive_avg_pool3d(input, _output_size)
|
||
|
|
||
|
|
||
|
# Activation functions
|
||
|
def dropout(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor:
|
||
|
r"""During training, randomly zeroes some elements of the input tensor with probability :attr:`p`.
|
||
|
|
||
|
Uses samples from a Bernoulli distribution.
|
||
|
|
||
|
See :class:`~torch.nn.Dropout` for details.
|
||
|
|
||
|
Args:
|
||
|
p: probability of an element to be zeroed. Default: 0.5
|
||
|
training: apply dropout if is ``True``. Default: ``True``
|
||
|
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(dropout, (input,), input, p=p, training=training, inplace=inplace)
|
||
|
if p < 0.0 or p > 1.0:
|
||
|
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
|
||
|
return _VF.dropout_(input, p, training) if inplace else _VF.dropout(input, p, training)
|
||
|
|
||
|
|
||
|
def alpha_dropout(input: Tensor, p: float = 0.5, training: bool = False, inplace: bool = False) -> Tensor:
|
||
|
r"""Apply alpha dropout to the input.
|
||
|
|
||
|
See :class:`~torch.nn.AlphaDropout` for details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(alpha_dropout, (input,), input, p=p, training=training, inplace=inplace)
|
||
|
if p < 0.0 or p > 1.0:
|
||
|
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
|
||
|
return _VF.alpha_dropout_(input, p, training) if inplace else _VF.alpha_dropout(input, p, training)
|
||
|
|
||
|
|
||
|
def dropout1d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor:
|
||
|
r"""Randomly zero out entire channels (a channel is a 1D feature map).
|
||
|
|
||
|
For example, the :math:`j`-th channel of the :math:`i`-th sample in the
|
||
|
batched input is a 1D tensor :math:`\text{input}[i, j]` of the input tensor.
|
||
|
Each channel will be zeroed out independently on every forward call with
|
||
|
probability :attr:`p` using samples from a Bernoulli distribution.
|
||
|
|
||
|
See :class:`~torch.nn.Dropout1d` for details.
|
||
|
|
||
|
Args:
|
||
|
p: probability of a channel to be zeroed. Default: 0.5
|
||
|
training: apply dropout if is ``True``. Default: ``True``
|
||
|
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(dropout1d, (input,), input, p=p, training=training, inplace=inplace)
|
||
|
if p < 0.0 or p > 1.0:
|
||
|
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
|
||
|
inp_dim = input.dim()
|
||
|
if inp_dim not in (2, 3):
|
||
|
raise RuntimeError(f"dropout1d: Expected 2D or 3D input, but received a {inp_dim}D input. "
|
||
|
"Note that dropout1d exists to provide channel-wise dropout on inputs with 1 "
|
||
|
"spatial dimension, a channel dimension, and an optional batch dimension "
|
||
|
"(i.e. 2D or 3D inputs).")
|
||
|
|
||
|
is_batched = inp_dim == 3
|
||
|
if not is_batched:
|
||
|
input = input.unsqueeze_(0) if inplace else input.unsqueeze(0)
|
||
|
|
||
|
result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training)
|
||
|
|
||
|
if not is_batched:
|
||
|
result = result.squeeze_(0) if inplace else result.squeeze(0)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def dropout2d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor:
|
||
|
r"""Randomly zero out entire channels (a channel is a 2D feature map).
|
||
|
|
||
|
For example, the :math:`j`-th channel of the :math:`i`-th sample in the
|
||
|
batched input is a 2D tensor :math:`\text{input}[i, j]` of the input tensor.
|
||
|
Each channel will be zeroed out independently on every forward call with
|
||
|
probability :attr:`p` using samples from a Bernoulli distribution.
|
||
|
|
||
|
See :class:`~torch.nn.Dropout2d` for details.
|
||
|
|
||
|
Args:
|
||
|
p: probability of a channel to be zeroed. Default: 0.5
|
||
|
training: apply dropout if is ``True``. Default: ``True``
|
||
|
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(dropout2d, (input,), input, p=p, training=training, inplace=inplace)
|
||
|
if p < 0.0 or p > 1.0:
|
||
|
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
|
||
|
inp_dim = input.dim()
|
||
|
if inp_dim not in (3, 4):
|
||
|
warn_msg = (f"dropout2d: Received a {inp_dim}-D input to dropout2d, which is deprecated "
|
||
|
"and will result in an error in a future release. To retain the behavior "
|
||
|
"and silence this warning, please use dropout instead. Note that dropout2d "
|
||
|
"exists to provide channel-wise dropout on inputs with 2 spatial dimensions, "
|
||
|
"a channel dimension, and an optional batch dimension (i.e. 3D or 4D inputs).")
|
||
|
warnings.warn(warn_msg)
|
||
|
|
||
|
# TODO: Properly support no-batch-dim inputs. For now, these are NOT supported; passing
|
||
|
# a 3D input will perform dropout1d behavior instead. This was done historically and the
|
||
|
# behavior is maintained here for now.
|
||
|
# See https://github.com/pytorch/pytorch/issues/77081
|
||
|
if inp_dim == 3:
|
||
|
warnings.warn("dropout2d: Received a 3D input to dropout2d and assuming that channel-wise "
|
||
|
"1D dropout behavior is desired - input is interpreted as shape (N, C, L), where C "
|
||
|
"is the channel dim. This behavior will change in a future release to interpret the "
|
||
|
"input as one without a batch dimension, i.e. shape (C, H, W). To maintain the 1D "
|
||
|
"channel-wise dropout behavior, please switch to using dropout1d instead.")
|
||
|
|
||
|
result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training)
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
def dropout3d(input: Tensor, p: float = 0.5, training: bool = True, inplace: bool = False) -> Tensor:
|
||
|
r"""Randomly zero out entire channels (a channel is a 3D feature map).
|
||
|
|
||
|
For example, the :math:`j`-th channel of the :math:`i`-th sample in the
|
||
|
batched input is a 3D tensor :math:`\text{input}[i, j]` of the input tensor.
|
||
|
Each channel will be zeroed out independently on every forward call with
|
||
|
probability :attr:`p` using samples from a Bernoulli distribution.
|
||
|
|
||
|
See :class:`~torch.nn.Dropout3d` for details.
|
||
|
|
||
|
Args:
|
||
|
p: probability of a channel to be zeroed. Default: 0.5
|
||
|
training: apply dropout if is ``True``. Default: ``True``
|
||
|
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(dropout3d, (input,), input, p=p, training=training, inplace=inplace)
|
||
|
if p < 0.0 or p > 1.0:
|
||
|
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
|
||
|
inp_dim = input.dim()
|
||
|
if inp_dim not in (4, 5):
|
||
|
warn_msg = (f"dropout3d: Received a {inp_dim}-D input to dropout3d, which is deprecated "
|
||
|
"and will result in an error in a future release. To retain the behavior "
|
||
|
"and silence this warning, please use dropout instead. Note that dropout3d "
|
||
|
"exists to provide channel-wise dropout on inputs with 3 spatial dimensions, "
|
||
|
"a channel dimension, and an optional batch dimension (i.e. 4D or 5D inputs).")
|
||
|
warnings.warn(warn_msg)
|
||
|
|
||
|
is_batched = inp_dim == 5
|
||
|
if not is_batched:
|
||
|
input = input.unsqueeze_(0) if inplace else input.unsqueeze(0)
|
||
|
|
||
|
result = _VF.feature_dropout_(input, p, training) if inplace else _VF.feature_dropout(input, p, training)
|
||
|
|
||
|
if not is_batched:
|
||
|
result = result.squeeze_(0) if inplace else result.squeeze(0)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def feature_alpha_dropout(input: Tensor, p: float = 0.5, training: bool = False, inplace: bool = False) -> Tensor:
|
||
|
r"""Randomly masks out entire channels (a channel is a feature map).
|
||
|
|
||
|
For example, the :math:`j`-th channel of the :math:`i`-th sample in the batch input
|
||
|
is a tensor :math:`\text{input}[i, j]` of the input tensor. Instead of
|
||
|
setting activations to zero, as in regular Dropout, the activations are set
|
||
|
to the negative saturation value of the SELU activation function.
|
||
|
|
||
|
Each element will be masked independently on every forward call with
|
||
|
probability :attr:`p` using samples from a Bernoulli distribution.
|
||
|
The elements to be masked are randomized on every forward call, and scaled
|
||
|
and shifted to maintain zero mean and unit variance.
|
||
|
|
||
|
See :class:`~torch.nn.FeatureAlphaDropout` for details.
|
||
|
|
||
|
Args:
|
||
|
p: dropout probability of a channel to be zeroed. Default: 0.5
|
||
|
training: apply dropout if is ``True``. Default: ``True``
|
||
|
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
feature_alpha_dropout, (input,), input, p=p, training=training, inplace=inplace
|
||
|
)
|
||
|
if p < 0.0 or p > 1.0:
|
||
|
raise ValueError(f"dropout probability has to be between 0 and 1, but got {p}")
|
||
|
return _VF.feature_alpha_dropout_(input, p, training) if inplace else _VF.feature_alpha_dropout(input, p, training)
|
||
|
|
||
|
|
||
|
def _threshold(input: Tensor, threshold: float, value: float, inplace: bool = False) -> Tensor:
|
||
|
r"""Apply a threshold to each element of the input Tensor.
|
||
|
|
||
|
See :class:`~torch.nn.Threshold` for more details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(_threshold, (input,), input, threshold, value, inplace=inplace)
|
||
|
if inplace:
|
||
|
result = _VF.threshold_(input, threshold, value)
|
||
|
else:
|
||
|
result = _VF.threshold(input, threshold, value)
|
||
|
return result
|
||
|
|
||
|
|
||
|
# We define this function as _threshold because it takes an argument
|
||
|
# named threshold, which clobbers the recursive reference to the
|
||
|
# function needed for __torch_function__ support
|
||
|
threshold = _threshold
|
||
|
|
||
|
threshold_ = _add_docstr(
|
||
|
_VF.threshold_,
|
||
|
r"""
|
||
|
threshold_(input, threshold, value) -> Tensor
|
||
|
|
||
|
In-place version of :func:`~threshold`.
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
def relu(input: Tensor, inplace: bool = False) -> Tensor: # noqa: D400,D402
|
||
|
r"""relu(input, inplace=False) -> Tensor
|
||
|
|
||
|
Applies the rectified linear unit function element-wise. See
|
||
|
:class:`~torch.nn.ReLU` for more details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(relu, (input,), input, inplace=inplace)
|
||
|
if inplace:
|
||
|
result = torch.relu_(input)
|
||
|
else:
|
||
|
result = torch.relu(input)
|
||
|
return result
|
||
|
|
||
|
|
||
|
relu_ = _add_docstr(
|
||
|
torch.relu_,
|
||
|
r"""
|
||
|
relu_(input) -> Tensor
|
||
|
|
||
|
In-place version of :func:`~relu`.
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
def glu(input: Tensor, dim: int = -1) -> Tensor: # noqa: D400,D402
|
||
|
r"""
|
||
|
glu(input, dim=-1) -> Tensor
|
||
|
|
||
|
The gated linear unit. Computes:
|
||
|
|
||
|
.. math ::
|
||
|
\text{GLU}(a, b) = a \otimes \sigma(b)
|
||
|
|
||
|
where `input` is split in half along `dim` to form `a` and `b`, :math:`\sigma`
|
||
|
is the sigmoid function and :math:`\otimes` is the element-wise product between matrices.
|
||
|
|
||
|
See `Language Modeling with Gated Convolutional Networks <https://arxiv.org/abs/1612.08083>`_.
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): input tensor
|
||
|
dim (int): dimension on which to split the input. Default: -1
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(glu, (input,), input, dim=dim)
|
||
|
if input.dim() == 0:
|
||
|
raise RuntimeError("glu does not support scalars because halving size must be even")
|
||
|
return torch._C._nn.glu(input, dim)
|
||
|
|
||
|
|
||
|
def hardtanh(input: Tensor, min_val: float = -1., max_val: float = 1., inplace: bool = False) -> Tensor: # noqa: D400,D402
|
||
|
r"""
|
||
|
hardtanh(input, min_val=-1., max_val=1., inplace=False) -> Tensor
|
||
|
|
||
|
Applies the HardTanh function element-wise. See :class:`~torch.nn.Hardtanh` for more
|
||
|
details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(hardtanh, (input,), input, min_val=min_val, max_val=max_val, inplace=inplace)
|
||
|
if inplace:
|
||
|
result = torch._C._nn.hardtanh_(input, min_val, max_val)
|
||
|
else:
|
||
|
result = torch._C._nn.hardtanh(input, min_val, max_val)
|
||
|
return result
|
||
|
|
||
|
|
||
|
hardtanh_ = _add_docstr(
|
||
|
torch._C._nn.hardtanh_,
|
||
|
r"""
|
||
|
hardtanh_(input, min_val=-1., max_val=1.) -> Tensor
|
||
|
|
||
|
In-place version of :func:`~hardtanh`.
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
def relu6(input: Tensor, inplace: bool = False) -> Tensor: # noqa: D400,D402
|
||
|
r"""relu6(input, inplace=False) -> Tensor
|
||
|
|
||
|
Applies the element-wise function :math:`\text{ReLU6}(x) = \min(\max(0,x), 6)`.
|
||
|
|
||
|
See :class:`~torch.nn.ReLU6` for more details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(relu6, (input,), input, inplace=inplace)
|
||
|
if inplace:
|
||
|
result = torch._C._nn.relu6_(input)
|
||
|
else:
|
||
|
result = torch._C._nn.relu6(input)
|
||
|
return result
|
||
|
|
||
|
|
||
|
def elu(input: Tensor, alpha: float = 1.0, inplace: bool = False) -> Tensor:
|
||
|
r"""Apply the Exponential Linear Unit (ELU) function element-wise.
|
||
|
|
||
|
See :class:`~torch.nn.ELU` for more details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(elu, (input,), input, alpha=alpha, inplace=inplace)
|
||
|
if inplace:
|
||
|
result = torch._C._nn.elu_(input, alpha)
|
||
|
else:
|
||
|
result = torch._C._nn.elu(input, alpha)
|
||
|
return result
|
||
|
|
||
|
|
||
|
elu_ = _add_docstr(
|
||
|
torch._C._nn.elu_,
|
||
|
r"""
|
||
|
elu_(input, alpha=1.) -> Tensor
|
||
|
|
||
|
In-place version of :func:`~elu`.
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
def selu(input: Tensor, inplace: bool = False) -> Tensor: # noqa: D400,D402
|
||
|
r"""selu(input, inplace=False) -> Tensor
|
||
|
|
||
|
Applies element-wise,
|
||
|
:math:`\text{SELU}(x) = scale * (\max(0,x) + \min(0, \alpha * (\exp(x) - 1)))`,
|
||
|
with :math:`\alpha=1.6732632423543772848170429916717` and
|
||
|
:math:`scale=1.0507009873554804934193349852946`.
|
||
|
|
||
|
See :class:`~torch.nn.SELU` for more details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(selu, (input,), input, inplace=inplace)
|
||
|
if inplace:
|
||
|
result = torch.selu_(input)
|
||
|
else:
|
||
|
result = torch.selu(input)
|
||
|
return result
|
||
|
|
||
|
|
||
|
selu_ = _add_docstr(
|
||
|
torch.selu_,
|
||
|
r"""
|
||
|
selu_(input) -> Tensor
|
||
|
|
||
|
In-place version of :func:`~selu`.
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
def celu(input: Tensor, alpha: float = 1.0, inplace: bool = False) -> Tensor: # noqa: D400,D402
|
||
|
r"""celu(input, alpha=1., inplace=False) -> Tensor
|
||
|
|
||
|
Applies element-wise,
|
||
|
:math:`\text{CELU}(x) = \max(0,x) + \min(0, \alpha * (\exp(x/\alpha) - 1))`.
|
||
|
|
||
|
See :class:`~torch.nn.CELU` for more details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(celu, (input,), input, alpha=alpha, inplace=inplace)
|
||
|
if inplace:
|
||
|
result = torch.celu_(input, alpha)
|
||
|
else:
|
||
|
result = torch.celu(input, alpha)
|
||
|
return result
|
||
|
|
||
|
|
||
|
celu_ = _add_docstr(
|
||
|
torch.celu_,
|
||
|
r"""
|
||
|
celu_(input, alpha=1.) -> Tensor
|
||
|
|
||
|
In-place version of :func:`~celu`.
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
def leaky_relu(input: Tensor, negative_slope: float = 0.01, inplace: bool = False) -> Tensor: # noqa: D400,D402
|
||
|
r"""
|
||
|
leaky_relu(input, negative_slope=0.01, inplace=False) -> Tensor
|
||
|
|
||
|
Applies element-wise,
|
||
|
:math:`\text{LeakyReLU}(x) = \max(0, x) + \text{negative\_slope} * \min(0, x)`
|
||
|
|
||
|
See :class:`~torch.nn.LeakyReLU` for more details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(leaky_relu, (input,), input, negative_slope=negative_slope, inplace=inplace)
|
||
|
if inplace:
|
||
|
result = torch._C._nn.leaky_relu_(input, negative_slope)
|
||
|
else:
|
||
|
result = torch._C._nn.leaky_relu(input, negative_slope)
|
||
|
return result
|
||
|
|
||
|
|
||
|
leaky_relu_ = _add_docstr(
|
||
|
torch._C._nn.leaky_relu_,
|
||
|
r"""
|
||
|
leaky_relu_(input, negative_slope=0.01) -> Tensor
|
||
|
|
||
|
In-place version of :func:`~leaky_relu`.
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
prelu = _add_docstr(
|
||
|
torch.prelu,
|
||
|
r"""prelu(input, weight) -> Tensor
|
||
|
|
||
|
Applies element-wise the function
|
||
|
:math:`\text{PReLU}(x) = \max(0,x) + \text{weight} * \min(0,x)` where weight is a
|
||
|
learnable parameter.
|
||
|
|
||
|
.. note::
|
||
|
`weight` is expected to be a scalar or 1-D tensor. If `weight` is 1-D,
|
||
|
its size must match the number of input channels, determined by
|
||
|
`input.size(1)` when `input.dim() >= 2`, otherwise 1.
|
||
|
In the 1-D case, note that when `input` has dim > 2, `weight` can be expanded
|
||
|
to the shape of `input` in a way that is not possible using normal
|
||
|
:ref:`broadcasting semantics<broadcasting-semantics>`.
|
||
|
|
||
|
See :class:`~torch.nn.PReLU` for more details.
|
||
|
""")
|
||
|
|
||
|
|
||
|
def rrelu(
|
||
|
input: Tensor, lower: float = 1.0 / 8, upper: float = 1.0 / 3, training: bool = False, inplace: bool = False
|
||
|
) -> Tensor: # noqa: D400,D402
|
||
|
r"""rrelu(input, lower=1./8, upper=1./3, training=False, inplace=False) -> Tensor
|
||
|
|
||
|
Randomized leaky ReLU.
|
||
|
|
||
|
See :class:`~torch.nn.RReLU` for more details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
rrelu, (input,), input, lower=lower, upper=upper, training=training, inplace=inplace
|
||
|
)
|
||
|
if inplace:
|
||
|
result = torch.rrelu_(input, lower, upper, training)
|
||
|
else:
|
||
|
result = torch.rrelu(input, lower, upper, training)
|
||
|
return result
|
||
|
|
||
|
|
||
|
rrelu_ = _add_docstr(
|
||
|
torch.rrelu_,
|
||
|
r"""
|
||
|
rrelu_(input, lower=1./8, upper=1./3, training=False) -> Tensor
|
||
|
|
||
|
In-place version of :func:`~rrelu`.
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
logsigmoid = _add_docstr(
|
||
|
torch._C._nn.log_sigmoid,
|
||
|
r"""
|
||
|
logsigmoid(input) -> Tensor
|
||
|
|
||
|
Applies element-wise :math:`\text{LogSigmoid}(x_i) = \log \left(\frac{1}{1 + \exp(-x_i)}\right)`
|
||
|
|
||
|
See :class:`~torch.nn.LogSigmoid` for more details.
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
gelu = _add_docstr(
|
||
|
torch._C._nn.gelu,
|
||
|
r"""
|
||
|
gelu(input, approximate = 'none') -> Tensor
|
||
|
|
||
|
When the approximate argument is 'none', it applies element-wise the function
|
||
|
:math:`\text{GELU}(x) = x * \Phi(x)`
|
||
|
|
||
|
where :math:`\Phi(x)` is the Cumulative Distribution Function for Gaussian Distribution.
|
||
|
|
||
|
When the approximate argument is 'tanh', Gelu is estimated with
|
||
|
|
||
|
.. math::
|
||
|
\text{GELU}(x) = 0.5 * x * (1 + \text{Tanh}(\sqrt{2 / \pi} * (x + 0.044715 * x^3)))
|
||
|
|
||
|
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_.
|
||
|
""")
|
||
|
|
||
|
hardshrink = _add_docstr(
|
||
|
torch.hardshrink,
|
||
|
r"""
|
||
|
hardshrink(input, lambd=0.5) -> Tensor
|
||
|
|
||
|
Applies the hard shrinkage function element-wise
|
||
|
|
||
|
See :class:`~torch.nn.Hardshrink` for more details.
|
||
|
""")
|
||
|
|
||
|
|
||
|
def tanhshrink(input): # noqa: D400,D402
|
||
|
r"""tanhshrink(input) -> Tensor
|
||
|
|
||
|
Applies element-wise, :math:`\text{Tanhshrink}(x) = x - \text{Tanh}(x)`
|
||
|
|
||
|
See :class:`~torch.nn.Tanhshrink` for more details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(tanhshrink, (input,), input)
|
||
|
return input - input.tanh()
|
||
|
|
||
|
|
||
|
def softsign(input): # noqa: D400,D402
|
||
|
r"""softsign(input) -> Tensor
|
||
|
|
||
|
Applies element-wise, the function :math:`\text{SoftSign}(x) = \frac{x}{1 + |x|}`
|
||
|
|
||
|
See :class:`~torch.nn.Softsign` for more details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(softsign, (input,), input)
|
||
|
return input / (input.abs() + 1)
|
||
|
|
||
|
|
||
|
softplus = _add_docstr(
|
||
|
torch._C._nn.softplus,
|
||
|
r"""
|
||
|
softplus(input, beta=1, threshold=20) -> Tensor
|
||
|
|
||
|
Applies element-wise, the function :math:`\text{Softplus}(x) = \frac{1}{\beta} * \log(1 + \exp(\beta * x))`.
|
||
|
|
||
|
For numerical stability the implementation reverts to the linear function
|
||
|
when :math:`input \times \beta > threshold`.
|
||
|
|
||
|
See :class:`~torch.nn.Softplus` for more details.
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
def _get_softmax_dim(name: str, ndim: int, stacklevel: int) -> int:
|
||
|
warnings.warn(
|
||
|
f"Implicit dimension choice for {name} has been deprecated. Change the call to include dim=X as an argument.",
|
||
|
stacklevel=stacklevel,
|
||
|
)
|
||
|
if ndim == 0 or ndim == 1 or ndim == 3:
|
||
|
ret = 0
|
||
|
else:
|
||
|
ret = 1
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def softmin(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor:
|
||
|
r"""Apply a softmin function.
|
||
|
|
||
|
Note that :math:`\text{Softmin}(x) = \text{Softmax}(-x)`. See softmax definition for mathematical formula.
|
||
|
|
||
|
See :class:`~torch.nn.Softmin` for more details.
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): input
|
||
|
dim (int): A dimension along which softmin will be computed (so every slice
|
||
|
along dim will sum to 1).
|
||
|
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
|
||
|
If specified, the input tensor is casted to :attr:`dtype` before the operation
|
||
|
is performed. This is useful for preventing data type overflows. Default: None.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(softmin, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype)
|
||
|
if dim is None:
|
||
|
dim = _get_softmax_dim("softmin", input.dim(), _stacklevel)
|
||
|
if dtype is None:
|
||
|
ret = (-input).softmax(dim)
|
||
|
else:
|
||
|
ret = (-input).softmax(dim, dtype=dtype)
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def softmax(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor:
|
||
|
r"""Apply a softmax function.
|
||
|
|
||
|
Softmax is defined as:
|
||
|
|
||
|
:math:`\text{Softmax}(x_{i}) = \frac{\exp(x_i)}{\sum_j \exp(x_j)}`
|
||
|
|
||
|
It is applied to all slices along dim, and will re-scale them so that the elements
|
||
|
lie in the range `[0, 1]` and sum to 1.
|
||
|
|
||
|
See :class:`~torch.nn.Softmax` for more details.
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): input
|
||
|
dim (int): A dimension along which softmax will be computed.
|
||
|
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
|
||
|
If specified, the input tensor is casted to :attr:`dtype` before the operation
|
||
|
is performed. This is useful for preventing data type overflows. Default: None.
|
||
|
|
||
|
.. note::
|
||
|
This function doesn't work directly with NLLLoss,
|
||
|
which expects the Log to be computed between the Softmax and itself.
|
||
|
Use log_softmax instead (it's faster and has better numerical properties).
|
||
|
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype)
|
||
|
if dim is None:
|
||
|
dim = _get_softmax_dim("softmax", input.dim(), _stacklevel)
|
||
|
if dtype is None:
|
||
|
ret = input.softmax(dim)
|
||
|
else:
|
||
|
ret = input.softmax(dim, dtype=dtype)
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def gumbel_softmax(logits: Tensor, tau: float = 1, hard: bool = False, eps: float = 1e-10, dim: int = -1) -> Tensor:
|
||
|
r"""
|
||
|
Sample from the Gumbel-Softmax distribution (`Link 1`_ `Link 2`_) and optionally discretize.
|
||
|
|
||
|
Args:
|
||
|
logits: `[..., num_features]` unnormalized log probabilities
|
||
|
tau: non-negative scalar temperature
|
||
|
hard: if ``True``, the returned samples will be discretized as one-hot vectors,
|
||
|
but will be differentiated as if it is the soft sample in autograd
|
||
|
dim (int): A dimension along which softmax will be computed. Default: -1.
|
||
|
|
||
|
Returns:
|
||
|
Sampled tensor of same shape as `logits` from the Gumbel-Softmax distribution.
|
||
|
If ``hard=True``, the returned samples will be one-hot, otherwise they will
|
||
|
be probability distributions that sum to 1 across `dim`.
|
||
|
|
||
|
.. note::
|
||
|
This function is here for legacy reasons, may be removed from nn.Functional in the future.
|
||
|
|
||
|
.. note::
|
||
|
The main trick for `hard` is to do `y_hard - y_soft.detach() + y_soft`
|
||
|
|
||
|
It achieves two things:
|
||
|
- makes the output value exactly one-hot
|
||
|
(since we add then subtract y_soft value)
|
||
|
- makes the gradient equal to y_soft gradient
|
||
|
(since we strip all other gradients)
|
||
|
|
||
|
Examples::
|
||
|
>>> logits = torch.randn(20, 32)
|
||
|
>>> # Sample soft categorical using reparametrization trick:
|
||
|
>>> F.gumbel_softmax(logits, tau=1, hard=False)
|
||
|
>>> # Sample hard categorical using "Straight-through" trick:
|
||
|
>>> F.gumbel_softmax(logits, tau=1, hard=True)
|
||
|
|
||
|
.. _Link 1:
|
||
|
https://arxiv.org/abs/1611.00712
|
||
|
.. _Link 2:
|
||
|
https://arxiv.org/abs/1611.01144
|
||
|
"""
|
||
|
if has_torch_function_unary(logits):
|
||
|
return handle_torch_function(gumbel_softmax, (logits,), logits, tau=tau, hard=hard, eps=eps, dim=dim)
|
||
|
if eps != 1e-10:
|
||
|
warnings.warn("`eps` parameter is deprecated and has no effect.")
|
||
|
|
||
|
gumbels = (
|
||
|
-torch.empty_like(logits, memory_format=torch.legacy_contiguous_format).exponential_().log()
|
||
|
) # ~Gumbel(0,1)
|
||
|
gumbels = (logits + gumbels) / tau # ~Gumbel(logits,tau)
|
||
|
y_soft = gumbels.softmax(dim)
|
||
|
|
||
|
if hard:
|
||
|
# Straight through.
|
||
|
index = y_soft.max(dim, keepdim=True)[1]
|
||
|
y_hard = torch.zeros_like(logits, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
|
||
|
ret = y_hard - y_soft.detach() + y_soft
|
||
|
else:
|
||
|
# Reparametrization trick.
|
||
|
ret = y_soft
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def log_softmax(input: Tensor, dim: Optional[int] = None, _stacklevel: int = 3, dtype: Optional[DType] = None) -> Tensor:
|
||
|
r"""Apply a softmax followed by a logarithm.
|
||
|
|
||
|
While mathematically equivalent to log(softmax(x)), doing these two
|
||
|
operations separately is slower and numerically unstable. This function
|
||
|
uses an alternative formulation to compute the output and gradient correctly.
|
||
|
|
||
|
See :class:`~torch.nn.LogSoftmax` for more details.
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): input
|
||
|
dim (int): A dimension along which log_softmax will be computed.
|
||
|
dtype (:class:`torch.dtype`, optional): the desired data type of returned tensor.
|
||
|
If specified, the input tensor is cast to :attr:`dtype` before the operation
|
||
|
is performed. This is useful for preventing data type overflows. Default: None.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(log_softmax, (input,), input, dim=dim, _stacklevel=_stacklevel, dtype=dtype)
|
||
|
if dim is None:
|
||
|
dim = _get_softmax_dim("log_softmax", input.dim(), _stacklevel)
|
||
|
if dtype is None:
|
||
|
ret = input.log_softmax(dim)
|
||
|
else:
|
||
|
ret = input.log_softmax(dim, dtype=dtype)
|
||
|
return ret
|
||
|
|
||
|
|
||
|
softshrink = _add_docstr(
|
||
|
torch._C._nn.softshrink,
|
||
|
r"""
|
||
|
softshrink(input, lambd=0.5) -> Tensor
|
||
|
|
||
|
Applies the soft shrinkage function elementwise
|
||
|
|
||
|
See :class:`~torch.nn.Softshrink` for more details.
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
def tanh(input): # noqa: D400,D402
|
||
|
r"""tanh(input) -> Tensor
|
||
|
|
||
|
Applies element-wise,
|
||
|
:math:`\text{Tanh}(x) = \tanh(x) = \frac{\exp(x) - \exp(-x)}{\exp(x) + \exp(-x)}`
|
||
|
|
||
|
See :class:`~torch.nn.Tanh` for more details.
|
||
|
"""
|
||
|
return input.tanh()
|
||
|
|
||
|
|
||
|
def sigmoid(input): # noqa: D400,D402
|
||
|
r"""sigmoid(input) -> Tensor
|
||
|
|
||
|
Applies the element-wise function :math:`\text{Sigmoid}(x) = \frac{1}{1 + \exp(-x)}`
|
||
|
|
||
|
See :class:`~torch.nn.Sigmoid` for more details.
|
||
|
"""
|
||
|
return input.sigmoid()
|
||
|
|
||
|
|
||
|
def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor:
|
||
|
r"""Apply the Hardsigmoid function element-wise.
|
||
|
|
||
|
.. math::
|
||
|
\text{Hardsigmoid}(x) = \begin{cases}
|
||
|
0 & \text{if~} x \le -3, \\
|
||
|
1 & \text{if~} x \ge +3, \\
|
||
|
x / 6 + 1 / 2 & \text{otherwise}
|
||
|
\end{cases}
|
||
|
|
||
|
Args:
|
||
|
inplace: If set to ``True``, will do this operation in-place. Default: ``False``
|
||
|
|
||
|
See :class:`~torch.nn.Hardsigmoid` for more details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(hardsigmoid, (input,), input, inplace=inplace)
|
||
|
if inplace:
|
||
|
return torch._C._nn.hardsigmoid_(input)
|
||
|
return torch._C._nn.hardsigmoid(input)
|
||
|
|
||
|
|
||
|
linear = _add_docstr(
|
||
|
torch._C._nn.linear,
|
||
|
r"""
|
||
|
linear(input, weight, bias=None) -> Tensor
|
||
|
|
||
|
Applies a linear transformation to the incoming data: :math:`y = xA^T + b`.
|
||
|
|
||
|
This operation supports 2-D :attr:`weight` with :ref:`sparse layout<sparse-docs>`
|
||
|
|
||
|
{sparse_beta_warning}
|
||
|
|
||
|
This operator supports :ref:`TensorFloat32<tf32_on_ampere>`.
|
||
|
|
||
|
Shape:
|
||
|
|
||
|
- Input: :math:`(*, in\_features)` where `*` means any number of
|
||
|
additional dimensions, including none
|
||
|
- Weight: :math:`(out\_features, in\_features)` or :math:`(in\_features)`
|
||
|
- Bias: :math:`(out\_features)` or :math:`()`
|
||
|
- Output: :math:`(*, out\_features)` or :math:`(*)`, based on the shape of the weight
|
||
|
""".format(**sparse_support_notes))
|
||
|
|
||
|
|
||
|
bilinear = _add_docstr(
|
||
|
torch.bilinear,
|
||
|
r"""
|
||
|
bilinear(input1, input2, weight, bias=None) -> Tensor
|
||
|
|
||
|
Applies a bilinear transformation to the incoming data:
|
||
|
:math:`y = x_1^T A x_2 + b`
|
||
|
|
||
|
Shape:
|
||
|
|
||
|
- input1: :math:`(N, *, H_{in1})` where :math:`H_{in1}=\text{in1\_features}`
|
||
|
and :math:`*` means any number of additional dimensions.
|
||
|
All but the last dimension of the inputs should be the same.
|
||
|
- input2: :math:`(N, *, H_{in2})` where :math:`H_{in2}=\text{in2\_features}`
|
||
|
- weight: :math:`(\text{out\_features}, \text{in1\_features},
|
||
|
\text{in2\_features})`
|
||
|
- bias: :math:`(\text{out\_features})`
|
||
|
- output: :math:`(N, *, H_{out})` where :math:`H_{out}=\text{out\_features}`
|
||
|
and all but the last dimension are the same shape as the input.
|
||
|
""")
|
||
|
|
||
|
|
||
|
def silu(input: Tensor, inplace: bool = False) -> Tensor:
|
||
|
r"""Apply the Sigmoid Linear Unit (SiLU) function, element-wise.
|
||
|
|
||
|
The SiLU function is also known as the swish function.
|
||
|
|
||
|
.. math::
|
||
|
\text{silu}(x) = x * \sigma(x), \text{where } \sigma(x) \text{ is the logistic sigmoid.}
|
||
|
|
||
|
.. note::
|
||
|
See `Gaussian Error Linear Units (GELUs) <https://arxiv.org/abs/1606.08415>`_
|
||
|
where the SiLU (Sigmoid Linear Unit) was originally coined, and see
|
||
|
`Sigmoid-Weighted Linear Units for Neural Network Function Approximation
|
||
|
in Reinforcement Learning <https://arxiv.org/abs/1702.03118>`_ and `Swish:
|
||
|
a Self-Gated Activation Function <https://arxiv.org/abs/1710.05941v1>`_
|
||
|
where the SiLU was experimented with later.
|
||
|
|
||
|
See :class:`~torch.nn.SiLU` for more details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(silu, (input,), input, inplace=inplace)
|
||
|
if inplace:
|
||
|
return torch._C._nn.silu_(input)
|
||
|
return torch._C._nn.silu(input)
|
||
|
|
||
|
|
||
|
def mish(input: Tensor, inplace: bool = False) -> Tensor:
|
||
|
r"""Apply the Mish function, element-wise.
|
||
|
|
||
|
Mish: A Self Regularized Non-Monotonic Neural Activation Function.
|
||
|
|
||
|
.. math::
|
||
|
\text{Mish}(x) = x * \text{Tanh}(\text{Softplus}(x))
|
||
|
|
||
|
.. note::
|
||
|
See `Mish: A Self Regularized Non-Monotonic Neural Activation Function <https://arxiv.org/abs/1908.08681>`_
|
||
|
|
||
|
See :class:`~torch.nn.Mish` for more details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(mish, (input,), input, inplace=inplace)
|
||
|
if inplace:
|
||
|
return torch._C._nn.mish_(input)
|
||
|
return torch._C._nn.mish(input)
|
||
|
|
||
|
|
||
|
def hardswish(input: Tensor, inplace: bool = False) -> Tensor:
|
||
|
r"""Apply hardswish function, element-wise.
|
||
|
|
||
|
Follows implementation as described in the paper:
|
||
|
`Searching for MobileNetV3`_.
|
||
|
|
||
|
.. math::
|
||
|
\text{Hardswish}(x) = \begin{cases}
|
||
|
0 & \text{if~} x \le -3, \\
|
||
|
x & \text{if~} x \ge +3, \\
|
||
|
x \cdot (x + 3) /6 & \text{otherwise}
|
||
|
\end{cases}
|
||
|
|
||
|
See :class:`~torch.nn.Hardswish` for more details.
|
||
|
|
||
|
.. _`Searching for MobileNetV3`:
|
||
|
https://arxiv.org/abs/1905.02244
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(hardswish, (input,), input, inplace=inplace)
|
||
|
if inplace:
|
||
|
return torch._C._nn.hardswish_(input)
|
||
|
return torch._C._nn.hardswish(input)
|
||
|
|
||
|
|
||
|
def _no_grad_embedding_renorm_(weight: Tensor, input: Tensor, max_norm: float, norm_type: float) -> Tuple[Tensor, Tensor]:
|
||
|
torch.embedding_renorm_(weight.detach(), input, max_norm, norm_type)
|
||
|
|
||
|
|
||
|
def embedding(
|
||
|
input: Tensor,
|
||
|
weight: Tensor,
|
||
|
padding_idx: Optional[int] = None,
|
||
|
max_norm: Optional[float] = None,
|
||
|
norm_type: float = 2.0,
|
||
|
scale_grad_by_freq: bool = False,
|
||
|
sparse: bool = False,
|
||
|
) -> Tensor:
|
||
|
r"""Generate a simple lookup table that looks up embeddings in a fixed dictionary and size.
|
||
|
|
||
|
This module is often used to retrieve word embeddings using indices.
|
||
|
The input to the module is a list of indices, and the embedding matrix,
|
||
|
and the output is the corresponding word embeddings.
|
||
|
|
||
|
See :class:`torch.nn.Embedding` for more details.
|
||
|
|
||
|
.. note::
|
||
|
Note that the analytical gradients of this function with respect to
|
||
|
entries in :attr:`weight` at the row specified by :attr:`padding_idx`
|
||
|
are expected to differ from the numerical ones.
|
||
|
|
||
|
.. note::
|
||
|
Note that `:class:`torch.nn.Embedding` differs from this function in
|
||
|
that it initializes the row of :attr:`weight` specified by
|
||
|
:attr:`padding_idx` to all zeros on construction.
|
||
|
|
||
|
Args:
|
||
|
input (LongTensor): Tensor containing indices into the embedding matrix
|
||
|
weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1,
|
||
|
and number of columns equal to the embedding size
|
||
|
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the gradient;
|
||
|
therefore, the embedding vector at :attr:`padding_idx` is not updated during training,
|
||
|
i.e. it remains as a fixed "pad".
|
||
|
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
|
||
|
is renormalized to have norm :attr:`max_norm`.
|
||
|
Note: this will modify :attr:`weight` in-place.
|
||
|
norm_type (float, optional): The p of the p-norm to compute for the :attr:`max_norm` option. Default ``2``.
|
||
|
scale_grad_by_freq (bool, optional): If given, this will scale gradients by the inverse of frequency of
|
||
|
the words in the mini-batch. Default ``False``.
|
||
|
sparse (bool, optional): If ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under
|
||
|
:class:`torch.nn.Embedding` for more details regarding sparse gradients.
|
||
|
|
||
|
Shape:
|
||
|
- Input: LongTensor of arbitrary shape containing the indices to extract
|
||
|
- Weight: Embedding matrix of floating point type with shape `(V, embedding_dim)`,
|
||
|
where V = maximum index + 1 and embedding_dim = the embedding size
|
||
|
- Output: `(*, embedding_dim)`, where `*` is the input shape
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # a batch of 2 samples of 4 indices each
|
||
|
>>> input = torch.tensor([[1, 2, 4, 5], [4, 3, 2, 9]])
|
||
|
>>> # an embedding matrix containing 10 tensors of size 3
|
||
|
>>> embedding_matrix = torch.rand(10, 3)
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> F.embedding(input, embedding_matrix)
|
||
|
tensor([[[ 0.8490, 0.9625, 0.6753],
|
||
|
[ 0.9666, 0.7761, 0.6108],
|
||
|
[ 0.6246, 0.9751, 0.3618],
|
||
|
[ 0.4161, 0.2419, 0.7383]],
|
||
|
|
||
|
[[ 0.6246, 0.9751, 0.3618],
|
||
|
[ 0.0237, 0.7794, 0.0528],
|
||
|
[ 0.9666, 0.7761, 0.6108],
|
||
|
[ 0.3385, 0.8612, 0.1867]]])
|
||
|
|
||
|
>>> # example with padding_idx
|
||
|
>>> weights = torch.rand(10, 3)
|
||
|
>>> weights[0, :].zero_()
|
||
|
>>> embedding_matrix = weights
|
||
|
>>> input = torch.tensor([[0, 2, 0, 5]])
|
||
|
>>> F.embedding(input, embedding_matrix, padding_idx=0)
|
||
|
tensor([[[ 0.0000, 0.0000, 0.0000],
|
||
|
[ 0.5609, 0.5384, 0.8720],
|
||
|
[ 0.0000, 0.0000, 0.0000],
|
||
|
[ 0.6262, 0.2438, 0.7471]]])
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, weight):
|
||
|
return handle_torch_function(
|
||
|
embedding,
|
||
|
(input, weight),
|
||
|
input,
|
||
|
weight,
|
||
|
padding_idx=padding_idx,
|
||
|
max_norm=max_norm,
|
||
|
norm_type=norm_type,
|
||
|
scale_grad_by_freq=scale_grad_by_freq,
|
||
|
sparse=sparse,
|
||
|
)
|
||
|
if padding_idx is not None:
|
||
|
if padding_idx > 0:
|
||
|
assert padding_idx < weight.size(0), "Padding_idx must be within num_embeddings"
|
||
|
elif padding_idx < 0:
|
||
|
assert padding_idx >= -weight.size(0), "Padding_idx must be within num_embeddings"
|
||
|
padding_idx = weight.size(0) + padding_idx
|
||
|
else:
|
||
|
padding_idx = -1
|
||
|
if max_norm is not None:
|
||
|
# Note [embedding_renorm contiguous]
|
||
|
# `embedding_renorm_` will call .contiguous() on input anyways, so we
|
||
|
# call it here and take advantage of the improved locality in the
|
||
|
# `embedding` call below too.
|
||
|
input = input.contiguous()
|
||
|
# Note [embedding_renorm set_grad_enabled]
|
||
|
# XXX: equivalent to
|
||
|
# with torch.no_grad():
|
||
|
# torch.embedding_renorm_
|
||
|
# remove once script supports set_grad_enabled
|
||
|
_no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
|
||
|
return torch.embedding(weight, input, padding_idx, scale_grad_by_freq, sparse)
|
||
|
|
||
|
|
||
|
def embedding_bag(
|
||
|
input: Tensor,
|
||
|
weight: Tensor,
|
||
|
offsets: Optional[Tensor] = None,
|
||
|
max_norm: Optional[float] = None,
|
||
|
norm_type: float = 2,
|
||
|
scale_grad_by_freq: bool = False,
|
||
|
mode: str = "mean",
|
||
|
sparse: bool = False,
|
||
|
per_sample_weights: Optional[Tensor] = None,
|
||
|
include_last_offset: bool = False,
|
||
|
padding_idx: Optional[int] = None,
|
||
|
) -> Tensor:
|
||
|
r"""Compute sums, means or maxes of `bags` of embeddings.
|
||
|
|
||
|
Calculation is done without instantiating the intermediate embeddings.
|
||
|
See :class:`torch.nn.EmbeddingBag` for more details.
|
||
|
|
||
|
Note:
|
||
|
{backward_reproducibility_note}
|
||
|
|
||
|
Args:
|
||
|
input (LongTensor): Tensor containing bags of indices into the embedding matrix
|
||
|
weight (Tensor): The embedding matrix with number of rows equal to the maximum possible index + 1,
|
||
|
and number of columns equal to the embedding size
|
||
|
offsets (LongTensor, optional): Only used when :attr:`input` is 1D. :attr:`offsets` determines
|
||
|
the starting index position of each bag (sequence) in :attr:`input`.
|
||
|
max_norm (float, optional): If given, each embedding vector with norm larger than :attr:`max_norm`
|
||
|
is renormalized to have norm :attr:`max_norm`.
|
||
|
Note: this will modify :attr:`weight` in-place.
|
||
|
norm_type (float, optional): The ``p`` in the ``p``-norm to compute for the :attr:`max_norm` option.
|
||
|
Default ``2``.
|
||
|
scale_grad_by_freq (bool, optional): if given, this will scale gradients by the inverse of frequency of
|
||
|
the words in the mini-batch. Default ``False``.
|
||
|
Note: this option is not supported when ``mode="max"``.
|
||
|
mode (str, optional): ``"sum"``, ``"mean"`` or ``"max"``. Specifies the way to reduce the bag.
|
||
|
Default: ``"mean"``
|
||
|
sparse (bool, optional): if ``True``, gradient w.r.t. :attr:`weight` will be a sparse tensor. See Notes under
|
||
|
:class:`torch.nn.Embedding` for more details regarding sparse gradients.
|
||
|
Note: this option is not supported when ``mode="max"``.
|
||
|
per_sample_weights (Tensor, optional): a tensor of float / double weights, or None
|
||
|
to indicate all weights should be taken to be 1. If specified, :attr:`per_sample_weights`
|
||
|
must have exactly the same shape as input and is treated as having the same
|
||
|
:attr:`offsets`, if those are not None.
|
||
|
|
||
|
include_last_offset (bool, optional): if ``True``, the size of offsets is equal to the number of bags + 1.
|
||
|
The last element is the size of the input, or the ending index position of the last bag (sequence).
|
||
|
|
||
|
padding_idx (int, optional): If specified, the entries at :attr:`padding_idx` do not contribute to the
|
||
|
gradient; therefore, the embedding vector at :attr:`padding_idx` is not updated
|
||
|
during training, i.e. it remains as a fixed "pad". Note that the embedding
|
||
|
vector at :attr:`padding_idx` is excluded from the reduction.
|
||
|
|
||
|
Shape:
|
||
|
- :attr:`input` (LongTensor) and :attr:`offsets` (LongTensor, optional)
|
||
|
|
||
|
- If :attr:`input` is 2D of shape `(B, N)`, it will be treated as ``B`` bags (sequences)
|
||
|
each of fixed length ``N``, and this will return ``B`` values aggregated in a way
|
||
|
depending on the :attr:`mode`. :attr:`offsets` is ignored and required to be ``None`` in this case.
|
||
|
|
||
|
- If :attr:`input` is 1D of shape `(N)`, it will be treated as a concatenation of
|
||
|
multiple bags (sequences). :attr:`offsets` is required to be a 1D tensor containing
|
||
|
the starting index positions of each bag in :attr:`input`. Therefore, for :attr:`offsets`
|
||
|
of shape `(B)`, :attr:`input` will be viewed as having ``B`` bags.
|
||
|
Empty bags (i.e., having 0-length) will have returned vectors filled by zeros.
|
||
|
|
||
|
- :attr:`weight` (Tensor): the learnable weights of the module of shape `(num_embeddings, embedding_dim)`
|
||
|
|
||
|
- :attr:`per_sample_weights` (Tensor, optional). Has the same shape as :attr:`input`.
|
||
|
|
||
|
- :attr:`output`: aggregated embedding values of shape `(B, embedding_dim)`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # an Embedding module containing 10 tensors of size 3
|
||
|
>>> embedding_matrix = torch.rand(10, 3)
|
||
|
>>> # a batch of 2 samples of 4 indices each
|
||
|
>>> input = torch.tensor([1, 2, 4, 5, 4, 3, 2, 9])
|
||
|
>>> offsets = torch.tensor([0, 4])
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> F.embedding_bag(input, embedding_matrix, offsets)
|
||
|
tensor([[ 0.3397, 0.3552, 0.5545],
|
||
|
[ 0.5893, 0.4386, 0.5882]])
|
||
|
|
||
|
>>> # example with padding_idx
|
||
|
>>> embedding_matrix = torch.rand(10, 3)
|
||
|
>>> input = torch.tensor([2, 2, 2, 2, 4, 3, 2, 9])
|
||
|
>>> offsets = torch.tensor([0, 4])
|
||
|
>>> F.embedding_bag(input, embedding_matrix, offsets, padding_idx=2, mode='sum')
|
||
|
tensor([[ 0.0000, 0.0000, 0.0000],
|
||
|
[-0.7082, 3.2145, -2.6251]])
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, weight, offsets, per_sample_weights):
|
||
|
return handle_torch_function(
|
||
|
embedding_bag,
|
||
|
(input, weight, offsets, per_sample_weights),
|
||
|
input,
|
||
|
weight,
|
||
|
offsets=offsets,
|
||
|
max_norm=max_norm,
|
||
|
norm_type=norm_type,
|
||
|
scale_grad_by_freq=scale_grad_by_freq,
|
||
|
mode=mode,
|
||
|
sparse=sparse,
|
||
|
per_sample_weights=per_sample_weights,
|
||
|
include_last_offset=include_last_offset,
|
||
|
padding_idx=padding_idx,
|
||
|
)
|
||
|
# Check for backward compatibility.
|
||
|
# Used to be embedding_bag(weight, input, ...)
|
||
|
# Now is embedding_bag(input, weight, ...)
|
||
|
if weight.dtype == torch.long and input.is_floating_point():
|
||
|
warnings.warn(
|
||
|
"Argument order of nn.functional.embedding_bag was changed. "
|
||
|
"Usage `embedding_bag(weight, input, ...)` is deprecated, "
|
||
|
"and should now be `embedding_bag(input, weight, ...)`."
|
||
|
)
|
||
|
weight, input = input, weight
|
||
|
|
||
|
if per_sample_weights is not None and input.size() != per_sample_weights.size():
|
||
|
raise ValueError(
|
||
|
f"embedding_bag: If per_sample_weights ({per_sample_weights.shape}) is not None, "
|
||
|
f"then it must have the same shape as the input ({input.shape})"
|
||
|
)
|
||
|
|
||
|
if not weight.dim() == 2:
|
||
|
raise ValueError(
|
||
|
f"weight has to be a 2D Tensor, but got Tensor of dimension {weight.dim()}"
|
||
|
)
|
||
|
|
||
|
if input.dim() == 2:
|
||
|
if offsets is not None:
|
||
|
type_str = "<unknown>"
|
||
|
# TODO: Remove this once script supports type() calls
|
||
|
if not torch.jit.is_scripting():
|
||
|
type_str = str(type(offsets))
|
||
|
raise ValueError(
|
||
|
"if input is 2D, then offsets has to be None"
|
||
|
", as input is treated is a mini-batch of"
|
||
|
" fixed length sequences. However, found "
|
||
|
f"offsets of type {type_str}"
|
||
|
)
|
||
|
offsets = torch.arange(0, input.numel(), input.size(1), dtype=input.dtype, device=input.device)
|
||
|
|
||
|
input = input.reshape(-1)
|
||
|
if per_sample_weights is not None:
|
||
|
per_sample_weights = per_sample_weights.reshape(-1)
|
||
|
elif input.dim() == 1:
|
||
|
if offsets is None:
|
||
|
raise ValueError("offsets has to be a 1D Tensor but got None")
|
||
|
if offsets.dim() != 1:
|
||
|
raise ValueError("offsets has to be a 1D Tensor")
|
||
|
else:
|
||
|
raise ValueError(f"input has to be 1D or 2D Tensor, but got Tensor of dimension {input.dim()}")
|
||
|
if mode == "sum":
|
||
|
mode_enum = 0
|
||
|
elif mode == "mean":
|
||
|
mode_enum = 1
|
||
|
elif mode == "max":
|
||
|
mode_enum = 2
|
||
|
|
||
|
if scale_grad_by_freq:
|
||
|
raise ValueError("max mode does not support scaling the gradient by the frequency")
|
||
|
|
||
|
if sparse:
|
||
|
raise ValueError("max mode does not support sparse weights")
|
||
|
|
||
|
else:
|
||
|
raise ValueError("mode has to be one of sum, mean or max")
|
||
|
|
||
|
if max_norm is not None:
|
||
|
# XXX: equivalent to
|
||
|
# with torch.no_grad():
|
||
|
# torch.nembedding_renorm_
|
||
|
# remove once script supports set_grad_enabled
|
||
|
_no_grad_embedding_renorm_(weight, input, max_norm, norm_type)
|
||
|
|
||
|
if per_sample_weights is not None and mode != "sum":
|
||
|
raise NotImplementedError(
|
||
|
"embedding_bag: per_sample_weights was not None. "
|
||
|
"per_sample_weights is only supported for mode='sum' "
|
||
|
f"(got mode='{mode}'). Please open a feature request on GitHub."
|
||
|
)
|
||
|
|
||
|
ret, _, _, _ = torch.embedding_bag(
|
||
|
weight, input, offsets, scale_grad_by_freq, mode_enum, sparse, per_sample_weights, include_last_offset, padding_idx
|
||
|
)
|
||
|
return ret
|
||
|
|
||
|
|
||
|
if embedding_bag.__doc__:
|
||
|
embedding_bag.__doc__ = embedding_bag.__doc__.format(**reproducibility_notes)
|
||
|
|
||
|
|
||
|
def _verify_batch_size(size: List[int]) -> None:
|
||
|
# XXX: JIT script does not support the reduce from functools, and mul op is a
|
||
|
# builtin, which cannot be used as a value to a func yet, so rewrite this size
|
||
|
# check to a simple equivalent for loop
|
||
|
#
|
||
|
# TODO: make use of reduce like below when JIT is ready with the missing features:
|
||
|
# from operator import mul
|
||
|
# from functools import reduce
|
||
|
#
|
||
|
# if reduce(mul, size[2:], size[0]) == 1
|
||
|
size_prods = size[0]
|
||
|
for i in range(len(size) - 2):
|
||
|
size_prods *= size[i + 2]
|
||
|
if size_prods == 1:
|
||
|
raise ValueError(f"Expected more than 1 value per channel when training, got input size {size}")
|
||
|
|
||
|
|
||
|
def batch_norm(
|
||
|
input: Tensor,
|
||
|
running_mean: Optional[Tensor],
|
||
|
running_var: Optional[Tensor],
|
||
|
weight: Optional[Tensor] = None,
|
||
|
bias: Optional[Tensor] = None,
|
||
|
training: bool = False,
|
||
|
momentum: float = 0.1,
|
||
|
eps: float = 1e-5,
|
||
|
) -> Tensor:
|
||
|
r"""Apply Batch Normalization for each channel across a batch of data.
|
||
|
|
||
|
See :class:`~torch.nn.BatchNorm1d`, :class:`~torch.nn.BatchNorm2d`,
|
||
|
:class:`~torch.nn.BatchNorm3d` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, running_mean, running_var, weight, bias):
|
||
|
return handle_torch_function(
|
||
|
batch_norm,
|
||
|
(input, running_mean, running_var, weight, bias),
|
||
|
input,
|
||
|
running_mean,
|
||
|
running_var,
|
||
|
weight=weight,
|
||
|
bias=bias,
|
||
|
training=training,
|
||
|
momentum=momentum,
|
||
|
eps=eps,
|
||
|
)
|
||
|
if training:
|
||
|
_verify_batch_size(input.size())
|
||
|
|
||
|
return torch.batch_norm(
|
||
|
input, weight, bias, running_mean, running_var, training, momentum, eps, torch.backends.cudnn.enabled
|
||
|
)
|
||
|
|
||
|
|
||
|
def _verify_spatial_size(size: List[int]) -> None:
|
||
|
# Verify that there is > 1 spatial element for instance norm calculation.
|
||
|
size_prods = 1
|
||
|
for i in range(2, len(size)):
|
||
|
size_prods *= size[i]
|
||
|
if size_prods == 1:
|
||
|
raise ValueError(f"Expected more than 1 spatial element when training, got input size {size}")
|
||
|
|
||
|
|
||
|
def instance_norm(
|
||
|
input: Tensor,
|
||
|
running_mean: Optional[Tensor] = None,
|
||
|
running_var: Optional[Tensor] = None,
|
||
|
weight: Optional[Tensor] = None,
|
||
|
bias: Optional[Tensor] = None,
|
||
|
use_input_stats: bool = True,
|
||
|
momentum: float = 0.1,
|
||
|
eps: float = 1e-5,
|
||
|
) -> Tensor:
|
||
|
r"""Apply Instance Normalization independently for each channel in every data sample within a batch.
|
||
|
|
||
|
See :class:`~torch.nn.InstanceNorm1d`, :class:`~torch.nn.InstanceNorm2d`,
|
||
|
:class:`~torch.nn.InstanceNorm3d` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, running_mean, running_var, weight, bias):
|
||
|
return handle_torch_function(
|
||
|
instance_norm,
|
||
|
(input, running_mean, running_var, weight, bias),
|
||
|
input,
|
||
|
running_mean=running_mean,
|
||
|
running_var=running_var,
|
||
|
weight=weight,
|
||
|
bias=bias,
|
||
|
use_input_stats=use_input_stats,
|
||
|
momentum=momentum,
|
||
|
eps=eps,
|
||
|
)
|
||
|
if use_input_stats:
|
||
|
_verify_spatial_size(input.size())
|
||
|
return torch.instance_norm(
|
||
|
input, weight, bias, running_mean, running_var, use_input_stats, momentum, eps, torch.backends.cudnn.enabled
|
||
|
)
|
||
|
|
||
|
|
||
|
def layer_norm(
|
||
|
input: Tensor,
|
||
|
normalized_shape: List[int],
|
||
|
weight: Optional[Tensor] = None,
|
||
|
bias: Optional[Tensor] = None,
|
||
|
eps: float = 1e-5,
|
||
|
) -> Tensor:
|
||
|
r"""Apply Layer Normalization for last certain number of dimensions.
|
||
|
|
||
|
See :class:`~torch.nn.LayerNorm` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, weight, bias):
|
||
|
return handle_torch_function(
|
||
|
layer_norm, (input, weight, bias), input, normalized_shape, weight=weight, bias=bias, eps=eps
|
||
|
)
|
||
|
return torch.layer_norm(input, normalized_shape, weight, bias, eps, torch.backends.cudnn.enabled)
|
||
|
|
||
|
|
||
|
def group_norm(
|
||
|
input: Tensor, num_groups: int, weight: Optional[Tensor] = None, bias: Optional[Tensor] = None, eps: float = 1e-5
|
||
|
) -> Tensor:
|
||
|
r"""Apply Group Normalization for last certain number of dimensions.
|
||
|
|
||
|
See :class:`~torch.nn.GroupNorm` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, weight, bias):
|
||
|
return handle_torch_function(group_norm, (input, weight, bias,), input, num_groups, weight=weight, bias=bias, eps=eps)
|
||
|
if input.dim() < 2:
|
||
|
raise RuntimeError(f"Expected at least 2 dimensions for input tensor but received {input.dim()}")
|
||
|
_verify_batch_size([input.size(0) * input.size(1) // num_groups, num_groups] + list(input.size()[2:]))
|
||
|
return torch.group_norm(input, num_groups, weight, bias, eps, torch.backends.cudnn.enabled)
|
||
|
|
||
|
|
||
|
def local_response_norm(input: Tensor, size: int, alpha: float = 1e-4, beta: float = 0.75, k: float = 1.0) -> Tensor:
|
||
|
r"""Apply local response normalization over an input signal.
|
||
|
|
||
|
The input signal is composed of several input planes, where channels occupy the second dimension.
|
||
|
Normalization is applied across channels.
|
||
|
|
||
|
See :class:`~torch.nn.LocalResponseNorm` for details.
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(local_response_norm, (input,), input, size, alpha=alpha, beta=beta, k=k)
|
||
|
dim = input.dim()
|
||
|
if dim < 3:
|
||
|
raise ValueError(
|
||
|
f"Expected 3D or higher dimensionality input (got {dim} dimensions)"
|
||
|
)
|
||
|
|
||
|
if input.numel() == 0:
|
||
|
return input
|
||
|
|
||
|
div = input.mul(input)
|
||
|
if dim == 3:
|
||
|
div = div.unsqueeze(1)
|
||
|
div = pad(div, (0, 0, size // 2, (size - 1) // 2))
|
||
|
div = avg_pool2d(div, (size, 1), stride=1).squeeze(1)
|
||
|
else:
|
||
|
sizes = input.size()
|
||
|
div = div.view(sizes[0], 1, sizes[1], sizes[2], -1)
|
||
|
div = pad(div, (0, 0, 0, 0, size // 2, (size - 1) // 2))
|
||
|
div = avg_pool3d(div, (size, 1, 1), stride=1).squeeze(1)
|
||
|
div = div.view(sizes)
|
||
|
div = div.mul(alpha).add(k).pow(beta)
|
||
|
return input / div
|
||
|
|
||
|
|
||
|
# loss
|
||
|
|
||
|
|
||
|
def ctc_loss(
|
||
|
log_probs: Tensor,
|
||
|
targets: Tensor,
|
||
|
input_lengths: Tensor,
|
||
|
target_lengths: Tensor,
|
||
|
blank: int = 0,
|
||
|
reduction: str = "mean",
|
||
|
zero_infinity: bool = False,
|
||
|
) -> Tensor:
|
||
|
r"""Apply the Connectionist Temporal Classification loss.
|
||
|
|
||
|
See :class:`~torch.nn.CTCLoss` for details.
|
||
|
|
||
|
Note:
|
||
|
{cudnn_reproducibility_note}
|
||
|
|
||
|
Note:
|
||
|
{backward_reproducibility_note}
|
||
|
|
||
|
Args:
|
||
|
log_probs: :math:`(T, N, C)` or :math:`(T, C)` where `C = number of characters in alphabet including blank`,
|
||
|
`T = input length`, and `N = batch size`.
|
||
|
The logarithmized probabilities of the outputs
|
||
|
(e.g. obtained with :func:`torch.nn.functional.log_softmax`).
|
||
|
targets: :math:`(N, S)` or `(sum(target_lengths))`.
|
||
|
Targets cannot be blank. In the second form, the targets are assumed to be concatenated.
|
||
|
input_lengths: :math:`(N)` or :math:`()`.
|
||
|
Lengths of the inputs (must each be :math:`\leq T`)
|
||
|
target_lengths: :math:`(N)` or :math:`()`.
|
||
|
Lengths of the targets
|
||
|
blank (int, optional):
|
||
|
Blank label. Default :math:`0`.
|
||
|
reduction (str, optional): Specifies the reduction to apply to the output:
|
||
|
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
||
|
``'mean'``: the output losses will be divided by the target lengths and
|
||
|
then the mean over the batch is taken, ``'sum'``: the output will be
|
||
|
summed. Default: ``'mean'``
|
||
|
zero_infinity (bool, optional):
|
||
|
Whether to zero infinite losses and the associated gradients.
|
||
|
Default: ``False``
|
||
|
Infinite losses mainly occur when the inputs are too short
|
||
|
to be aligned to the targets.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> log_probs = torch.randn(50, 16, 20).log_softmax(2).detach().requires_grad_()
|
||
|
>>> targets = torch.randint(1, 20, (16, 30), dtype=torch.long)
|
||
|
>>> input_lengths = torch.full((16,), 50, dtype=torch.long)
|
||
|
>>> target_lengths = torch.randint(10, 30, (16,), dtype=torch.long)
|
||
|
>>> loss = F.ctc_loss(log_probs, targets, input_lengths, target_lengths)
|
||
|
>>> loss.backward()
|
||
|
"""
|
||
|
if has_torch_function_variadic(log_probs, targets, input_lengths, target_lengths):
|
||
|
return handle_torch_function(
|
||
|
ctc_loss,
|
||
|
(log_probs, targets, input_lengths, target_lengths),
|
||
|
log_probs, targets, input_lengths, target_lengths,
|
||
|
blank=blank, reduction=reduction, zero_infinity=zero_infinity
|
||
|
)
|
||
|
return torch.ctc_loss(
|
||
|
log_probs, targets, input_lengths, target_lengths, blank, _Reduction.get_enum(reduction), zero_infinity
|
||
|
)
|
||
|
|
||
|
|
||
|
if ctc_loss.__doc__:
|
||
|
ctc_loss.__doc__ = ctc_loss.__doc__.format(**reproducibility_notes)
|
||
|
|
||
|
|
||
|
def nll_loss(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
weight: Optional[Tensor] = None,
|
||
|
size_average: Optional[bool] = None,
|
||
|
ignore_index: int = -100,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor:
|
||
|
r"""Compute the negative log likelihood loss.
|
||
|
|
||
|
See :class:`~torch.nn.NLLLoss` for details.
|
||
|
|
||
|
Args:
|
||
|
input: :math:`(N, C)` where `C = number of classes` or :math:`(N, C, H, W)`
|
||
|
in case of 2D Loss, or :math:`(N, C, d_1, d_2, ..., d_K)` where :math:`K \geq 1`
|
||
|
in the case of K-dimensional loss. `input` is expected to be log-probabilities.
|
||
|
target: :math:`(N)` where each value is :math:`0 \leq \text{targets}[i] \leq C-1`,
|
||
|
or :math:`(N, d_1, d_2, ..., d_K)` where :math:`K \geq 1` for
|
||
|
K-dimensional loss.
|
||
|
weight (Tensor, optional): a manual rescaling weight given to each
|
||
|
class. If given, has to be a Tensor of size `C`
|
||
|
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
||
|
the losses are averaged over each loss element in the batch. Note that for
|
||
|
some losses, there multiple elements per sample. If the field :attr:`size_average`
|
||
|
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
||
|
when reduce is ``False``. Default: ``True``
|
||
|
ignore_index (int, optional): Specifies a target value that is ignored
|
||
|
and does not contribute to the input gradient. When :attr:`size_average` is
|
||
|
``True``, the loss is averaged over non-ignored targets. Default: -100
|
||
|
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
||
|
losses are averaged or summed over observations for each minibatch depending
|
||
|
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
||
|
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
||
|
reduction (str, optional): Specifies the reduction to apply to the output:
|
||
|
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
||
|
``'mean'``: the sum of the output will be divided by the number of
|
||
|
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
||
|
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
||
|
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> # input is of size N x C = 3 x 5
|
||
|
>>> input = torch.randn(3, 5, requires_grad=True)
|
||
|
>>> # each element in target has to have 0 <= value < C
|
||
|
>>> target = torch.tensor([1, 0, 4])
|
||
|
>>> output = F.nll_loss(F.log_softmax(input, dim=1), target)
|
||
|
>>> output.backward()
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target, weight):
|
||
|
return handle_torch_function(
|
||
|
nll_loss,
|
||
|
(input, target, weight),
|
||
|
input,
|
||
|
target,
|
||
|
weight=weight,
|
||
|
size_average=size_average,
|
||
|
ignore_index=ignore_index,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction = _Reduction.legacy_get_string(size_average, reduce)
|
||
|
return torch._C._nn.nll_loss_nd(input, target, weight, _Reduction.get_enum(reduction), ignore_index)
|
||
|
|
||
|
|
||
|
def poisson_nll_loss(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
log_input: bool = True,
|
||
|
full: bool = False,
|
||
|
size_average: Optional[bool] = None,
|
||
|
eps: float = 1e-8,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor:
|
||
|
r"""Poisson negative log likelihood loss.
|
||
|
|
||
|
See :class:`~torch.nn.PoissonNLLLoss` for details.
|
||
|
|
||
|
Args:
|
||
|
input: expectation of underlying Poisson distribution.
|
||
|
target: random sample :math:`target \sim \text{Poisson}(input)`.
|
||
|
log_input: if ``True`` the loss is computed as
|
||
|
:math:`\exp(\text{input}) - \text{target} * \text{input}`, if ``False`` then loss is
|
||
|
:math:`\text{input} - \text{target} * \log(\text{input}+\text{eps})`. Default: ``True``
|
||
|
full: whether to compute full loss, i. e. to add the Stirling
|
||
|
approximation term. Default: ``False``
|
||
|
:math:`\text{target} * \log(\text{target}) - \text{target} + 0.5 * \log(2 * \pi * \text{target})`.
|
||
|
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
||
|
the losses are averaged over each loss element in the batch. Note that for
|
||
|
some losses, there multiple elements per sample. If the field :attr:`size_average`
|
||
|
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
||
|
when reduce is ``False``. Default: ``True``
|
||
|
eps (float, optional): Small value to avoid evaluation of :math:`\log(0)` when
|
||
|
:attr:`log_input`\ =\ ``False``. Default: 1e-8
|
||
|
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
||
|
losses are averaged or summed over observations for each minibatch depending
|
||
|
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
||
|
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
||
|
reduction (str, optional): Specifies the reduction to apply to the output:
|
||
|
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
||
|
``'mean'``: the sum of the output will be divided by the number of
|
||
|
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
||
|
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
||
|
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
||
|
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target):
|
||
|
return handle_torch_function(
|
||
|
poisson_nll_loss,
|
||
|
(input, target),
|
||
|
input,
|
||
|
target,
|
||
|
log_input=log_input,
|
||
|
full=full,
|
||
|
size_average=size_average,
|
||
|
eps=eps,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction = _Reduction.legacy_get_string(size_average, reduce)
|
||
|
if reduction != "none" and reduction != "mean" and reduction != "sum":
|
||
|
ret = input
|
||
|
raise ValueError(reduction + " is not a valid value for reduction")
|
||
|
|
||
|
ret = torch.poisson_nll_loss(input, target, log_input, full, eps, _Reduction.get_enum(reduction))
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def gaussian_nll_loss(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
var: Tensor,
|
||
|
full: bool = False,
|
||
|
eps: float = 1e-6,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor:
|
||
|
r"""Gaussian negative log likelihood loss.
|
||
|
|
||
|
See :class:`~torch.nn.GaussianNLLLoss` for details.
|
||
|
|
||
|
Args:
|
||
|
input: expectation of the Gaussian distribution.
|
||
|
target: sample from the Gaussian distribution.
|
||
|
var: tensor of positive variance(s), one for each of the expectations
|
||
|
in the input (heteroscedastic), or a single one (homoscedastic).
|
||
|
full (bool, optional): include the constant term in the loss calculation. Default: ``False``.
|
||
|
eps (float, optional): value added to var, for stability. Default: 1e-6.
|
||
|
reduction (str, optional): specifies the reduction to apply to the output:
|
||
|
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
||
|
``'mean'``: the output is the average of all batch member losses,
|
||
|
``'sum'``: the output is the sum of all batch member losses.
|
||
|
Default: ``'mean'``.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target, var):
|
||
|
return handle_torch_function(
|
||
|
gaussian_nll_loss,
|
||
|
(input, target, var),
|
||
|
input,
|
||
|
target,
|
||
|
var,
|
||
|
full=full,
|
||
|
eps=eps,
|
||
|
reduction=reduction,
|
||
|
)
|
||
|
|
||
|
# Check var size
|
||
|
# If var.size == input.size, the case is heteroscedastic and no further checks are needed.
|
||
|
# Otherwise:
|
||
|
if var.size() != input.size():
|
||
|
|
||
|
# If var is one dimension short of input, but the sizes match otherwise, then this is a homoscedastic case.
|
||
|
# e.g. input.size = (10, 2, 3), var.size = (10, 2)
|
||
|
# -> unsqueeze var so that var.shape = (10, 2, 1)
|
||
|
# this is done so that broadcasting can happen in the loss calculation
|
||
|
if input.size()[:-1] == var.size():
|
||
|
var = torch.unsqueeze(var, -1)
|
||
|
|
||
|
# This checks if the sizes match up to the final dimension, and the final dimension of var is of size 1.
|
||
|
# This is also a homoscedastic case.
|
||
|
# e.g. input.size = (10, 2, 3), var.size = (10, 2, 1)
|
||
|
elif input.size()[:-1] == var.size()[:-1] and var.size(-1) == 1: # Heteroscedastic case
|
||
|
pass
|
||
|
|
||
|
# If none of the above pass, then the size of var is incorrect.
|
||
|
else:
|
||
|
raise ValueError("var is of incorrect size")
|
||
|
|
||
|
# Check validity of reduction mode
|
||
|
if reduction != 'none' and reduction != 'mean' and reduction != 'sum':
|
||
|
raise ValueError(reduction + " is not valid")
|
||
|
|
||
|
# Entries of var must be non-negative
|
||
|
if torch.any(var < 0):
|
||
|
raise ValueError("var has negative entry/entries")
|
||
|
|
||
|
# Clamp for stability
|
||
|
var = var.clone()
|
||
|
with torch.no_grad():
|
||
|
var.clamp_(min=eps)
|
||
|
|
||
|
# Calculate the loss
|
||
|
loss = 0.5 * (torch.log(var) + (input - target)**2 / var)
|
||
|
if full:
|
||
|
loss += 0.5 * math.log(2 * math.pi)
|
||
|
|
||
|
if reduction == 'mean':
|
||
|
return loss.mean()
|
||
|
elif reduction == 'sum':
|
||
|
return loss.sum()
|
||
|
else:
|
||
|
return loss
|
||
|
|
||
|
|
||
|
def kl_div(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
log_target: bool = False,
|
||
|
) -> Tensor:
|
||
|
r"""Compute the KL Divergence loss.
|
||
|
|
||
|
Refer - The `Kullback-Leibler divergence Loss
|
||
|
<https://en.wikipedia.org/wiki/Kullback-Leibler_divergence>`__
|
||
|
|
||
|
See :class:`~torch.nn.KLDivLoss` for details.
|
||
|
|
||
|
Args:
|
||
|
input: Tensor of arbitrary shape in log-probabilities.
|
||
|
target: Tensor of the same shape as input. See :attr:`log_target` for
|
||
|
the target's interpretation.
|
||
|
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
||
|
the losses are averaged over each loss element in the batch. Note that for
|
||
|
some losses, there multiple elements per sample. If the field :attr:`size_average`
|
||
|
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
||
|
when reduce is ``False``. Default: ``True``
|
||
|
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
||
|
losses are averaged or summed over observations for each minibatch depending
|
||
|
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
||
|
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
||
|
reduction (str, optional): Specifies the reduction to apply to the output:
|
||
|
``'none'`` | ``'batchmean'`` | ``'sum'`` | ``'mean'``.
|
||
|
``'none'``: no reduction will be applied
|
||
|
``'batchmean'``: the sum of the output will be divided by the batchsize
|
||
|
``'sum'``: the output will be summed
|
||
|
``'mean'``: the output will be divided by the number of elements in the output
|
||
|
Default: ``'mean'``
|
||
|
log_target (bool): A flag indicating whether ``target`` is passed in the log space.
|
||
|
It is recommended to pass certain distributions (like ``softmax``)
|
||
|
in the log space to avoid numerical issues caused by explicit ``log``.
|
||
|
Default: ``False``
|
||
|
|
||
|
.. note::
|
||
|
:attr:`size_average` and :attr:`reduce` are in the process of being deprecated,
|
||
|
and in the meantime, specifying either of those two args will override :attr:`reduction`.
|
||
|
|
||
|
.. warning::
|
||
|
:attr:`reduction` = ``'mean'`` doesn't return the true kl divergence value, please use
|
||
|
:attr:`reduction` = ``'batchmean'`` which aligns with KL math definition.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target):
|
||
|
return handle_torch_function(
|
||
|
kl_div,
|
||
|
(input, target),
|
||
|
input,
|
||
|
target,
|
||
|
size_average=size_average,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
log_target=log_target,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
|
||
|
else:
|
||
|
if reduction == "mean":
|
||
|
warnings.warn(
|
||
|
"reduction: 'mean' divides the total loss by both the batch size and the support size."
|
||
|
"'batchmean' divides only by the batch size, and aligns with the KL div math definition."
|
||
|
"'mean' will be changed to behave the same as 'batchmean' in the next major release."
|
||
|
)
|
||
|
|
||
|
# special case for batchmean
|
||
|
if reduction == "batchmean":
|
||
|
reduction_enum = _Reduction.get_enum("sum")
|
||
|
else:
|
||
|
reduction_enum = _Reduction.get_enum(reduction)
|
||
|
|
||
|
reduced = torch.kl_div(input, target, reduction_enum, log_target=log_target)
|
||
|
|
||
|
if reduction == "batchmean" and input.dim() != 0:
|
||
|
reduced = reduced / input.size()[0]
|
||
|
|
||
|
return reduced
|
||
|
|
||
|
|
||
|
def cross_entropy(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
weight: Optional[Tensor] = None,
|
||
|
size_average: Optional[bool] = None,
|
||
|
ignore_index: int = -100,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
label_smoothing: float = 0.0,
|
||
|
) -> Tensor:
|
||
|
r"""Compute the cross entropy loss between input logits and target.
|
||
|
|
||
|
See :class:`~torch.nn.CrossEntropyLoss` for details.
|
||
|
|
||
|
Args:
|
||
|
input (Tensor) : Predicted unnormalized logits;
|
||
|
see Shape section below for supported shapes.
|
||
|
target (Tensor) : Ground truth class indices or class probabilities;
|
||
|
see Shape section below for supported shapes.
|
||
|
weight (Tensor, optional): a manual rescaling weight given to each
|
||
|
class. If given, has to be a Tensor of size `C`
|
||
|
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
||
|
the losses are averaged over each loss element in the batch. Note that for
|
||
|
some losses, there multiple elements per sample. If the field :attr:`size_average`
|
||
|
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
||
|
when reduce is ``False``. Default: ``True``
|
||
|
ignore_index (int, optional): Specifies a target value that is ignored
|
||
|
and does not contribute to the input gradient. When :attr:`size_average` is
|
||
|
``True``, the loss is averaged over non-ignored targets. Note that
|
||
|
:attr:`ignore_index` is only applicable when the target contains class indices.
|
||
|
Default: -100
|
||
|
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
||
|
losses are averaged or summed over observations for each minibatch depending
|
||
|
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
||
|
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
||
|
reduction (str, optional): Specifies the reduction to apply to the output:
|
||
|
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
||
|
``'mean'``: the sum of the output will be divided by the number of
|
||
|
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
||
|
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
||
|
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
||
|
label_smoothing (float, optional): A float in [0.0, 1.0]. Specifies the amount
|
||
|
of smoothing when computing the loss, where 0.0 means no smoothing. The targets
|
||
|
become a mixture of the original ground truth and a uniform distribution as described in
|
||
|
`Rethinking the Inception Architecture for Computer Vision <https://arxiv.org/abs/1512.00567>`__. Default: :math:`0.0`.
|
||
|
|
||
|
Shape:
|
||
|
- Input: Shape :math:`(C)`, :math:`(N, C)` or :math:`(N, C, d_1, d_2, ..., d_K)` with :math:`K \geq 1`
|
||
|
in the case of `K`-dimensional loss.
|
||
|
- Target: If containing class indices, shape :math:`()`, :math:`(N)` or :math:`(N, d_1, d_2, ..., d_K)` with
|
||
|
:math:`K \geq 1` in the case of K-dimensional loss where each value should be between :math:`[0, C)`.
|
||
|
If containing class probabilities, same shape as the input and each value should be between :math:`[0, 1]`.
|
||
|
|
||
|
where:
|
||
|
|
||
|
.. math::
|
||
|
\begin{aligned}
|
||
|
C ={} & \text{number of classes} \\
|
||
|
N ={} & \text{batch size} \\
|
||
|
\end{aligned}
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # Example of target with class indices
|
||
|
>>> input = torch.randn(3, 5, requires_grad=True)
|
||
|
>>> target = torch.randint(5, (3,), dtype=torch.int64)
|
||
|
>>> loss = F.cross_entropy(input, target)
|
||
|
>>> loss.backward()
|
||
|
>>>
|
||
|
>>> # Example of target with class probabilities
|
||
|
>>> input = torch.randn(3, 5, requires_grad=True)
|
||
|
>>> target = torch.randn(3, 5).softmax(dim=1)
|
||
|
>>> loss = F.cross_entropy(input, target)
|
||
|
>>> loss.backward()
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target, weight):
|
||
|
return handle_torch_function(
|
||
|
cross_entropy,
|
||
|
(input, target, weight),
|
||
|
input,
|
||
|
target,
|
||
|
weight=weight,
|
||
|
size_average=size_average,
|
||
|
ignore_index=ignore_index,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
label_smoothing=label_smoothing,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction = _Reduction.legacy_get_string(size_average, reduce)
|
||
|
return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
|
||
|
|
||
|
|
||
|
def binary_cross_entropy(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
weight: Optional[Tensor] = None,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor:
|
||
|
r"""Measure Binary Cross Entropy between the target and input probabilities.
|
||
|
|
||
|
See :class:`~torch.nn.BCELoss` for details.
|
||
|
|
||
|
Args:
|
||
|
input: Tensor of arbitrary shape as probabilities.
|
||
|
target: Tensor of the same shape as input with values between 0 and 1.
|
||
|
weight (Tensor, optional): a manual rescaling weight
|
||
|
if provided it's repeated to match input tensor shape
|
||
|
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
||
|
the losses are averaged over each loss element in the batch. Note that for
|
||
|
some losses, there multiple elements per sample. If the field :attr:`size_average`
|
||
|
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
||
|
when reduce is ``False``. Default: ``True``
|
||
|
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
||
|
losses are averaged or summed over observations for each minibatch depending
|
||
|
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
||
|
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
||
|
reduction (str, optional): Specifies the reduction to apply to the output:
|
||
|
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
||
|
``'mean'``: the sum of the output will be divided by the number of
|
||
|
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
||
|
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
||
|
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> input = torch.randn(3, 2, requires_grad=True)
|
||
|
>>> target = torch.rand(3, 2, requires_grad=False)
|
||
|
>>> loss = F.binary_cross_entropy(torch.sigmoid(input), target)
|
||
|
>>> loss.backward()
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target, weight):
|
||
|
return handle_torch_function(
|
||
|
binary_cross_entropy,
|
||
|
(input, target, weight),
|
||
|
input,
|
||
|
target,
|
||
|
weight=weight,
|
||
|
size_average=size_average,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
|
||
|
else:
|
||
|
reduction_enum = _Reduction.get_enum(reduction)
|
||
|
if target.size() != input.size():
|
||
|
raise ValueError(
|
||
|
"Using a target size ({}) that is different to the input size ({}) is deprecated. "
|
||
|
"Please ensure they have the same size.".format(target.size(), input.size())
|
||
|
)
|
||
|
|
||
|
if weight is not None:
|
||
|
new_size = _infer_size(target.size(), weight.size())
|
||
|
weight = weight.expand(new_size)
|
||
|
|
||
|
return torch._C._nn.binary_cross_entropy(input, target, weight, reduction_enum)
|
||
|
|
||
|
|
||
|
def binary_cross_entropy_with_logits(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
weight: Optional[Tensor] = None,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
pos_weight: Optional[Tensor] = None,
|
||
|
) -> Tensor:
|
||
|
r"""Calculate Binary Cross Entropy between target and input logits.
|
||
|
|
||
|
See :class:`~torch.nn.BCEWithLogitsLoss` for details.
|
||
|
|
||
|
Args:
|
||
|
input: Tensor of arbitrary shape as unnormalized scores (often referred to as logits).
|
||
|
target: Tensor of the same shape as input with values between 0 and 1
|
||
|
weight (Tensor, optional): a manual rescaling weight
|
||
|
if provided it's repeated to match input tensor shape
|
||
|
size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
|
||
|
the losses are averaged over each loss element in the batch. Note that for
|
||
|
some losses, there multiple elements per sample. If the field :attr:`size_average`
|
||
|
is set to ``False``, the losses are instead summed for each minibatch. Ignored
|
||
|
when reduce is ``False``. Default: ``True``
|
||
|
reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
|
||
|
losses are averaged or summed over observations for each minibatch depending
|
||
|
on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
|
||
|
batch element instead and ignores :attr:`size_average`. Default: ``True``
|
||
|
reduction (str, optional): Specifies the reduction to apply to the output:
|
||
|
``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
|
||
|
``'mean'``: the sum of the output will be divided by the number of
|
||
|
elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
|
||
|
and :attr:`reduce` are in the process of being deprecated, and in the meantime,
|
||
|
specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
|
||
|
pos_weight (Tensor, optional): a weight of positive examples to be broadcasted with target.
|
||
|
Must be a tensor with equal size along the class dimension to the number of classes.
|
||
|
Pay close attention to PyTorch's broadcasting semantics in order to achieve the desired
|
||
|
operations. For a target of size [B, C, H, W] (where B is batch size) pos_weight of
|
||
|
size [B, C, H, W] will apply different pos_weights to each element of the batch or
|
||
|
[C, H, W] the same pos_weights across the batch. To apply the same positive weight
|
||
|
along all spacial dimensions for a 2D multi-class target [C, H, W] use: [C, 1, 1].
|
||
|
Default: ``None``
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> input = torch.randn(3, requires_grad=True)
|
||
|
>>> target = torch.empty(3).random_(2)
|
||
|
>>> loss = F.binary_cross_entropy_with_logits(input, target)
|
||
|
>>> loss.backward()
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target, weight, pos_weight):
|
||
|
return handle_torch_function(
|
||
|
binary_cross_entropy_with_logits,
|
||
|
(input, target, weight, pos_weight),
|
||
|
input,
|
||
|
target,
|
||
|
weight=weight,
|
||
|
size_average=size_average,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
pos_weight=pos_weight,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
|
||
|
else:
|
||
|
reduction_enum = _Reduction.get_enum(reduction)
|
||
|
|
||
|
if not (target.size() == input.size()):
|
||
|
raise ValueError(f"Target size ({target.size()}) must be the same as input size ({input.size()})")
|
||
|
|
||
|
return torch.binary_cross_entropy_with_logits(input, target, weight, pos_weight, reduction_enum)
|
||
|
|
||
|
|
||
|
def smooth_l1_loss(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
beta: float = 1.0,
|
||
|
) -> Tensor:
|
||
|
r"""Compute the Smooth L1 loss.
|
||
|
|
||
|
Function uses a squared term if the absolute
|
||
|
element-wise error falls below beta and an L1 term otherwise.
|
||
|
|
||
|
See :class:`~torch.nn.SmoothL1Loss` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target):
|
||
|
return handle_torch_function(
|
||
|
smooth_l1_loss,
|
||
|
(input, target),
|
||
|
input,
|
||
|
target,
|
||
|
size_average=size_average,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
beta=beta,
|
||
|
)
|
||
|
if not (target.size() == input.size()):
|
||
|
warnings.warn(
|
||
|
f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). "
|
||
|
"This will likely lead to incorrect results due to broadcasting. "
|
||
|
"Please ensure they have the same size.",
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction = _Reduction.legacy_get_string(size_average, reduce)
|
||
|
|
||
|
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
|
||
|
|
||
|
if beta == 0.0:
|
||
|
return torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
|
||
|
else:
|
||
|
return torch._C._nn.smooth_l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction), beta)
|
||
|
|
||
|
|
||
|
def huber_loss(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
reduction: str = 'mean',
|
||
|
delta: float = 1.0,
|
||
|
) -> Tensor:
|
||
|
r"""Compute the Huber loss.
|
||
|
|
||
|
Function uses a squared term if the absolute
|
||
|
element-wise error falls below delta and a delta-scaled L1 term otherwise.
|
||
|
|
||
|
When delta equals 1, this loss is equivalent to SmoothL1Loss.
|
||
|
In general, Huber loss differs from SmoothL1Loss by a factor of delta (AKA beta in Smooth L1).
|
||
|
|
||
|
See :class:`~torch.nn.HuberLoss` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target):
|
||
|
return handle_torch_function(
|
||
|
huber_loss,
|
||
|
(input, target),
|
||
|
input,
|
||
|
target,
|
||
|
reduction=reduction,
|
||
|
delta=delta,
|
||
|
)
|
||
|
if not (target.size() == input.size()):
|
||
|
warnings.warn(f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). "
|
||
|
"This will likely lead to incorrect results due to broadcasting. "
|
||
|
"Please ensure they have the same size.",
|
||
|
stacklevel=2)
|
||
|
|
||
|
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
|
||
|
return torch._C._nn.huber_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction), delta)
|
||
|
|
||
|
|
||
|
def l1_loss(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor: # noqa: D400,D402
|
||
|
r"""l1_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
|
||
|
|
||
|
Function that takes the mean element-wise absolute value difference.
|
||
|
|
||
|
See :class:`~torch.nn.L1Loss` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target):
|
||
|
return handle_torch_function(
|
||
|
l1_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction
|
||
|
)
|
||
|
if not (target.size() == input.size()):
|
||
|
warnings.warn(
|
||
|
f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). "
|
||
|
"This will likely lead to incorrect results due to broadcasting. "
|
||
|
"Please ensure they have the same size.",
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction = _Reduction.legacy_get_string(size_average, reduce)
|
||
|
|
||
|
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
|
||
|
return torch._C._nn.l1_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
|
||
|
|
||
|
|
||
|
def mse_loss(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor: # noqa: D400,D402
|
||
|
r"""mse_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
|
||
|
|
||
|
Measures the element-wise mean squared error.
|
||
|
See :class:`~torch.nn.MSELoss` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target):
|
||
|
return handle_torch_function(
|
||
|
mse_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction
|
||
|
)
|
||
|
if not (target.size() == input.size()):
|
||
|
warnings.warn(
|
||
|
f"Using a target size ({target.size()}) that is different to the input size ({input.size()}). "
|
||
|
"This will likely lead to incorrect results due to broadcasting. "
|
||
|
"Please ensure they have the same size.",
|
||
|
stacklevel=2,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction = _Reduction.legacy_get_string(size_average, reduce)
|
||
|
|
||
|
expanded_input, expanded_target = torch.broadcast_tensors(input, target)
|
||
|
return torch._C._nn.mse_loss(expanded_input, expanded_target, _Reduction.get_enum(reduction))
|
||
|
|
||
|
|
||
|
def margin_ranking_loss(
|
||
|
input1: Tensor,
|
||
|
input2: Tensor,
|
||
|
target: Tensor,
|
||
|
margin: float = 0,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor: # noqa: D400,D402
|
||
|
r"""margin_ranking_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor
|
||
|
|
||
|
See :class:`~torch.nn.MarginRankingLoss` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input1, input2, target):
|
||
|
return handle_torch_function(
|
||
|
margin_ranking_loss,
|
||
|
(input1, input2, target),
|
||
|
input1,
|
||
|
input2,
|
||
|
target,
|
||
|
margin=margin,
|
||
|
size_average=size_average,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
|
||
|
else:
|
||
|
reduction_enum = _Reduction.get_enum(reduction)
|
||
|
if (input1.dim() != input2.dim() or input1.dim() != target.dim()):
|
||
|
raise RuntimeError(
|
||
|
f"margin_ranking_loss : All input tensors should have same dimension but got sizes: "
|
||
|
f"input1: {input1.size()}, input2: {input2.size()}, target: {target.size()} "
|
||
|
)
|
||
|
return torch.margin_ranking_loss(input1, input2, target, margin, reduction_enum)
|
||
|
|
||
|
|
||
|
def hinge_embedding_loss(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
margin: float = 1.0,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor: # noqa: D400,D402
|
||
|
r"""hinge_embedding_loss(input, target, margin=1.0, size_average=None, reduce=None, reduction='mean') -> Tensor
|
||
|
|
||
|
See :class:`~torch.nn.HingeEmbeddingLoss` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target):
|
||
|
return handle_torch_function(
|
||
|
hinge_embedding_loss,
|
||
|
(input, target),
|
||
|
input,
|
||
|
target,
|
||
|
margin=margin,
|
||
|
size_average=size_average,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
|
||
|
else:
|
||
|
reduction_enum = _Reduction.get_enum(reduction)
|
||
|
return torch.hinge_embedding_loss(input, target, margin, reduction_enum)
|
||
|
|
||
|
|
||
|
def multilabel_margin_loss(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor: # noqa: D400,D402
|
||
|
r"""multilabel_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
|
||
|
|
||
|
See :class:`~torch.nn.MultiLabelMarginLoss` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target):
|
||
|
return handle_torch_function(
|
||
|
multilabel_margin_loss,
|
||
|
(input, target),
|
||
|
input,
|
||
|
target,
|
||
|
size_average=size_average,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
|
||
|
else:
|
||
|
reduction_enum = _Reduction.get_enum(reduction)
|
||
|
return torch._C._nn.multilabel_margin_loss(input, target, reduction_enum)
|
||
|
|
||
|
|
||
|
def soft_margin_loss(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor: # noqa: D400,D402
|
||
|
r"""
|
||
|
soft_margin_loss(input, target, size_average=None, reduce=None, reduction='mean') -> Tensor
|
||
|
|
||
|
See :class:`~torch.nn.SoftMarginLoss` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target):
|
||
|
return handle_torch_function(
|
||
|
soft_margin_loss, (input, target), input, target, size_average=size_average, reduce=reduce, reduction=reduction
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
|
||
|
else:
|
||
|
reduction_enum = _Reduction.get_enum(reduction)
|
||
|
return torch._C._nn.soft_margin_loss(input, target, reduction_enum)
|
||
|
|
||
|
|
||
|
def multilabel_soft_margin_loss(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
weight: Optional[Tensor] = None,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor: # noqa: D400,D402
|
||
|
r"""multilabel_soft_margin_loss(input, target, weight=None, size_average=None, reduce=None, reduction='mean') -> Tensor
|
||
|
|
||
|
See :class:`~torch.nn.MultiLabelSoftMarginLoss` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target, weight):
|
||
|
return handle_torch_function(
|
||
|
multilabel_soft_margin_loss,
|
||
|
(input, target, weight),
|
||
|
input,
|
||
|
target,
|
||
|
weight=weight,
|
||
|
size_average=size_average,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction = _Reduction.legacy_get_string(size_average, reduce)
|
||
|
|
||
|
loss = -(target * logsigmoid(input) + (1 - target) * logsigmoid(-input))
|
||
|
|
||
|
if weight is not None:
|
||
|
loss = loss * weight
|
||
|
|
||
|
class_dim = input.dim() - 1
|
||
|
C = input.size(class_dim)
|
||
|
loss = loss.sum(dim=class_dim) / C # only return N loss values
|
||
|
|
||
|
if reduction == "none":
|
||
|
ret = loss
|
||
|
elif reduction == "mean":
|
||
|
ret = loss.mean()
|
||
|
elif reduction == "sum":
|
||
|
ret = loss.sum()
|
||
|
else:
|
||
|
ret = input
|
||
|
raise ValueError(reduction + " is not valid")
|
||
|
return ret
|
||
|
|
||
|
|
||
|
def cosine_embedding_loss(
|
||
|
input1: Tensor,
|
||
|
input2: Tensor,
|
||
|
target: Tensor,
|
||
|
margin: float = 0,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor: # noqa: D400,D402
|
||
|
r"""cosine_embedding_loss(input1, input2, target, margin=0, size_average=None, reduce=None, reduction='mean') -> Tensor
|
||
|
|
||
|
See :class:`~torch.nn.CosineEmbeddingLoss` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input1, input2, target):
|
||
|
return handle_torch_function(
|
||
|
cosine_embedding_loss,
|
||
|
(input1, input2, target),
|
||
|
input1,
|
||
|
input2,
|
||
|
target,
|
||
|
margin=margin,
|
||
|
size_average=size_average,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
|
||
|
else:
|
||
|
reduction_enum = _Reduction.get_enum(reduction)
|
||
|
return torch.cosine_embedding_loss(input1, input2, target, margin, reduction_enum)
|
||
|
|
||
|
|
||
|
def multi_margin_loss(
|
||
|
input: Tensor,
|
||
|
target: Tensor,
|
||
|
p: int = 1,
|
||
|
margin: float = 1.0,
|
||
|
weight: Optional[Tensor] = None,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor: # noqa: D400,D402
|
||
|
r"""multi_margin_loss(input, target, p=1, margin=1, weight=None, size_average=None, reduce=None, reduction='mean') -> Tensor
|
||
|
|
||
|
See :class:`~torch.nn.MultiMarginLoss` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, target, weight):
|
||
|
return handle_torch_function(
|
||
|
multi_margin_loss,
|
||
|
(input, target, weight),
|
||
|
input,
|
||
|
target,
|
||
|
p=p,
|
||
|
margin=margin,
|
||
|
weight=weight,
|
||
|
size_average=size_average,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
|
||
|
else:
|
||
|
reduction_enum = _Reduction.get_enum(reduction)
|
||
|
if p != 1 and p != 2:
|
||
|
raise ValueError("only p == 1 and p == 2 supported")
|
||
|
if weight is not None:
|
||
|
if weight.dim() != 1:
|
||
|
raise ValueError("weight must be one-dimensional")
|
||
|
|
||
|
return torch._C._nn.multi_margin_loss(input, target, p, margin, weight, reduction_enum)
|
||
|
|
||
|
|
||
|
pixel_shuffle = _add_docstr(
|
||
|
torch.pixel_shuffle,
|
||
|
r"""
|
||
|
pixel_shuffle(input, upscale_factor) -> Tensor
|
||
|
|
||
|
Rearranges elements in a tensor of shape :math:`(*, C \times r^2, H, W)` to a
|
||
|
tensor of shape :math:`(*, C, H \times r, W \times r)`, where r is the :attr:`upscale_factor`.
|
||
|
|
||
|
See :class:`~torch.nn.PixelShuffle` for details.
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): the input tensor
|
||
|
upscale_factor (int): factor to increase spatial resolution by
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> input = torch.randn(1, 9, 4, 4)
|
||
|
>>> output = torch.nn.functional.pixel_shuffle(input, 3)
|
||
|
>>> print(output.size())
|
||
|
torch.Size([1, 1, 12, 12])
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
pixel_unshuffle = _add_docstr(
|
||
|
torch.pixel_unshuffle,
|
||
|
r"""
|
||
|
pixel_unshuffle(input, downscale_factor) -> Tensor
|
||
|
|
||
|
Reverses the :class:`~torch.nn.PixelShuffle` operation by rearranging elements in a
|
||
|
tensor of shape :math:`(*, C, H \times r, W \times r)` to a tensor of shape
|
||
|
:math:`(*, C \times r^2, H, W)`, where r is the :attr:`downscale_factor`.
|
||
|
|
||
|
See :class:`~torch.nn.PixelUnshuffle` for details.
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): the input tensor
|
||
|
downscale_factor (int): factor to increase spatial resolution by
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> input = torch.randn(1, 1, 12, 12)
|
||
|
>>> output = torch.nn.functional.pixel_unshuffle(input, 3)
|
||
|
>>> print(output.size())
|
||
|
torch.Size([1, 9, 4, 4])
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
channel_shuffle = _add_docstr(
|
||
|
torch.channel_shuffle,
|
||
|
r"""
|
||
|
channel_shuffle(input, groups) -> Tensor
|
||
|
|
||
|
Divide the channels in a tensor of shape :math:`(*, C , H, W)`
|
||
|
into g groups and rearrange them as :math:`(*, C \frac g, g, H, W)`,
|
||
|
while keeping the original tensor shape.
|
||
|
|
||
|
See :class:`~torch.nn.ChannelShuffle` for details.
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): the input tensor
|
||
|
groups (int): number of groups to divide channels in and rearrange.
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> input = torch.randn(1, 4, 2, 2)
|
||
|
>>> print(input)
|
||
|
[[[[1, 2],
|
||
|
[3, 4]],
|
||
|
[[5, 6],
|
||
|
[7, 8]],
|
||
|
[[9, 10],
|
||
|
[11, 12]],
|
||
|
[[13, 14],
|
||
|
[15, 16]],
|
||
|
]]
|
||
|
>>> output = torch.nn.functional.channel_shuffle(input, 2)
|
||
|
>>> print(output)
|
||
|
[[[[1, 2],
|
||
|
[3, 4]],
|
||
|
[[9, 10],
|
||
|
[11, 12]],
|
||
|
[[5, 6],
|
||
|
[7, 8]],
|
||
|
[[13, 14],
|
||
|
[15, 16]],
|
||
|
]]
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
native_channel_shuffle = _add_docstr(
|
||
|
torch.native_channel_shuffle,
|
||
|
r"""
|
||
|
native_channel_shuffle(input, groups) -> Tensor
|
||
|
|
||
|
Native kernel level implementation of the `channel_shuffle`.
|
||
|
This function might become private in future releases, use with caution.
|
||
|
|
||
|
Divide the channels in a tensor of shape :math:`(*, C , H, W)`
|
||
|
into g groups and rearrange them as :math:`(*, C \frac g, g, H, W)`,
|
||
|
while keeping the original tensor shape.
|
||
|
|
||
|
See :class:`~torch.nn.ChannelShuffle` for details.
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): the input tensor
|
||
|
groups (int): number of groups to divide channels in and rearrange.
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> input = torch.randn(1, 4, 2, 2)
|
||
|
>>> print(input)
|
||
|
[[[[1, 2],
|
||
|
[3, 4]],
|
||
|
[[5, 6],
|
||
|
[7, 8]],
|
||
|
[[9, 10],
|
||
|
[11, 12]],
|
||
|
[[13, 14],
|
||
|
[15, 16]],
|
||
|
]]
|
||
|
>>> output = torch.nn.functional.native_channel_shuffle(input, 2)
|
||
|
>>> print(output)
|
||
|
[[[[1, 2],
|
||
|
[3, 4]],
|
||
|
[[9, 10],
|
||
|
[11, 12]],
|
||
|
[[5, 6],
|
||
|
[7, 8]],
|
||
|
[[13, 14],
|
||
|
[15, 16]],
|
||
|
]]
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
@_overload # noqa: F811
|
||
|
def upsample(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None, mode: str = "nearest", align_corners: Optional[bool] = None) -> Tensor: # noqa: F811,B950
|
||
|
pass
|
||
|
|
||
|
|
||
|
@_overload # noqa: F811
|
||
|
def upsample(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None, mode: str = "nearest", align_corners: Optional[bool] = None) -> Tensor: # noqa: F811,B950
|
||
|
pass
|
||
|
|
||
|
|
||
|
def upsample(input, size=None, scale_factor=None, mode="nearest", align_corners=None): # noqa: F811
|
||
|
r"""Upsample input.
|
||
|
|
||
|
Provided tensor is upsampled to either the given :attr:`size` or the given
|
||
|
:attr:`scale_factor`
|
||
|
|
||
|
.. warning::
|
||
|
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.
|
||
|
This is equivalent with ``nn.functional.interpolate(...)``.
|
||
|
|
||
|
Note:
|
||
|
{backward_reproducibility_note}
|
||
|
|
||
|
The algorithm used for upsampling is determined by :attr:`mode`.
|
||
|
|
||
|
Currently temporal, spatial and volumetric upsampling are supported, i.e.
|
||
|
expected inputs are 3-D, 4-D or 5-D in shape.
|
||
|
|
||
|
The input dimensions are interpreted in the form:
|
||
|
`mini-batch x channels x [optional depth] x [optional height] x width`.
|
||
|
|
||
|
The modes available for upsampling are: `nearest`, `linear` (3D-only),
|
||
|
`bilinear`, `bicubic` (4D-only), `trilinear` (5D-only)
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): the input tensor
|
||
|
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
|
||
|
output spatial size.
|
||
|
scale_factor (float or Tuple[float]): multiplier for spatial size. Has to match input size if it is a tuple.
|
||
|
mode (str): algorithm used for upsampling:
|
||
|
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
|
||
|
``'trilinear'``. Default: ``'nearest'``
|
||
|
align_corners (bool, optional): Geometrically, we consider the pixels of the
|
||
|
input and output as squares rather than points.
|
||
|
If set to ``True``, the input and output tensors are aligned by the
|
||
|
center points of their corner pixels, preserving the values at the corner pixels.
|
||
|
If set to ``False``, the input and output tensors are aligned by the corner
|
||
|
points of their corner pixels, and the interpolation uses edge value padding
|
||
|
for out-of-boundary values, making this operation *independent* of input size
|
||
|
when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`
|
||
|
is ``'linear'``, ``'bilinear'``, ``'bicubic'`` or ``'trilinear'``.
|
||
|
Default: ``False``
|
||
|
|
||
|
.. note::
|
||
|
With ``mode='bicubic'``, it's possible to cause overshoot, in other words it can produce
|
||
|
negative values or values greater than 255 for images.
|
||
|
Explicitly call ``result.clamp(min=0, max=255)`` if you want to reduce the overshoot
|
||
|
when displaying the image.
|
||
|
|
||
|
.. warning::
|
||
|
With ``align_corners = True``, the linearly interpolating modes
|
||
|
(`linear`, `bilinear`, and `trilinear`) don't proportionally align the
|
||
|
output and input pixels, and thus the output values can depend on the
|
||
|
input size. This was the default behavior for these modes up to version
|
||
|
0.3.1. Since then, the default behavior is ``align_corners = False``.
|
||
|
See :class:`~torch.nn.Upsample` for concrete examples on how this
|
||
|
affects the outputs.
|
||
|
|
||
|
"""
|
||
|
warnings.warn("nn.functional.upsample is deprecated. Use nn.functional.interpolate instead.")
|
||
|
return interpolate(input, size, scale_factor, mode, align_corners)
|
||
|
|
||
|
|
||
|
if upsample.__doc__:
|
||
|
upsample.__doc__ = upsample.__doc__.format(**reproducibility_notes)
|
||
|
|
||
|
|
||
|
def _is_integer(x) -> bool:
|
||
|
r"""Type check the input number is an integer.
|
||
|
|
||
|
Will return True for int, SymInt, Numpy integers and Tensors with integer elements.
|
||
|
"""
|
||
|
if isinstance(x, (int, torch.SymInt)):
|
||
|
return True
|
||
|
if np is not None and isinstance(x, np.integer):
|
||
|
return True
|
||
|
return isinstance(x, Tensor) and not x.is_floating_point()
|
||
|
|
||
|
|
||
|
@_overload # noqa: F811
|
||
|
def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811,B950
|
||
|
pass
|
||
|
|
||
|
|
||
|
@_overload # noqa: F811
|
||
|
def interpolate(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811,B950
|
||
|
pass
|
||
|
|
||
|
|
||
|
@_overload # noqa: F811
|
||
|
def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811,B950
|
||
|
pass
|
||
|
|
||
|
|
||
|
@_overload # noqa: F811
|
||
|
def interpolate( # noqa: F811
|
||
|
input: Tensor,
|
||
|
size: Optional[List[int]] = None,
|
||
|
scale_factor: Optional[float] = None,
|
||
|
mode: str = "nearest",
|
||
|
align_corners: Optional[bool] = None,
|
||
|
recompute_scale_factor: Optional[bool] = None,
|
||
|
antialias: bool = False,
|
||
|
) -> Tensor: # noqa: F811
|
||
|
pass
|
||
|
|
||
|
def interpolate(input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None, mode: str = 'nearest', align_corners: Optional[bool] = None, recompute_scale_factor: Optional[bool] = None, antialias: bool = False) -> Tensor: # noqa: F811,B950
|
||
|
r"""Down/up samples the input.
|
||
|
|
||
|
Tensor interpolated to either the given :attr:`size` or the given
|
||
|
:attr:`scale_factor`
|
||
|
|
||
|
The algorithm used for interpolation is determined by :attr:`mode`.
|
||
|
|
||
|
Currently temporal, spatial and volumetric sampling are supported, i.e.
|
||
|
expected inputs are 3-D, 4-D or 5-D in shape.
|
||
|
|
||
|
The input dimensions are interpreted in the form:
|
||
|
`mini-batch x channels x [optional depth] x [optional height] x width`.
|
||
|
|
||
|
The modes available for resizing are: `nearest`, `linear` (3D-only),
|
||
|
`bilinear`, `bicubic` (4D-only), `trilinear` (5D-only), `area`, `nearest-exact`
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): the input tensor
|
||
|
size (int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int]):
|
||
|
output spatial size.
|
||
|
scale_factor (float or Tuple[float]): multiplier for spatial size. If `scale_factor` is a tuple,
|
||
|
its length has to match the number of spatial dimensions; `input.dim() - 2`.
|
||
|
mode (str): algorithm used for upsampling:
|
||
|
``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
|
||
|
``'trilinear'`` | ``'area'`` | ``'nearest-exact'``. Default: ``'nearest'``
|
||
|
align_corners (bool, optional): Geometrically, we consider the pixels of the
|
||
|
input and output as squares rather than points.
|
||
|
If set to ``True``, the input and output tensors are aligned by the
|
||
|
center points of their corner pixels, preserving the values at the corner pixels.
|
||
|
If set to ``False``, the input and output tensors are aligned by the corner
|
||
|
points of their corner pixels, and the interpolation uses edge value padding
|
||
|
for out-of-boundary values, making this operation *independent* of input size
|
||
|
when :attr:`scale_factor` is kept the same. This only has an effect when :attr:`mode`
|
||
|
is ``'linear'``, ``'bilinear'``, ``'bicubic'`` or ``'trilinear'``.
|
||
|
Default: ``False``
|
||
|
recompute_scale_factor (bool, optional): recompute the scale_factor for use in the
|
||
|
interpolation calculation. If `recompute_scale_factor` is ``True``, then
|
||
|
`scale_factor` must be passed in and `scale_factor` is used to compute the
|
||
|
output `size`. The computed output `size` will be used to infer new scales for
|
||
|
the interpolation. Note that when `scale_factor` is floating-point, it may differ
|
||
|
from the recomputed `scale_factor` due to rounding and precision issues.
|
||
|
If `recompute_scale_factor` is ``False``, then `size` or `scale_factor` will
|
||
|
be used directly for interpolation. Default: ``None``.
|
||
|
antialias (bool, optional): flag to apply anti-aliasing. Default: ``False``. Using anti-alias
|
||
|
option together with ``align_corners=False``, interpolation result would match Pillow
|
||
|
result for downsampling operation. Supported modes: ``'bilinear'``, ``'bicubic'``.
|
||
|
|
||
|
.. note::
|
||
|
With ``mode='bicubic'``, it's possible to cause overshoot, in other words it can produce
|
||
|
negative values or values greater than 255 for images.
|
||
|
Explicitly call ``result.clamp(min=0, max=255)`` if you want to reduce the overshoot
|
||
|
when displaying the image.
|
||
|
|
||
|
.. note::
|
||
|
Mode ``mode='nearest-exact'`` matches Scikit-Image and PIL nearest neighbours interpolation
|
||
|
algorithms and fixes known issues with ``mode='nearest'``. This mode is introduced to keep
|
||
|
backward compatibility.
|
||
|
Mode ``mode='nearest'`` matches buggy OpenCV's ``INTER_NEAREST`` interpolation algorithm.
|
||
|
|
||
|
.. note::
|
||
|
The gradients for the dtype ``float16`` on CUDA may be inaccurate in the upsample operation
|
||
|
when using modes ``['linear', 'bilinear', 'bicubic', 'trilinear', 'area']``.
|
||
|
For more details, please refer to the discussion in
|
||
|
`issue#104157 <https://github.com/pytorch/pytorch/issues/104157>`_.
|
||
|
|
||
|
Note:
|
||
|
{backward_reproducibility_note}
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
interpolate,
|
||
|
(input,),
|
||
|
input,
|
||
|
size=size,
|
||
|
scale_factor=scale_factor,
|
||
|
mode=mode,
|
||
|
align_corners=align_corners,
|
||
|
recompute_scale_factor=recompute_scale_factor,
|
||
|
antialias=antialias
|
||
|
)
|
||
|
|
||
|
if mode in ("nearest", "area", "nearest-exact"):
|
||
|
if align_corners is not None:
|
||
|
raise ValueError(
|
||
|
"align_corners option can only be set with the "
|
||
|
"interpolating modes: linear | bilinear | bicubic | trilinear"
|
||
|
)
|
||
|
else:
|
||
|
if align_corners is None:
|
||
|
align_corners = False
|
||
|
|
||
|
dim = input.dim() - 2 # Number of spatial dimensions.
|
||
|
|
||
|
# Process size and scale_factor. Validate that exactly one is set.
|
||
|
# Validate its length if it is a list, or expand it if it is a scalar.
|
||
|
# After this block, exactly one of output_size and scale_factors will
|
||
|
# be non-None, and it will be a list (or tuple).
|
||
|
if size is not None and scale_factor is not None:
|
||
|
raise ValueError("only one of size or scale_factor should be defined")
|
||
|
elif size is not None:
|
||
|
assert scale_factor is None
|
||
|
scale_factors = None
|
||
|
if isinstance(size, (list, tuple)):
|
||
|
if len(size) != dim:
|
||
|
raise ValueError(
|
||
|
"Input and output must have the same number of spatial dimensions, but got "
|
||
|
f"input with spatial dimensions of {list(input.shape[2:])} and output size of {size}. "
|
||
|
"Please provide input tensor in (N, C, d1, d2, ...,dK) format and "
|
||
|
"output size in (o1, o2, ...,oK) format."
|
||
|
)
|
||
|
if not torch.jit.is_scripting():
|
||
|
if not all(_is_integer(x) for x in size):
|
||
|
raise TypeError(
|
||
|
"expected size to be one of int or Tuple[int] or Tuple[int, int] or "
|
||
|
f"Tuple[int, int, int], but got size with types {[type(x) for x in size]}"
|
||
|
)
|
||
|
output_size = size
|
||
|
else:
|
||
|
output_size = [size for _ in range(dim)]
|
||
|
elif scale_factor is not None:
|
||
|
assert size is None
|
||
|
output_size = None
|
||
|
if isinstance(scale_factor, (list, tuple)):
|
||
|
if len(scale_factor) != dim:
|
||
|
raise ValueError(
|
||
|
"Input and scale_factor must have the same number of spatial dimensions, but "
|
||
|
f"got input with spatial dimensions of {list(input.shape[2:])} and "
|
||
|
f"scale_factor of shape {scale_factor}. "
|
||
|
"Please provide input tensor in (N, C, d1, d2, ...,dK) format and "
|
||
|
"scale_factor in (s1, s2, ...,sK) format."
|
||
|
)
|
||
|
scale_factors = scale_factor
|
||
|
else:
|
||
|
scale_factors = [scale_factor for _ in range(dim)]
|
||
|
else:
|
||
|
raise ValueError("either size or scale_factor should be defined")
|
||
|
|
||
|
if recompute_scale_factor is not None and recompute_scale_factor and size is not None:
|
||
|
raise ValueError("recompute_scale_factor is not meaningful with an explicit size.")
|
||
|
|
||
|
# "area" mode always requires an explicit size rather than scale factor.
|
||
|
# Re-use the recompute_scale_factor code path.
|
||
|
if mode == "area" and output_size is None:
|
||
|
recompute_scale_factor = True
|
||
|
|
||
|
if recompute_scale_factor is not None and recompute_scale_factor:
|
||
|
# We compute output_size here, then un-set scale_factors.
|
||
|
# The C++ code will recompute it based on the (integer) output size.
|
||
|
assert scale_factors is not None
|
||
|
if not torch.jit.is_scripting() and torch._C._get_tracing_state():
|
||
|
# make scale_factor a tensor in tracing so constant doesn't get baked in
|
||
|
output_size = [
|
||
|
(torch.floor((input.size(i + 2).float() * torch.tensor(scale_factors[i], dtype=torch.float32)).float()))
|
||
|
for i in range(dim)
|
||
|
]
|
||
|
elif torch.jit.is_scripting():
|
||
|
output_size = [int(math.floor(float(input.size(i + 2)) * scale_factors[i]))
|
||
|
for i in range(dim)]
|
||
|
else:
|
||
|
output_size = [
|
||
|
_sym_int(input.size(i + 2) * scale_factors[i])
|
||
|
for i in range(dim)
|
||
|
]
|
||
|
scale_factors = None
|
||
|
|
||
|
if antialias and not (mode in ("bilinear", "bicubic") and input.ndim == 4):
|
||
|
raise ValueError("Anti-alias option is restricted to bilinear and bicubic modes and requires a 4-D tensor as input")
|
||
|
|
||
|
if input.dim() == 3 and mode == "nearest":
|
||
|
return torch._C._nn.upsample_nearest1d(input, output_size, scale_factors)
|
||
|
if input.dim() == 4 and mode == "nearest":
|
||
|
return torch._C._nn.upsample_nearest2d(input, output_size, scale_factors)
|
||
|
if input.dim() == 5 and mode == "nearest":
|
||
|
return torch._C._nn.upsample_nearest3d(input, output_size, scale_factors)
|
||
|
|
||
|
if input.dim() == 3 and mode == "nearest-exact":
|
||
|
return torch._C._nn._upsample_nearest_exact1d(input, output_size, scale_factors)
|
||
|
if input.dim() == 4 and mode == "nearest-exact":
|
||
|
return torch._C._nn._upsample_nearest_exact2d(input, output_size, scale_factors)
|
||
|
if input.dim() == 5 and mode == "nearest-exact":
|
||
|
return torch._C._nn._upsample_nearest_exact3d(input, output_size, scale_factors)
|
||
|
|
||
|
if input.dim() == 3 and mode == "area":
|
||
|
assert output_size is not None
|
||
|
return adaptive_avg_pool1d(input, output_size)
|
||
|
if input.dim() == 4 and mode == "area":
|
||
|
assert output_size is not None
|
||
|
return adaptive_avg_pool2d(input, output_size)
|
||
|
if input.dim() == 5 and mode == "area":
|
||
|
assert output_size is not None
|
||
|
return adaptive_avg_pool3d(input, output_size)
|
||
|
|
||
|
if input.dim() == 3 and mode == "linear":
|
||
|
assert align_corners is not None
|
||
|
return torch._C._nn.upsample_linear1d(input, output_size, align_corners, scale_factors)
|
||
|
if input.dim() == 4 and mode == "bilinear":
|
||
|
assert align_corners is not None
|
||
|
if antialias:
|
||
|
return torch._C._nn._upsample_bilinear2d_aa(input, output_size, align_corners, scale_factors)
|
||
|
# Two levels are necessary to prevent TorchScript from touching
|
||
|
# are_deterministic_algorithms_enabled.
|
||
|
if not torch.jit.is_scripting():
|
||
|
if torch.are_deterministic_algorithms_enabled() and input.is_cuda:
|
||
|
# Use slow decomp whose backward will be in terms of index_put
|
||
|
# importlib is required because the import cannot be top level
|
||
|
# (cycle) and cannot be nested (TS doesn't support)
|
||
|
return importlib.import_module('torch._decomp.decompositions')._upsample_linear_vec(
|
||
|
input, output_size, align_corners, scale_factors)
|
||
|
return torch._C._nn.upsample_bilinear2d(input, output_size, align_corners, scale_factors)
|
||
|
if input.dim() == 5 and mode == "trilinear":
|
||
|
assert align_corners is not None
|
||
|
return torch._C._nn.upsample_trilinear3d(input, output_size, align_corners, scale_factors)
|
||
|
if input.dim() == 4 and mode == "bicubic":
|
||
|
assert align_corners is not None
|
||
|
if antialias:
|
||
|
return torch._C._nn._upsample_bicubic2d_aa(input, output_size, align_corners, scale_factors)
|
||
|
return torch._C._nn.upsample_bicubic2d(input, output_size, align_corners, scale_factors)
|
||
|
|
||
|
if input.dim() == 3 and mode == "bilinear":
|
||
|
raise NotImplementedError("Got 3D input, but bilinear mode needs 4D input")
|
||
|
if input.dim() == 3 and mode == "trilinear":
|
||
|
raise NotImplementedError("Got 3D input, but trilinear mode needs 5D input")
|
||
|
if input.dim() == 4 and mode == "linear":
|
||
|
raise NotImplementedError("Got 4D input, but linear mode needs 3D input")
|
||
|
if input.dim() == 4 and mode == "trilinear":
|
||
|
raise NotImplementedError("Got 4D input, but trilinear mode needs 5D input")
|
||
|
if input.dim() == 5 and mode == "linear":
|
||
|
raise NotImplementedError("Got 5D input, but linear mode needs 3D input")
|
||
|
if input.dim() == 5 and mode == "bilinear":
|
||
|
raise NotImplementedError("Got 5D input, but bilinear mode needs 4D input")
|
||
|
|
||
|
raise NotImplementedError(
|
||
|
"Input Error: Only 3D, 4D and 5D input Tensors supported"
|
||
|
f" (got {input.dim()}D) for the modes: nearest | linear | bilinear | bicubic | trilinear | area | nearest-exact"
|
||
|
f" (got {mode})"
|
||
|
)
|
||
|
|
||
|
|
||
|
if interpolate.__doc__:
|
||
|
interpolate.__doc__ = interpolate.__doc__.format(**reproducibility_notes)
|
||
|
|
||
|
|
||
|
@_overload # noqa: F811
|
||
|
def upsample_nearest(input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None) -> Tensor: # noqa: F811
|
||
|
pass
|
||
|
|
||
|
|
||
|
@_overload # noqa: F811
|
||
|
def upsample_nearest(input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None) -> Tensor: # noqa: F811
|
||
|
pass
|
||
|
|
||
|
|
||
|
def upsample_nearest(input, size=None, scale_factor=None): # noqa: F811
|
||
|
r"""Upsamples the input, using nearest neighbours' pixel values.
|
||
|
|
||
|
.. warning::
|
||
|
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.
|
||
|
This is equivalent with ``nn.functional.interpolate(..., mode='nearest')``.
|
||
|
|
||
|
Currently spatial and volumetric upsampling are supported (i.e. expected
|
||
|
inputs are 4 or 5 dimensional).
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): input
|
||
|
size (int or Tuple[int, int] or Tuple[int, int, int]): output spatia
|
||
|
size.
|
||
|
scale_factor (int): multiplier for spatial size. Has to be an integer.
|
||
|
|
||
|
Note:
|
||
|
{backward_reproducibility_note}
|
||
|
"""
|
||
|
# DeprecationWarning is ignored by default
|
||
|
warnings.warn("nn.functional.upsample_nearest is deprecated. Use nn.functional.interpolate instead.")
|
||
|
return interpolate(input, size, scale_factor, mode="nearest")
|
||
|
|
||
|
|
||
|
if upsample_nearest.__doc__:
|
||
|
upsample_nearest.__doc__ = upsample_nearest.__doc__.format(**reproducibility_notes)
|
||
|
|
||
|
|
||
|
@_overload # noqa: F811
|
||
|
def upsample_bilinear(
|
||
|
input: Tensor, size: Optional[int] = None, scale_factor: Optional[float] = None
|
||
|
) -> Tensor: # noqa: F811
|
||
|
pass
|
||
|
|
||
|
|
||
|
@_overload # noqa: F811
|
||
|
def upsample_bilinear( # noqa: F811
|
||
|
input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[float] = None
|
||
|
) -> Tensor: # noqa: F811
|
||
|
pass
|
||
|
|
||
|
|
||
|
@_overload # noqa: F811
|
||
|
def upsample_bilinear( # noqa: F811
|
||
|
input: Tensor, size: Optional[int] = None, scale_factor: Optional[List[float]] = None
|
||
|
) -> Tensor: # noqa: F811
|
||
|
pass
|
||
|
|
||
|
|
||
|
@_overload # noqa: F811
|
||
|
def upsample_bilinear( # noqa: F811
|
||
|
input: Tensor, size: Optional[List[int]] = None, scale_factor: Optional[List[float]] = None
|
||
|
) -> Tensor: # noqa: F811
|
||
|
pass
|
||
|
|
||
|
|
||
|
def upsample_bilinear(input, size=None, scale_factor=None): # noqa: F811
|
||
|
r"""Upsamples the input, using bilinear upsampling.
|
||
|
|
||
|
.. warning::
|
||
|
This function is deprecated in favor of :func:`torch.nn.functional.interpolate`.
|
||
|
This is equivalent with
|
||
|
``nn.functional.interpolate(..., mode='bilinear', align_corners=True)``.
|
||
|
|
||
|
Expected inputs are spatial (4 dimensional). Use `upsample_trilinear` fo
|
||
|
volumetric (5 dimensional) inputs.
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): input
|
||
|
size (int or Tuple[int, int]): output spatial size.
|
||
|
scale_factor (int or Tuple[int, int]): multiplier for spatial size
|
||
|
|
||
|
Note:
|
||
|
{backward_reproducibility_note}
|
||
|
"""
|
||
|
# DeprecationWarning is ignored by default
|
||
|
warnings.warn("nn.functional.upsample_bilinear is deprecated. Use nn.functional.interpolate instead.")
|
||
|
return interpolate(input, size, scale_factor, mode="bilinear", align_corners=True)
|
||
|
|
||
|
|
||
|
if upsample_bilinear.__doc__:
|
||
|
upsample_bilinear.__doc__ = upsample_bilinear.__doc__.format(**reproducibility_notes)
|
||
|
|
||
|
GRID_SAMPLE_INTERPOLATION_MODES = {
|
||
|
"bilinear": 0,
|
||
|
"nearest": 1,
|
||
|
"bicubic": 2,
|
||
|
}
|
||
|
|
||
|
GRID_SAMPLE_PADDING_MODES = {
|
||
|
"zeros": 0,
|
||
|
"border": 1,
|
||
|
"reflection": 2,
|
||
|
}
|
||
|
|
||
|
|
||
|
def grid_sample(
|
||
|
input: Tensor,
|
||
|
grid: Tensor,
|
||
|
mode: str = "bilinear",
|
||
|
padding_mode: str = "zeros",
|
||
|
align_corners: Optional[bool] = None,
|
||
|
) -> Tensor:
|
||
|
r"""Compute grid sample.
|
||
|
|
||
|
Given an :attr:`input` and a flow-field :attr:`grid`, computes the
|
||
|
``output`` using :attr:`input` values and pixel locations from :attr:`grid`.
|
||
|
|
||
|
Currently, only spatial (4-D) and volumetric (5-D) :attr:`input` are
|
||
|
supported.
|
||
|
|
||
|
In the spatial (4-D) case, for :attr:`input` with shape
|
||
|
:math:`(N, C, H_\text{in}, W_\text{in})` and :attr:`grid` with shape
|
||
|
:math:`(N, H_\text{out}, W_\text{out}, 2)`, the output will have shape
|
||
|
:math:`(N, C, H_\text{out}, W_\text{out})`.
|
||
|
|
||
|
For each output location ``output[n, :, h, w]``, the size-2 vector
|
||
|
``grid[n, h, w]`` specifies :attr:`input` pixel locations ``x`` and ``y``,
|
||
|
which are used to interpolate the output value ``output[n, :, h, w]``.
|
||
|
In the case of 5D inputs, ``grid[n, d, h, w]`` specifies the
|
||
|
``x``, ``y``, ``z`` pixel locations for interpolating
|
||
|
``output[n, :, d, h, w]``. :attr:`mode` argument specifies ``nearest`` or
|
||
|
``bilinear`` interpolation method to sample the input pixels.
|
||
|
|
||
|
:attr:`grid` specifies the sampling pixel locations normalized by the
|
||
|
:attr:`input` spatial dimensions. Therefore, it should have most values in
|
||
|
the range of ``[-1, 1]``. For example, values ``x = -1, y = -1`` is the
|
||
|
left-top pixel of :attr:`input`, and values ``x = 1, y = 1`` is the
|
||
|
right-bottom pixel of :attr:`input`.
|
||
|
|
||
|
If :attr:`grid` has values outside the range of ``[-1, 1]``, the corresponding
|
||
|
outputs are handled as defined by :attr:`padding_mode`. Options are
|
||
|
|
||
|
* ``padding_mode="zeros"``: use ``0`` for out-of-bound grid locations,
|
||
|
* ``padding_mode="border"``: use border values for out-of-bound grid locations,
|
||
|
* ``padding_mode="reflection"``: use values at locations reflected by
|
||
|
the border for out-of-bound grid locations. For location far away
|
||
|
from the border, it will keep being reflected until becoming in bound,
|
||
|
e.g., (normalized) pixel location ``x = -3.5`` reflects by border ``-1``
|
||
|
and becomes ``x' = 1.5``, then reflects by border ``1`` and becomes
|
||
|
``x'' = -0.5``.
|
||
|
|
||
|
Note:
|
||
|
This function is often used in conjunction with :func:`affine_grid`
|
||
|
to build `Spatial Transformer Networks`_ .
|
||
|
|
||
|
Note:
|
||
|
When using the CUDA backend, this operation may induce nondeterministic
|
||
|
behaviour in its backward pass that is not easily switched off.
|
||
|
Please see the notes on :doc:`/notes/randomness` for background.
|
||
|
|
||
|
Note:
|
||
|
NaN values in :attr:`grid` would be interpreted as ``-1``.
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): input of shape :math:`(N, C, H_\text{in}, W_\text{in})` (4-D case)
|
||
|
or :math:`(N, C, D_\text{in}, H_\text{in}, W_\text{in})` (5-D case)
|
||
|
grid (Tensor): flow-field of shape :math:`(N, H_\text{out}, W_\text{out}, 2)` (4-D case)
|
||
|
or :math:`(N, D_\text{out}, H_\text{out}, W_\text{out}, 3)` (5-D case)
|
||
|
mode (str): interpolation mode to calculate output values
|
||
|
``'bilinear'`` | ``'nearest'`` | ``'bicubic'``. Default: ``'bilinear'``
|
||
|
Note: ``mode='bicubic'`` supports only 4-D input.
|
||
|
When ``mode='bilinear'`` and the input is 5-D, the interpolation mode
|
||
|
used internally will actually be trilinear. However, when the input is 4-D,
|
||
|
the interpolation mode will legitimately be bilinear.
|
||
|
padding_mode (str): padding mode for outside grid values
|
||
|
``'zeros'`` | ``'border'`` | ``'reflection'``. Default: ``'zeros'``
|
||
|
align_corners (bool, optional): Geometrically, we consider the pixels of the
|
||
|
input as squares rather than points.
|
||
|
If set to ``True``, the extrema (``-1`` and ``1``) are considered as referring
|
||
|
to the center points of the input's corner pixels. If set to ``False``, they
|
||
|
are instead considered as referring to the corner points of the input's corner
|
||
|
pixels, making the sampling more resolution agnostic.
|
||
|
This option parallels the ``align_corners`` option in
|
||
|
:func:`interpolate`, and so whichever option is used here
|
||
|
should also be used there to resize the input image before grid sampling.
|
||
|
Default: ``False``
|
||
|
|
||
|
Returns:
|
||
|
output (Tensor): output Tensor
|
||
|
|
||
|
.. _`Spatial Transformer Networks`:
|
||
|
https://arxiv.org/abs/1506.02025
|
||
|
|
||
|
.. warning::
|
||
|
When ``align_corners = True``, the grid positions depend on the pixel
|
||
|
size relative to the input image size, and so the locations sampled by
|
||
|
:func:`grid_sample` will differ for the same input given at different
|
||
|
resolutions (that is, after being upsampled or downsampled).
|
||
|
The default behavior up to version 1.2.0 was ``align_corners = True``.
|
||
|
Since then, the default behavior has been changed to ``align_corners = False``,
|
||
|
in order to bring it in line with the default for :func:`interpolate`.
|
||
|
|
||
|
.. note::
|
||
|
``mode='bicubic'`` is implemented using the `cubic convolution algorithm`_ with :math:`\alpha=-0.75`.
|
||
|
The constant :math:`\alpha` might be different from packages to packages.
|
||
|
For example, `PIL`_ and `OpenCV`_ use -0.5 and -0.75 respectively.
|
||
|
This algorithm may "overshoot" the range of values it's interpolating.
|
||
|
For example, it may produce negative values or values greater than 255 when interpolating input in [0, 255].
|
||
|
Clamp the results with :func:`torch.clamp` to ensure they are within the valid range.
|
||
|
.. _`cubic convolution algorithm`: https://en.wikipedia.org/wiki/Bicubic_interpolation
|
||
|
.. _`PIL`: https://github.com/python-pillow/Pillow/blob/4634eafe3c695a014267eefdce830b4a825beed7/src/libImaging/Resample.c#L51
|
||
|
.. _`OpenCV`: https://github.com/opencv/opencv/blob/f345ed564a06178670750bad59526cfa4033be55/modules/imgproc/src/resize.cpp#L908
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, grid):
|
||
|
return handle_torch_function(
|
||
|
grid_sample, (input, grid), input, grid, mode=mode, padding_mode=padding_mode, align_corners=align_corners
|
||
|
)
|
||
|
if mode != "bilinear" and mode != "nearest" and mode != "bicubic":
|
||
|
raise ValueError(
|
||
|
f"nn.functional.grid_sample(): expected mode to be 'bilinear', 'nearest' or 'bicubic', but got: '{mode}'"
|
||
|
)
|
||
|
if padding_mode != "zeros" and padding_mode != "border" and padding_mode != "reflection":
|
||
|
raise ValueError(
|
||
|
"nn.functional.grid_sample(): expected padding_mode "
|
||
|
"to be 'zeros', 'border', or 'reflection', "
|
||
|
f"but got: '{padding_mode}'"
|
||
|
)
|
||
|
|
||
|
if mode == "bilinear":
|
||
|
mode_enum = 0
|
||
|
elif mode == "nearest":
|
||
|
mode_enum = 1
|
||
|
else: # mode == 'bicubic'
|
||
|
mode_enum = 2
|
||
|
|
||
|
if padding_mode == "zeros":
|
||
|
padding_mode_enum = 0
|
||
|
elif padding_mode == "border":
|
||
|
padding_mode_enum = 1
|
||
|
else: # padding_mode == 'reflection'
|
||
|
padding_mode_enum = 2
|
||
|
|
||
|
if align_corners is None:
|
||
|
warnings.warn(
|
||
|
"Default grid_sample and affine_grid behavior has changed "
|
||
|
"to align_corners=False since 1.3.0. Please specify "
|
||
|
"align_corners=True if the old behavior is desired. "
|
||
|
"See the documentation of grid_sample for details."
|
||
|
)
|
||
|
align_corners = False
|
||
|
|
||
|
return torch.grid_sampler(input, grid, mode_enum, padding_mode_enum, align_corners)
|
||
|
|
||
|
|
||
|
def affine_grid(theta: Tensor, size: List[int], align_corners: Optional[bool] = None) -> Tensor:
|
||
|
r"""Generate 2D or 3D flow field (sampling grid), given a batch of affine matrices :attr:`theta`.
|
||
|
|
||
|
.. note::
|
||
|
This function is often used in conjunction with :func:`grid_sample`
|
||
|
to build `Spatial Transformer Networks`_ .
|
||
|
|
||
|
Args:
|
||
|
theta (Tensor): input batch of affine matrices with shape
|
||
|
(:math:`N \times 2 \times 3`) for 2D or
|
||
|
(:math:`N \times 3 \times 4`) for 3D
|
||
|
size (torch.Size): the target output image size.
|
||
|
(:math:`N \times C \times H \times W` for 2D or
|
||
|
:math:`N \times C \times D \times H \times W` for 3D)
|
||
|
Example: torch.Size((32, 3, 24, 24))
|
||
|
align_corners (bool, optional): if ``True``, consider ``-1`` and ``1``
|
||
|
to refer to the centers of the corner pixels rather than the image corners.
|
||
|
Refer to :func:`grid_sample` for a more complete description.
|
||
|
A grid generated by :func:`affine_grid` should be passed to :func:`grid_sample`
|
||
|
with the same setting for this option.
|
||
|
Default: ``False``
|
||
|
|
||
|
Returns:
|
||
|
output (Tensor): output Tensor of size (:math:`N \times H \times W \times 2`)
|
||
|
|
||
|
.. _`Spatial Transformer Networks`:
|
||
|
https://arxiv.org/abs/1506.02025
|
||
|
|
||
|
.. warning::
|
||
|
When ``align_corners = True``, the grid positions depend on the pixel
|
||
|
size relative to the input image size, and so the locations sampled by
|
||
|
:func:`grid_sample` will differ for the same input given at different
|
||
|
resolutions (that is, after being upsampled or downsampled).
|
||
|
The default behavior up to version 1.2.0 was ``align_corners = True``.
|
||
|
Since then, the default behavior has been changed to ``align_corners = False``,
|
||
|
in order to bring it in line with the default for :func:`interpolate`.
|
||
|
.. warning::
|
||
|
When ``align_corners = True``, 2D affine transforms on 1D data and
|
||
|
3D affine transforms on 2D data (that is, when one of the spatial
|
||
|
dimensions has unit size) are ill-defined, and not an intended use case.
|
||
|
This is not a problem when ``align_corners = False``.
|
||
|
Up to version 1.2.0, all grid points along a unit dimension were
|
||
|
considered arbitrarily to be at ``-1``.
|
||
|
From version 1.3.0, under ``align_corners = True`` all grid points
|
||
|
along a unit dimension are considered to be at ``0``
|
||
|
(the center of the input image).
|
||
|
"""
|
||
|
if has_torch_function_unary(theta):
|
||
|
return handle_torch_function(affine_grid, (theta,), theta, size, align_corners=align_corners)
|
||
|
if align_corners is None:
|
||
|
warnings.warn(
|
||
|
"Default grid_sample and affine_grid behavior has changed "
|
||
|
"to align_corners=False since 1.3.0. Please specify "
|
||
|
"align_corners=True if the old behavior is desired. "
|
||
|
"See the documentation of grid_sample for details."
|
||
|
)
|
||
|
align_corners = False
|
||
|
|
||
|
# enforce floating point dtype on theta
|
||
|
if not theta.is_floating_point():
|
||
|
raise ValueError(f"Expected theta to have floating point type, but got {theta.dtype}")
|
||
|
# check that shapes and sizes match
|
||
|
if len(size) == 4:
|
||
|
if theta.dim() != 3 or theta.shape[-2] != 2 or theta.shape[-1] != 3:
|
||
|
raise ValueError(
|
||
|
f"Expected a batch of 2D affine matrices of shape Nx2x3 for size {size}. Got {theta.shape}."
|
||
|
)
|
||
|
spatial_size = size[-2:] # spatial dimension sizes
|
||
|
elif len(size) == 5:
|
||
|
if theta.dim() != 3 or theta.shape[-2] != 3 or theta.shape[-1] != 4:
|
||
|
raise ValueError(
|
||
|
f"Expected a batch of 3D affine matrices of shape Nx3x4 for size {size}. Got {theta.shape}."
|
||
|
)
|
||
|
spatial_size = size[-3:] # spatial dimension sizes
|
||
|
else:
|
||
|
raise NotImplementedError(
|
||
|
"affine_grid only supports 4D and 5D sizes, "
|
||
|
"for 2D and 3D affine transforms, respectively. "
|
||
|
f"Got size {size}."
|
||
|
)
|
||
|
# check for empty span
|
||
|
if align_corners and min(spatial_size) == 1:
|
||
|
warnings.warn(
|
||
|
"Since version 1.3.0, affine_grid behavior has changed "
|
||
|
"for unit-size grids when align_corners=True. "
|
||
|
"This is not an intended use case of affine_grid. "
|
||
|
"See the documentation of affine_grid for details."
|
||
|
)
|
||
|
elif min(size) <= 0:
|
||
|
raise ValueError(f"Expected non-zero, positive output size. Got {size}")
|
||
|
|
||
|
return torch.affine_grid_generator(theta, size, align_corners)
|
||
|
|
||
|
|
||
|
def pad(input: Tensor, pad: List[int], mode: str = "constant", value: Optional[float] = None) -> Tensor:
|
||
|
r"""
|
||
|
pad(input, pad, mode="constant", value=None) -> Tensor
|
||
|
|
||
|
Pads tensor.
|
||
|
|
||
|
Padding size:
|
||
|
The padding size by which to pad some dimensions of :attr:`input`
|
||
|
are described starting from the last dimension and moving forward.
|
||
|
:math:`\left\lfloor\frac{\text{len(pad)}}{2}\right\rfloor` dimensions
|
||
|
of ``input`` will be padded.
|
||
|
For example, to pad only the last dimension of the input tensor, then
|
||
|
:attr:`pad` has the form
|
||
|
:math:`(\text{padding\_left}, \text{padding\_right})`;
|
||
|
to pad the last 2 dimensions of the input tensor, then use
|
||
|
:math:`(\text{padding\_left}, \text{padding\_right},`
|
||
|
:math:`\text{padding\_top}, \text{padding\_bottom})`;
|
||
|
to pad the last 3 dimensions, use
|
||
|
:math:`(\text{padding\_left}, \text{padding\_right},`
|
||
|
:math:`\text{padding\_top}, \text{padding\_bottom}`
|
||
|
:math:`\text{padding\_front}, \text{padding\_back})`.
|
||
|
|
||
|
Padding mode:
|
||
|
See :class:`torch.nn.CircularPad2d`, :class:`torch.nn.ConstantPad2d`,
|
||
|
:class:`torch.nn.ReflectionPad2d`, and :class:`torch.nn.ReplicationPad2d`
|
||
|
for concrete examples on how each of the padding modes works. Constant
|
||
|
padding is implemented for arbitrary dimensions. Circular, replicate and
|
||
|
reflection padding are implemented for padding the last 3 dimensions of a
|
||
|
4D or 5D input tensor, the last 2 dimensions of a 3D or 4D input tensor,
|
||
|
or the last dimension of a 2D or 3D input tensor.
|
||
|
|
||
|
Note:
|
||
|
When using the CUDA backend, this operation may induce nondeterministic
|
||
|
behaviour in its backward pass that is not easily switched off.
|
||
|
Please see the notes on :doc:`/notes/randomness` for background.
|
||
|
|
||
|
Args:
|
||
|
input (Tensor): N-dimensional tensor
|
||
|
pad (tuple): m-elements tuple, where
|
||
|
:math:`\frac{m}{2} \leq` input dimensions and :math:`m` is even.
|
||
|
mode: ``'constant'``, ``'reflect'``, ``'replicate'`` or ``'circular'``.
|
||
|
Default: ``'constant'``
|
||
|
value: fill value for ``'constant'`` padding. Default: ``0``
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> t4d = torch.empty(3, 3, 4, 2)
|
||
|
>>> p1d = (1, 1) # pad last dim by 1 on each side
|
||
|
>>> out = F.pad(t4d, p1d, "constant", 0) # effectively zero padding
|
||
|
>>> print(out.size())
|
||
|
torch.Size([3, 3, 4, 4])
|
||
|
>>> p2d = (1, 1, 2, 2) # pad last dim by (1, 1) and 2nd to last by (2, 2)
|
||
|
>>> out = F.pad(t4d, p2d, "constant", 0)
|
||
|
>>> print(out.size())
|
||
|
torch.Size([3, 3, 8, 4])
|
||
|
>>> t4d = torch.empty(3, 3, 4, 2)
|
||
|
>>> p3d = (0, 1, 2, 1, 3, 3) # pad by (0, 1), (2, 1), and (3, 3)
|
||
|
>>> out = F.pad(t4d, p3d, "constant", 0)
|
||
|
>>> print(out.size())
|
||
|
torch.Size([3, 9, 7, 3])
|
||
|
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
torch.nn.functional.pad, (input,), input, pad, mode=mode, value=value)
|
||
|
if not torch.jit.is_scripting():
|
||
|
if torch.are_deterministic_algorithms_enabled() and input.is_cuda:
|
||
|
if mode == 'replicate':
|
||
|
# Use slow decomp whose backward will be in terms of index_put.
|
||
|
# importlib is required because the import cannot be top level
|
||
|
# (cycle) and cannot be nested (TS doesn't support)
|
||
|
return importlib.import_module('torch._decomp.decompositions')._replication_pad(
|
||
|
input, pad
|
||
|
)
|
||
|
return torch._C._nn.pad(input, pad, mode, value)
|
||
|
|
||
|
# TODO: Fix via https://github.com/pytorch/pytorch/issues/75798
|
||
|
pad.__module__ = "torch.nn.functional"
|
||
|
|
||
|
# distance
|
||
|
|
||
|
|
||
|
pairwise_distance = _add_docstr(
|
||
|
torch.pairwise_distance,
|
||
|
r"""
|
||
|
pairwise_distance(x1, x2, p=2.0, eps=1e-6, keepdim=False) -> Tensor
|
||
|
|
||
|
See :class:`torch.nn.PairwiseDistance` for details
|
||
|
""")
|
||
|
|
||
|
|
||
|
pdist = _add_docstr(
|
||
|
torch.pdist,
|
||
|
r"""
|
||
|
pdist(input, p=2) -> Tensor
|
||
|
|
||
|
Computes the p-norm distance between every pair of row vectors in the input.
|
||
|
This is identical to the upper triangular portion, excluding the diagonal, of
|
||
|
`torch.norm(input[:, None] - input, dim=2, p=p)`. This function will be faster
|
||
|
if the rows are contiguous.
|
||
|
|
||
|
If input has shape :math:`N \times M` then the output will have shape
|
||
|
:math:`\frac{1}{2} N (N - 1)`.
|
||
|
|
||
|
This function is equivalent to ``scipy.spatial.distance.pdist(input,
|
||
|
'minkowski', p=p)`` if :math:`p \in (0, \infty)`. When :math:`p = 0` it is
|
||
|
equivalent to ``scipy.spatial.distance.pdist(input, 'hamming') * M``.
|
||
|
When :math:`p = \infty`, the closest scipy function is
|
||
|
``scipy.spatial.distance.pdist(xn, lambda x, y: np.abs(x - y).max())``.
|
||
|
|
||
|
Args:
|
||
|
input: input tensor of shape :math:`N \times M`.
|
||
|
p: p value for the p-norm distance to calculate between each vector pair
|
||
|
:math:`\in [0, \infty]`.
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
cosine_similarity = _add_docstr(
|
||
|
torch.cosine_similarity,
|
||
|
r"""
|
||
|
cosine_similarity(x1, x2, dim=1, eps=1e-8) -> Tensor
|
||
|
|
||
|
Returns cosine similarity between ``x1`` and ``x2``, computed along dim. ``x1`` and ``x2`` must be broadcastable
|
||
|
to a common shape. ``dim`` refers to the dimension in this common shape. Dimension ``dim`` of the output is
|
||
|
squeezed (see :func:`torch.squeeze`), resulting in the
|
||
|
output tensor having 1 fewer dimension.
|
||
|
|
||
|
.. math ::
|
||
|
\text{similarity} = \dfrac{x_1 \cdot x_2}{\max(\Vert x_1 \Vert _2, \epsilon) \cdot \max(\Vert x_2 \Vert _2, \epsilon)}
|
||
|
|
||
|
Supports :ref:`type promotion <type-promotion-doc>`.
|
||
|
|
||
|
Args:
|
||
|
x1 (Tensor): First input.
|
||
|
x2 (Tensor): Second input.
|
||
|
dim (int, optional): Dimension along which cosine similarity is computed. Default: 1
|
||
|
eps (float, optional): Small value to avoid division by zero.
|
||
|
Default: 1e-8
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> input1 = torch.randn(100, 128)
|
||
|
>>> input2 = torch.randn(100, 128)
|
||
|
>>> output = F.cosine_similarity(input1, input2)
|
||
|
>>> print(output)
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
one_hot = _add_docstr(
|
||
|
torch._C._nn.one_hot,
|
||
|
r"""
|
||
|
one_hot(tensor, num_classes=-1) -> LongTensor
|
||
|
|
||
|
Takes LongTensor with index values of shape ``(*)`` and returns a tensor
|
||
|
of shape ``(*, num_classes)`` that have zeros everywhere except where the
|
||
|
index of last dimension matches the corresponding value of the input tensor,
|
||
|
in which case it will be 1.
|
||
|
|
||
|
See also `One-hot on Wikipedia`_ .
|
||
|
|
||
|
.. _One-hot on Wikipedia:
|
||
|
https://en.wikipedia.org/wiki/One-hot
|
||
|
|
||
|
Arguments:
|
||
|
tensor (LongTensor): class values of any shape.
|
||
|
num_classes (int): Total number of classes. If set to -1, the number
|
||
|
of classes will be inferred as one greater than the largest class
|
||
|
value in the input tensor.
|
||
|
|
||
|
Returns:
|
||
|
LongTensor that has one more dimension with 1 values at the
|
||
|
index of last dimension indicated by the input, and 0 everywhere
|
||
|
else.
|
||
|
|
||
|
Examples:
|
||
|
>>> F.one_hot(torch.arange(0, 5) % 3)
|
||
|
tensor([[1, 0, 0],
|
||
|
[0, 1, 0],
|
||
|
[0, 0, 1],
|
||
|
[1, 0, 0],
|
||
|
[0, 1, 0]])
|
||
|
>>> F.one_hot(torch.arange(0, 5) % 3, num_classes=5)
|
||
|
tensor([[1, 0, 0, 0, 0],
|
||
|
[0, 1, 0, 0, 0],
|
||
|
[0, 0, 1, 0, 0],
|
||
|
[1, 0, 0, 0, 0],
|
||
|
[0, 1, 0, 0, 0]])
|
||
|
>>> F.one_hot(torch.arange(0, 6).view(3,2) % 3)
|
||
|
tensor([[[1, 0, 0],
|
||
|
[0, 1, 0]],
|
||
|
[[0, 0, 1],
|
||
|
[1, 0, 0]],
|
||
|
[[0, 1, 0],
|
||
|
[0, 0, 1]]])
|
||
|
""",
|
||
|
)
|
||
|
|
||
|
|
||
|
def triplet_margin_loss(
|
||
|
anchor: Tensor,
|
||
|
positive: Tensor,
|
||
|
negative: Tensor,
|
||
|
margin: float = 1.0,
|
||
|
p: float = 2,
|
||
|
eps: float = 1e-6,
|
||
|
swap: bool = False,
|
||
|
size_average: Optional[bool] = None,
|
||
|
reduce: Optional[bool] = None,
|
||
|
reduction: str = "mean",
|
||
|
) -> Tensor:
|
||
|
r"""Compute the triplet loss between given input tensors and a margin greater than 0.
|
||
|
|
||
|
See :class:`~torch.nn.TripletMarginLoss` for details.
|
||
|
"""
|
||
|
if has_torch_function_variadic(anchor, positive, negative):
|
||
|
return handle_torch_function(
|
||
|
triplet_margin_loss,
|
||
|
(anchor, positive, negative),
|
||
|
anchor,
|
||
|
positive,
|
||
|
negative,
|
||
|
margin=margin,
|
||
|
p=p,
|
||
|
eps=eps,
|
||
|
swap=swap,
|
||
|
size_average=size_average,
|
||
|
reduce=reduce,
|
||
|
reduction=reduction,
|
||
|
)
|
||
|
if size_average is not None or reduce is not None:
|
||
|
reduction_enum = _Reduction.legacy_get_enum(size_average, reduce)
|
||
|
else:
|
||
|
reduction_enum = _Reduction.get_enum(reduction)
|
||
|
return torch.triplet_margin_loss(anchor, positive, negative, margin, p, eps, swap, reduction_enum)
|
||
|
|
||
|
|
||
|
def triplet_margin_with_distance_loss(
|
||
|
anchor: Tensor,
|
||
|
positive: Tensor,
|
||
|
negative: Tensor,
|
||
|
*,
|
||
|
distance_function: Optional[Callable[[Tensor, Tensor], Tensor]] = None,
|
||
|
margin: float = 1.0,
|
||
|
swap: bool = False,
|
||
|
reduction: str = "mean"
|
||
|
) -> Tensor:
|
||
|
r"""Compute the triplet margin loss for input tensors using a custom distance function.
|
||
|
|
||
|
See :class:`~torch.nn.TripletMarginWithDistanceLoss` for details.
|
||
|
"""
|
||
|
if torch.jit.is_scripting():
|
||
|
raise NotImplementedError(
|
||
|
"F.triplet_margin_with_distance_loss does not support JIT scripting: "
|
||
|
"functions requiring Callables cannot be scripted."
|
||
|
)
|
||
|
|
||
|
if has_torch_function_variadic(anchor, positive, negative):
|
||
|
return handle_torch_function(
|
||
|
triplet_margin_with_distance_loss,
|
||
|
(anchor, positive, negative),
|
||
|
anchor,
|
||
|
positive,
|
||
|
negative,
|
||
|
distance_function=distance_function,
|
||
|
margin=margin,
|
||
|
swap=swap,
|
||
|
reduction=reduction,
|
||
|
)
|
||
|
|
||
|
# Check validity of reduction mode
|
||
|
if reduction not in ("mean", "sum", "none"):
|
||
|
raise ValueError(f"{reduction} is not a valid value for reduction")
|
||
|
|
||
|
# Check dimensions
|
||
|
a_dim = anchor.ndim
|
||
|
p_dim = positive.ndim
|
||
|
n_dim = negative.ndim
|
||
|
if not (a_dim == p_dim and p_dim == n_dim):
|
||
|
raise RuntimeError(
|
||
|
f"The anchor, positive, and negative tensors are expected to have "
|
||
|
f"the same number of dimensions, but got: anchor {a_dim}D, "
|
||
|
f"positive {p_dim}D, and negative {n_dim}D inputs")
|
||
|
|
||
|
# Calculate loss
|
||
|
if distance_function is None:
|
||
|
distance_function = torch.pairwise_distance
|
||
|
|
||
|
dist_pos = distance_function(anchor, positive)
|
||
|
dist_neg = distance_function(anchor, negative)
|
||
|
# The distance swap is described in the paper "Learning shallow
|
||
|
# convolutional feature descriptors with triplet losses" by V. Balntas, E.
|
||
|
# Riba et al. If True, and if the positive example is closer to the
|
||
|
# negative example than the anchor is, swaps the positive example and the
|
||
|
# anchor in the loss computation.
|
||
|
if swap:
|
||
|
dist_swap = distance_function(positive, negative)
|
||
|
dist_neg = torch.minimum(dist_neg, dist_swap)
|
||
|
loss = torch.clamp_min(margin + dist_pos - dist_neg, 0)
|
||
|
|
||
|
# Apply reduction
|
||
|
if reduction == "sum":
|
||
|
return torch.sum(loss)
|
||
|
elif reduction == "mean":
|
||
|
return torch.mean(loss)
|
||
|
else: # reduction == "none"
|
||
|
return loss
|
||
|
|
||
|
|
||
|
def normalize(input: Tensor, p: float = 2.0, dim: int = 1, eps: float = 1e-12, out: Optional[Tensor] = None) -> Tensor:
|
||
|
r"""Perform :math:`L_p` normalization of inputs over specified dimension.
|
||
|
|
||
|
For a tensor :attr:`input` of sizes :math:`(n_0, ..., n_{dim}, ..., n_k)`, each
|
||
|
:math:`n_{dim}` -element vector :math:`v` along dimension :attr:`dim` is transformed as
|
||
|
|
||
|
.. math::
|
||
|
v = \frac{v}{\max(\lVert v \rVert_p, \epsilon)}.
|
||
|
|
||
|
With the default arguments it uses the Euclidean norm over vectors along dimension :math:`1` for normalization.
|
||
|
|
||
|
Args:
|
||
|
input: input tensor of any shape
|
||
|
p (float): the exponent value in the norm formulation. Default: 2
|
||
|
dim (int or tuple of ints): the dimension to reduce. Default: 1
|
||
|
eps (float): small value to avoid division by zero. Default: 1e-12
|
||
|
out (Tensor, optional): the output tensor. If :attr:`out` is used, this
|
||
|
operation won't be differentiable.
|
||
|
"""
|
||
|
if has_torch_function_variadic(input, out):
|
||
|
return handle_torch_function(normalize, (input, out), input, p=p, dim=dim, eps=eps, out=out)
|
||
|
if out is None:
|
||
|
denom = input.norm(p, dim, keepdim=True).clamp_min(eps).expand_as(input)
|
||
|
return input / denom
|
||
|
else:
|
||
|
denom = input.norm(p, dim, keepdim=True).clamp_min_(eps).expand_as(input)
|
||
|
return torch.div(input, denom, out=out)
|
||
|
|
||
|
|
||
|
def assert_int_or_pair(arg: List[int], arg_name: str, message: str) -> None:
|
||
|
assert isinstance(arg, int) or len(arg) == 2, message.format(arg_name)
|
||
|
|
||
|
|
||
|
def unfold(
|
||
|
input: Tensor, kernel_size: BroadcastingList2[int],
|
||
|
dilation: BroadcastingList2[int] = 1,
|
||
|
padding: BroadcastingList2[int] = 0,
|
||
|
stride: BroadcastingList2[int] = 1
|
||
|
) -> Tensor:
|
||
|
r"""Extract sliding local blocks from a batched input tensor.
|
||
|
|
||
|
.. warning::
|
||
|
Currently, only 4-D input tensors (batched image-like tensors) are
|
||
|
supported.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
More than one element of the unfolded tensor may refer to a single
|
||
|
memory location. As a result, in-place operations (especially ones that
|
||
|
are vectorized) may result in incorrect behavior. If you need to write
|
||
|
to the tensor, please clone it first.
|
||
|
|
||
|
|
||
|
See :class:`torch.nn.Unfold` for details
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
unfold, (input,), input, kernel_size, dilation=dilation, padding=padding, stride=stride
|
||
|
)
|
||
|
return torch._C._nn.im2col(input, _pair(kernel_size), _pair(dilation), _pair(padding), _pair(stride))
|
||
|
|
||
|
|
||
|
def fold(
|
||
|
input: Tensor, output_size: BroadcastingList2[int],
|
||
|
kernel_size: BroadcastingList2[int],
|
||
|
dilation: BroadcastingList2[int] = 1,
|
||
|
padding: BroadcastingList2[int] = 0,
|
||
|
stride: BroadcastingList2[int] = 1
|
||
|
) -> Tensor:
|
||
|
r"""Combine an array of sliding local blocks into a large containing tensor.
|
||
|
|
||
|
.. warning::
|
||
|
Currently, only unbatched (3D) or batched (4D) image-like output tensors are supported.
|
||
|
|
||
|
See :class:`torch.nn.Fold` for details
|
||
|
"""
|
||
|
if has_torch_function_unary(input):
|
||
|
return handle_torch_function(
|
||
|
fold, (input,), input, output_size, kernel_size, dilation=dilation, padding=padding, stride=stride
|
||
|
)
|
||
|
return torch._C._nn.col2im(
|
||
|
input, _pair(output_size), _pair(kernel_size), _pair(dilation), _pair(padding), _pair(stride)
|
||
|
)
|
||
|
|
||
|
#
|
||
|
# multihead attention
|
||
|
#
|
||
|
|
||
|
def _in_projection_packed(
|
||
|
q: Tensor,
|
||
|
k: Tensor,
|
||
|
v: Tensor,
|
||
|
w: Tensor,
|
||
|
b: Optional[Tensor] = None,
|
||
|
) -> List[Tensor]:
|
||
|
r"""Perform the in-projection step of the attention operation, using packed weights.
|
||
|
|
||
|
Output is a triple containing projection tensors for query, key and value.
|
||
|
|
||
|
Args:
|
||
|
q, k, v: query, key and value tensors to be projected. For self-attention,
|
||
|
these are typically the same tensor; for encoder-decoder attention,
|
||
|
k and v are typically the same tensor. (We take advantage of these
|
||
|
identities for performance if they are present.) Regardless, q, k and v
|
||
|
must share a common embedding dimension; otherwise their shapes may vary.
|
||
|
w: projection weights for q, k and v, packed into a single tensor. Weights
|
||
|
are packed along dimension 0, in q, k, v order.
|
||
|
b: optional projection biases for q, k and v, packed into a single tensor
|
||
|
in q, k, v order.
|
||
|
|
||
|
Shape:
|
||
|
Inputs:
|
||
|
- q: :math:`(..., E)` where E is the embedding dimension
|
||
|
- k: :math:`(..., E)` where E is the embedding dimension
|
||
|
- v: :math:`(..., E)` where E is the embedding dimension
|
||
|
- w: :math:`(E * 3, E)` where E is the embedding dimension
|
||
|
- b: :math:`E * 3` where E is the embedding dimension
|
||
|
|
||
|
Output:
|
||
|
- in output list :math:`[q', k', v']`, each output tensor will have the
|
||
|
same shape as the corresponding input tensor.
|
||
|
"""
|
||
|
E = q.size(-1)
|
||
|
if k is v:
|
||
|
if q is k:
|
||
|
# self-attention
|
||
|
proj = linear(q, w, b)
|
||
|
# reshape to 3, E and not E, 3 is deliberate for better memory coalescing and keeping same order as chunk()
|
||
|
proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
||
|
return proj[0], proj[1], proj[2]
|
||
|
else:
|
||
|
# encoder-decoder attention
|
||
|
w_q, w_kv = w.split([E, E * 2])
|
||
|
if b is None:
|
||
|
b_q = b_kv = None
|
||
|
else:
|
||
|
b_q, b_kv = b.split([E, E * 2])
|
||
|
q_proj = linear(q, w_q, b_q)
|
||
|
kv_proj = linear(k, w_kv, b_kv)
|
||
|
# reshape to 2, E and not E, 2 is deliberate for better memory coalescing and keeping same order as chunk()
|
||
|
kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous()
|
||
|
return (q_proj, kv_proj[0], kv_proj[1])
|
||
|
else:
|
||
|
w_q, w_k, w_v = w.chunk(3)
|
||
|
if b is None:
|
||
|
b_q = b_k = b_v = None
|
||
|
else:
|
||
|
b_q, b_k, b_v = b.chunk(3)
|
||
|
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
||
|
|
||
|
|
||
|
def _in_projection(
|
||
|
q: Tensor,
|
||
|
k: Tensor,
|
||
|
v: Tensor,
|
||
|
w_q: Tensor,
|
||
|
w_k: Tensor,
|
||
|
w_v: Tensor,
|
||
|
b_q: Optional[Tensor] = None,
|
||
|
b_k: Optional[Tensor] = None,
|
||
|
b_v: Optional[Tensor] = None,
|
||
|
) -> Tuple[Tensor, Tensor, Tensor]:
|
||
|
r"""Perform the in-projection step of the attention operation.
|
||
|
|
||
|
This is simply a triple of linear projections,
|
||
|
with shape constraints on the weights which
|
||
|
ensure embedding dimension uniformity in the projected outputs.
|
||
|
Output is a triple containing projection tensors for query, key and value.
|
||
|
|
||
|
Args:
|
||
|
q, k, v: query, key and value tensors to be projected.
|
||
|
w_q, w_k, w_v: weights for q, k and v, respectively.
|
||
|
b_q, b_k, b_v: optional biases for q, k and v, respectively.
|
||
|
|
||
|
Shape:
|
||
|
Inputs:
|
||
|
- q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any
|
||
|
number of leading dimensions.
|
||
|
- k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any
|
||
|
number of leading dimensions.
|
||
|
- v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any
|
||
|
number of leading dimensions.
|
||
|
- w_q: :math:`(Eq, Eq)`
|
||
|
- w_k: :math:`(Eq, Ek)`
|
||
|
- w_v: :math:`(Eq, Ev)`
|
||
|
- b_q: :math:`(Eq)`
|
||
|
- b_k: :math:`(Eq)`
|
||
|
- b_v: :math:`(Eq)`
|
||
|
|
||
|
Output: in output triple :math:`(q', k', v')`,
|
||
|
- q': :math:`[Qdims..., Eq]`
|
||
|
- k': :math:`[Kdims..., Eq]`
|
||
|
- v': :math:`[Vdims..., Eq]`
|
||
|
|
||
|
"""
|
||
|
Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1)
|
||
|
assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}"
|
||
|
assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}"
|
||
|
assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}"
|
||
|
assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}"
|
||
|
assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}"
|
||
|
assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}"
|
||
|
return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v)
|
||
|
|
||
|
scaled_dot_product_attention = _add_docstr(
|
||
|
torch._C._nn.scaled_dot_product_attention, r"""
|
||
|
scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> Tensor:
|
||
|
|
||
|
Computes scaled dot product attention on query, key and value tensors, using
|
||
|
an optional attention mask if passed, and applying dropout if a probability
|
||
|
greater than 0.0 is specified. The optional scale argument can only be specified as a keyword argument.
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
# Efficient implementation equivalent to the following:
|
||
|
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
|
||
|
L, S = query.size(-2), key.size(-2)
|
||
|
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
||
|
attn_bias = torch.zeros(L, S, dtype=query.dtype)
|
||
|
if is_causal:
|
||
|
assert attn_mask is None
|
||
|
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
|
||
|
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
||
|
attn_bias.to(query.dtype)
|
||
|
|
||
|
if attn_mask is not None:
|
||
|
if attn_mask.dtype == torch.bool:
|
||
|
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
||
|
else:
|
||
|
attn_bias += attn_mask
|
||
|
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
||
|
attn_weight += attn_bias
|
||
|
attn_weight = torch.softmax(attn_weight, dim=-1)
|
||
|
attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
|
||
|
return attn_weight @ value
|
||
|
|
||
|
.. warning:: This function is beta and subject to change.
|
||
|
|
||
|
Note:
|
||
|
|
||
|
There are currently three supported implementations of scaled dot product attention:
|
||
|
|
||
|
- `FlashAttention-2: Faster Attention with Better Parallelism and Work Partitioning`_
|
||
|
- `Memory-Efficient Attention`_
|
||
|
- A PyTorch implementation defined in C++ matching the above formulation
|
||
|
|
||
|
The function may call optimized kernels for improved performance when using the CUDA backend.
|
||
|
For all other backends, the PyTorch implementation will be used.
|
||
|
|
||
|
All implementations are enabled by default. Scaled dot product attention attempts to automatically select the
|
||
|
most optimal implementation based on the inputs. In order to provide more fine-grained control over what implementation
|
||
|
is used, the following functions are provided for enabling and disabling implementations.
|
||
|
The context manager is the preferred mechanism:
|
||
|
|
||
|
- :func:`torch.nn.attention.sdpa_kernel`: A context manager used to enable or disable any of the implementations.
|
||
|
- :func:`torch.backends.cuda.enable_flash_sdp`: Globally enables or disables FlashAttention.
|
||
|
- :func:`torch.backends.cuda.enable_mem_efficient_sdp`: Globally enables or disables Memory-Efficient Attention.
|
||
|
- :func:`torch.backends.cuda.enable_math_sdp`: Globally enables or disables the PyTorch C++ implementation.
|
||
|
|
||
|
Each of the fused kernels has specific input limitations. If the user requires the use of a specific fused implementation,
|
||
|
disable the PyTorch C++ implementation using :func:`torch.nn.attention.sdpa_kernel`.
|
||
|
In the event that a fused implementation is not available, a warning will be raised with the
|
||
|
reasons why the fused implementation cannot run.
|
||
|
|
||
|
Due to the nature of fusing floating point operations, the output of this function may be different
|
||
|
depending on what backend kernel is chosen.
|
||
|
The c++ implementation supports torch.float64 and can be used when higher precision is required.
|
||
|
For more information please see :doc:`/notes/numerical_accuracy`
|
||
|
|
||
|
Note:
|
||
|
{cudnn_reproducibility_note}
|
||
|
""".format(**reproducibility_notes)
|
||
|
+ r"""
|
||
|
Args:
|
||
|
query (Tensor): Query tensor; shape :math:`(N, ..., L, E)`.
|
||
|
key (Tensor): Key tensor; shape :math:`(N, ..., S, E)`.
|
||
|
value (Tensor): Value tensor; shape :math:`(N, ..., S, Ev)`.
|
||
|
attn_mask (optional Tensor): Attention mask; shape must be broadcastable to the shape of attention weights,
|
||
|
which is :math:`(N,..., L, S)`. Two types of masks are supported.
|
||
|
A boolean mask where a value of True indicates that the element *should* take part in attention.
|
||
|
A float mask of the same type as query, key, value that is added to the attention score.
|
||
|
dropout_p (float): Dropout probability; if greater than 0.0, dropout is applied
|
||
|
is_causal (bool): If true, assumes upper left causal attention masking and errors if both attn_mask and is_causal
|
||
|
are set.
|
||
|
scale (optional float, keyword-only): Scaling factor applied prior to softmax. If None, the default value is set
|
||
|
to :math:`\frac{1}{\sqrt{E}}`.
|
||
|
|
||
|
|
||
|
Returns:
|
||
|
output (Tensor): Attention output; shape :math:`(N, ..., L, Ev)`.
|
||
|
|
||
|
Shape legend:
|
||
|
- :math:`N: \text{Batch size} ... : \text{Any number of other batch dimensions (optional)}`
|
||
|
- :math:`S: \text{Source sequence length}`
|
||
|
- :math:`L: \text{Target sequence length}`
|
||
|
- :math:`E: \text{Embedding dimension of the query and key}`
|
||
|
- :math:`Ev: \text{Embedding dimension of the value}`
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
>>> # Optionally use the context manager to ensure one of the fused kernels is run
|
||
|
>>> query = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")
|
||
|
>>> key = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")
|
||
|
>>> value = torch.rand(32, 8, 128, 64, dtype=torch.float16, device="cuda")
|
||
|
>>> with torch.backends.cuda.sdp_kernel(enable_math=False):
|
||
|
>>> F.scaled_dot_product_attention(query,key,value)
|
||
|
|
||
|
|
||
|
.. _FlashAttention-2\: Faster Attention with Better Parallelism and Work Partitioning:
|
||
|
https://arxiv.org/abs/2307.08691
|
||
|
.. _Memory-Efficient Attention:
|
||
|
https://github.com/facebookresearch/xformers
|
||
|
|
||
|
""")
|
||
|
|
||
|
def _mha_shape_check(query: Tensor, key: Tensor, value: Tensor,
|
||
|
key_padding_mask: Optional[Tensor], attn_mask: Optional[Tensor], num_heads: int):
|
||
|
# Verifies the expected shape for `query, `key`, `value`, `key_padding_mask` and `attn_mask`
|
||
|
# and returns if the input is batched or not.
|
||
|
# Raises an error if `query` is not 2-D (unbatched) or 3-D (batched) tensor.
|
||
|
|
||
|
# Shape check.
|
||
|
if query.dim() == 3:
|
||
|
# Batched Inputs
|
||
|
is_batched = True
|
||
|
assert key.dim() == 3 and value.dim() == 3, \
|
||
|
("For batched (3-D) `query`, expected `key` and `value` to be 3-D"
|
||
|
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
|
||
|
if key_padding_mask is not None:
|
||
|
assert key_padding_mask.dim() == 2, \
|
||
|
("For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D"
|
||
|
f" but found {key_padding_mask.dim()}-D tensor instead")
|
||
|
if attn_mask is not None:
|
||
|
assert attn_mask.dim() in (2, 3), \
|
||
|
("For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
|
||
|
f" but found {attn_mask.dim()}-D tensor instead")
|
||
|
elif query.dim() == 2:
|
||
|
# Unbatched Inputs
|
||
|
is_batched = False
|
||
|
assert key.dim() == 2 and value.dim() == 2, \
|
||
|
("For unbatched (2-D) `query`, expected `key` and `value` to be 2-D"
|
||
|
f" but found {key.dim()}-D and {value.dim()}-D tensors respectively")
|
||
|
|
||
|
if key_padding_mask is not None:
|
||
|
assert key_padding_mask.dim() == 1, \
|
||
|
("For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D"
|
||
|
f" but found {key_padding_mask.dim()}-D tensor instead")
|
||
|
|
||
|
if attn_mask is not None:
|
||
|
assert attn_mask.dim() in (2, 3), \
|
||
|
("For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D"
|
||
|
f" but found {attn_mask.dim()}-D tensor instead")
|
||
|
if attn_mask.dim() == 3:
|
||
|
expected_shape = (num_heads, query.shape[0], key.shape[0])
|
||
|
assert attn_mask.shape == expected_shape, \
|
||
|
(f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}")
|
||
|
else:
|
||
|
raise AssertionError(
|
||
|
f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor")
|
||
|
|
||
|
return is_batched
|
||
|
|
||
|
def _canonical_mask(
|
||
|
mask: Optional[Tensor],
|
||
|
mask_name: str,
|
||
|
other_type: Optional[DType],
|
||
|
other_name: str,
|
||
|
target_type: DType,
|
||
|
check_other: bool = True,
|
||
|
) -> Optional[Tensor]:
|
||
|
|
||
|
if mask is not None:
|
||
|
_mask_dtype = mask.dtype
|
||
|
_mask_is_float = torch.is_floating_point(mask)
|
||
|
if _mask_dtype != torch.bool and not _mask_is_float:
|
||
|
raise AssertionError(
|
||
|
f"only bool and floating types of {mask_name} are supported")
|
||
|
if check_other and other_type is not None:
|
||
|
if _mask_dtype != other_type:
|
||
|
warnings.warn(
|
||
|
f"Support for mismatched {mask_name} and {other_name} "
|
||
|
"is deprecated. Use same type for both instead."
|
||
|
)
|
||
|
if not _mask_is_float:
|
||
|
mask = (
|
||
|
torch.zeros_like(mask, dtype=target_type)
|
||
|
.masked_fill_(mask, float("-inf"))
|
||
|
)
|
||
|
return mask
|
||
|
|
||
|
def _none_or_dtype(input: Optional[Tensor]) -> Optional[DType]:
|
||
|
if input is None:
|
||
|
return None
|
||
|
elif isinstance(input, torch.Tensor):
|
||
|
return input.dtype
|
||
|
raise RuntimeError("input to _none_or_dtype() must be None or torch.Tensor")
|
||
|
|
||
|
def multi_head_attention_forward(
|
||
|
query: Tensor,
|
||
|
key: Tensor,
|
||
|
value: Tensor,
|
||
|
embed_dim_to_check: int,
|
||
|
num_heads: int,
|
||
|
in_proj_weight: Optional[Tensor],
|
||
|
in_proj_bias: Optional[Tensor],
|
||
|
bias_k: Optional[Tensor],
|
||
|
bias_v: Optional[Tensor],
|
||
|
add_zero_attn: bool,
|
||
|
dropout_p: float,
|
||
|
out_proj_weight: Tensor,
|
||
|
out_proj_bias: Optional[Tensor],
|
||
|
training: bool = True,
|
||
|
key_padding_mask: Optional[Tensor] = None,
|
||
|
need_weights: bool = True,
|
||
|
attn_mask: Optional[Tensor] = None,
|
||
|
use_separate_proj_weight: bool = False,
|
||
|
q_proj_weight: Optional[Tensor] = None,
|
||
|
k_proj_weight: Optional[Tensor] = None,
|
||
|
v_proj_weight: Optional[Tensor] = None,
|
||
|
static_k: Optional[Tensor] = None,
|
||
|
static_v: Optional[Tensor] = None,
|
||
|
average_attn_weights: bool = True,
|
||
|
is_causal: bool = False,
|
||
|
) -> Tuple[Tensor, Optional[Tensor]]:
|
||
|
r"""Forward method for MultiHeadAttention.
|
||
|
|
||
|
See :class:`torch.nn.MultiheadAttention` for details.
|
||
|
|
||
|
Args:
|
||
|
query, key, value: map a query and a set of key-value pairs to an output.
|
||
|
See "Attention Is All You Need" for more details.
|
||
|
embed_dim_to_check: total dimension of the model.
|
||
|
num_heads: parallel attention heads.
|
||
|
in_proj_weight, in_proj_bias: input projection weight and bias.
|
||
|
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
|
||
|
add_zero_attn: add a new batch of zeros to the key and
|
||
|
value sequences at dim=1.
|
||
|
dropout_p: probability of an element to be zeroed.
|
||
|
out_proj_weight, out_proj_bias: the output projection weight and bias.
|
||
|
training: apply dropout if is ``True``.
|
||
|
key_padding_mask: if provided, specified padding elements in the key will
|
||
|
be ignored by the attention. This is an binary mask. When the value is True,
|
||
|
the corresponding value on the attention layer will be filled with -inf.
|
||
|
need_weights: output attn_output_weights.
|
||
|
Default: `True`
|
||
|
Note: `needs_weight` defaults to `True`, but should be set to `False`
|
||
|
For best performance when attention weights are not needed.
|
||
|
*Setting needs_weights to `True`
|
||
|
leads to a significant performance degradation.*
|
||
|
attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
|
||
|
the batches while a 3D mask allows to specify a different mask for the entries of each batch.
|
||
|
is_causal: If specified, applies a causal mask as attention mask, and ignores
|
||
|
attn_mask for computing scaled dot product attention.
|
||
|
Default: ``False``.
|
||
|
.. warning::
|
||
|
is_causal is provides a hint that the attn_mask is the
|
||
|
causal mask.Providing incorrect hints can result in
|
||
|
incorrect execution, including forward and backward
|
||
|
compatibility.
|
||
|
use_separate_proj_weight: the function accept the proj. weights for query, key,
|
||
|
and value in different forms. If false, in_proj_weight will be used, which is
|
||
|
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
|
||
|
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
|
||
|
static_k, static_v: static key and value used for attention operators.
|
||
|
average_attn_weights: If true, indicates that the returned ``attn_weights`` should be averaged across heads.
|
||
|
Otherwise, ``attn_weights`` are provided separately per head. Note that this flag only has an effect
|
||
|
when ``need_weights=True.``. Default: True
|
||
|
|
||
|
|
||
|
Shape:
|
||
|
Inputs:
|
||
|
- query: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
|
||
|
the embedding dimension.
|
||
|
- key: :math:`(S, E)` or :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
|
||
|
the embedding dimension.
|
||
|
- value: :math:`(S, E)` or :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
|
||
|
the embedding dimension.
|
||
|
- key_padding_mask: :math:`(S)` or :math:`(N, S)` where N is the batch size, S is the source sequence length.
|
||
|
If a FloatTensor is provided, it will be directly added to the value.
|
||
|
If a BoolTensor is provided, the positions with the
|
||
|
value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
|
||
|
- attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
|
||
|
3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
|
||
|
S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
|
||
|
positions. If a BoolTensor is provided, positions with ``True``
|
||
|
are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
|
||
|
is provided, it will be added to the attention weight.
|
||
|
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
||
|
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
||
|
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
|
||
|
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
|
||
|
|
||
|
Outputs:
|
||
|
- attn_output: :math:`(L, E)` or :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
|
||
|
E is the embedding dimension.
|
||
|
- attn_output_weights: Only returned when ``need_weights=True``. If ``average_attn_weights=True``, returns
|
||
|
attention weights averaged across heads of shape :math:`(L, S)` when input is unbatched or
|
||
|
:math:`(N, L, S)`, where :math:`N` is the batch size, :math:`L` is the target sequence length, and
|
||
|
:math:`S` is the source sequence length. If ``average_attn_weights=False``, returns attention weights per
|
||
|
head of shape :math:`(num_heads, L, S)` when input is unbatched or :math:`(N, num_heads, L, S)`.
|
||
|
"""
|
||
|
tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias)
|
||
|
if has_torch_function(tens_ops):
|
||
|
return handle_torch_function(
|
||
|
multi_head_attention_forward,
|
||
|
tens_ops,
|
||
|
query,
|
||
|
key,
|
||
|
value,
|
||
|
embed_dim_to_check,
|
||
|
num_heads,
|
||
|
in_proj_weight,
|
||
|
in_proj_bias,
|
||
|
bias_k,
|
||
|
bias_v,
|
||
|
add_zero_attn,
|
||
|
dropout_p,
|
||
|
out_proj_weight,
|
||
|
out_proj_bias,
|
||
|
training=training,
|
||
|
key_padding_mask=key_padding_mask,
|
||
|
need_weights=need_weights,
|
||
|
attn_mask=attn_mask,
|
||
|
is_causal=is_causal,
|
||
|
use_separate_proj_weight=use_separate_proj_weight,
|
||
|
q_proj_weight=q_proj_weight,
|
||
|
k_proj_weight=k_proj_weight,
|
||
|
v_proj_weight=v_proj_weight,
|
||
|
static_k=static_k,
|
||
|
static_v=static_v,
|
||
|
average_attn_weights=average_attn_weights,
|
||
|
)
|
||
|
|
||
|
is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads)
|
||
|
|
||
|
# For unbatched input, we unsqueeze at the expected batch-dim to pretend that the input
|
||
|
# is batched, run the computation and before returning squeeze the
|
||
|
# batch dimension so that the output doesn't carry this temporary batch dimension.
|
||
|
if not is_batched:
|
||
|
# unsqueeze if the input is unbatched
|
||
|
query = query.unsqueeze(1)
|
||
|
key = key.unsqueeze(1)
|
||
|
value = value.unsqueeze(1)
|
||
|
if key_padding_mask is not None:
|
||
|
key_padding_mask = key_padding_mask.unsqueeze(0)
|
||
|
|
||
|
# set up shape vars
|
||
|
tgt_len, bsz, embed_dim = query.shape
|
||
|
src_len, _, _ = key.shape
|
||
|
|
||
|
key_padding_mask = _canonical_mask(
|
||
|
mask=key_padding_mask,
|
||
|
mask_name="key_padding_mask",
|
||
|
other_type=_none_or_dtype(attn_mask),
|
||
|
other_name="attn_mask",
|
||
|
target_type=query.dtype
|
||
|
)
|
||
|
|
||
|
if is_causal and attn_mask is None:
|
||
|
raise RuntimeError(
|
||
|
"Need attn_mask if specifying the is_causal hint. "
|
||
|
"You may use the Transformer module method "
|
||
|
"`generate_square_subsequent_mask` to create this mask."
|
||
|
)
|
||
|
|
||
|
if is_causal and key_padding_mask is None and not need_weights:
|
||
|
# when we have a kpm or need weights, we need attn_mask
|
||
|
# Otherwise, we use the is_causal hint go as is_causal
|
||
|
# indicator to SDPA.
|
||
|
attn_mask = None
|
||
|
else:
|
||
|
attn_mask = _canonical_mask(
|
||
|
mask=attn_mask,
|
||
|
mask_name="attn_mask",
|
||
|
other_type=None,
|
||
|
other_name="",
|
||
|
target_type=query.dtype,
|
||
|
check_other=False,
|
||
|
)
|
||
|
|
||
|
if key_padding_mask is not None:
|
||
|
# We have the attn_mask, and use that to merge kpm into it.
|
||
|
# Turn off use of is_causal hint, as the merged mask is no
|
||
|
# longer causal.
|
||
|
is_causal = False
|
||
|
|
||
|
assert embed_dim == embed_dim_to_check, \
|
||
|
f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}"
|
||
|
if isinstance(embed_dim, torch.Tensor):
|
||
|
# embed_dim can be a tensor when JIT tracing
|
||
|
head_dim = embed_dim.div(num_heads, rounding_mode='trunc')
|
||
|
else:
|
||
|
head_dim = embed_dim // num_heads
|
||
|
assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}"
|
||
|
if use_separate_proj_weight:
|
||
|
# allow MHA to have different embedding dimensions when separate projection weights are used
|
||
|
assert key.shape[:2] == value.shape[:2], \
|
||
|
f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}"
|
||
|
else:
|
||
|
assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}"
|
||
|
|
||
|
#
|
||
|
# compute in-projection
|
||
|
#
|
||
|
if not use_separate_proj_weight:
|
||
|
assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None"
|
||
|
q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias)
|
||
|
else:
|
||
|
assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None"
|
||
|
assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None"
|
||
|
assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None"
|
||
|
if in_proj_bias is None:
|
||
|
b_q = b_k = b_v = None
|
||
|
else:
|
||
|
b_q, b_k, b_v = in_proj_bias.chunk(3)
|
||
|
q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v)
|
||
|
|
||
|
# prep attention mask
|
||
|
|
||
|
if attn_mask is not None:
|
||
|
# ensure attn_mask's dim is 3
|
||
|
if attn_mask.dim() == 2:
|
||
|
correct_2d_size = (tgt_len, src_len)
|
||
|
if attn_mask.shape != correct_2d_size:
|
||
|
raise RuntimeError(f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}.")
|
||
|
attn_mask = attn_mask.unsqueeze(0)
|
||
|
elif attn_mask.dim() == 3:
|
||
|
correct_3d_size = (bsz * num_heads, tgt_len, src_len)
|
||
|
if attn_mask.shape != correct_3d_size:
|
||
|
raise RuntimeError(f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}.")
|
||
|
else:
|
||
|
raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported")
|
||
|
|
||
|
# add bias along batch dimension (currently second)
|
||
|
if bias_k is not None and bias_v is not None:
|
||
|
assert static_k is None, "bias cannot be added to static key."
|
||
|
assert static_v is None, "bias cannot be added to static value."
|
||
|
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
|
||
|
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
|
||
|
if attn_mask is not None:
|
||
|
attn_mask = pad(attn_mask, (0, 1))
|
||
|
if key_padding_mask is not None:
|
||
|
key_padding_mask = pad(key_padding_mask, (0, 1))
|
||
|
else:
|
||
|
assert bias_k is None
|
||
|
assert bias_v is None
|
||
|
|
||
|
#
|
||
|
# reshape q, k, v for multihead attention and make em batch first
|
||
|
#
|
||
|
q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
|
||
|
if static_k is None:
|
||
|
k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
||
|
else:
|
||
|
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
||
|
assert static_k.size(0) == bsz * num_heads, \
|
||
|
f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}"
|
||
|
assert static_k.size(2) == head_dim, \
|
||
|
f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}"
|
||
|
k = static_k
|
||
|
if static_v is None:
|
||
|
v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1)
|
||
|
else:
|
||
|
# TODO finish disentangling control flow so we don't do in-projections when statics are passed
|
||
|
assert static_v.size(0) == bsz * num_heads, \
|
||
|
f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}"
|
||
|
assert static_v.size(2) == head_dim, \
|
||
|
f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}"
|
||
|
v = static_v
|
||
|
|
||
|
# add zero attention along batch dimension (now first)
|
||
|
if add_zero_attn:
|
||
|
zero_attn_shape = (bsz * num_heads, 1, head_dim)
|
||
|
k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1)
|
||
|
v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1)
|
||
|
if attn_mask is not None:
|
||
|
attn_mask = pad(attn_mask, (0, 1))
|
||
|
if key_padding_mask is not None:
|
||
|
key_padding_mask = pad(key_padding_mask, (0, 1))
|
||
|
|
||
|
# update source sequence length after adjustments
|
||
|
src_len = k.size(1)
|
||
|
|
||
|
# merge key padding and attention masks
|
||
|
if key_padding_mask is not None:
|
||
|
assert key_padding_mask.shape == (bsz, src_len), \
|
||
|
f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}"
|
||
|
key_padding_mask = key_padding_mask.view(bsz, 1, 1, src_len). \
|
||
|
expand(-1, num_heads, -1, -1).reshape(bsz * num_heads, 1, src_len)
|
||
|
if attn_mask is None:
|
||
|
attn_mask = key_padding_mask
|
||
|
else:
|
||
|
attn_mask = attn_mask + key_padding_mask
|
||
|
|
||
|
# adjust dropout probability
|
||
|
if not training:
|
||
|
dropout_p = 0.0
|
||
|
|
||
|
#
|
||
|
# (deep breath) calculate attention and out projection
|
||
|
#
|
||
|
|
||
|
if need_weights:
|
||
|
B, Nt, E = q.shape
|
||
|
q_scaled = q * math.sqrt(1.0 / float(E))
|
||
|
|
||
|
assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights"
|
||
|
|
||
|
if attn_mask is not None:
|
||
|
attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1))
|
||
|
else:
|
||
|
attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1))
|
||
|
attn_output_weights = softmax(attn_output_weights, dim=-1)
|
||
|
if dropout_p > 0.0:
|
||
|
attn_output_weights = dropout(attn_output_weights, p=dropout_p)
|
||
|
|
||
|
attn_output = torch.bmm(attn_output_weights, v)
|
||
|
|
||
|
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim)
|
||
|
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||
|
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||
|
|
||
|
# optionally average attention weights over heads
|
||
|
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
|
||
|
if average_attn_weights:
|
||
|
attn_output_weights = attn_output_weights.mean(dim=1)
|
||
|
|
||
|
if not is_batched:
|
||
|
# squeeze the output if input was unbatched
|
||
|
attn_output = attn_output.squeeze(1)
|
||
|
attn_output_weights = attn_output_weights.squeeze(0)
|
||
|
return attn_output, attn_output_weights
|
||
|
else:
|
||
|
# attn_mask can be either (L,S) or (N*num_heads, L, S)
|
||
|
# if attn_mask's shape is (1, L, S) we need to unsqueeze to (1, 1, L, S)
|
||
|
# in order to match the input for SDPA of (N, num_heads, L, S)
|
||
|
if attn_mask is not None:
|
||
|
if attn_mask.size(0) == 1 and attn_mask.dim() == 3:
|
||
|
attn_mask = attn_mask.unsqueeze(0)
|
||
|
else:
|
||
|
attn_mask = attn_mask.view(bsz, num_heads, -1, src_len)
|
||
|
|
||
|
q = q.view(bsz, num_heads, tgt_len, head_dim)
|
||
|
k = k.view(bsz, num_heads, src_len, head_dim)
|
||
|
v = v.view(bsz, num_heads, src_len, head_dim)
|
||
|
|
||
|
attn_output = scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal)
|
||
|
attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim)
|
||
|
|
||
|
attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
|
||
|
attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1))
|
||
|
if not is_batched:
|
||
|
# squeeze the output if input was unbatched
|
||
|
attn_output = attn_output.squeeze(1)
|
||
|
return attn_output, None
|