You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
416 lines
15 KiB
416 lines
15 KiB
5 months ago
|
import gc
|
||
|
import math
|
||
|
import os
|
||
|
import re
|
||
|
import warnings
|
||
|
from fractions import Fraction
|
||
|
from typing import Any, Dict, List, Optional, Tuple, Union
|
||
|
|
||
|
import numpy as np
|
||
|
import torch
|
||
|
|
||
|
from ..utils import _log_api_usage_once
|
||
|
from . import _video_opt
|
||
|
|
||
|
try:
|
||
|
import av
|
||
|
|
||
|
av.logging.set_level(av.logging.ERROR)
|
||
|
if not hasattr(av.video.frame.VideoFrame, "pict_type"):
|
||
|
av = ImportError(
|
||
|
"""\
|
||
|
Your version of PyAV is too old for the necessary video operations in torchvision.
|
||
|
If you are on Python 3.5, you will have to build from source (the conda-forge
|
||
|
packages are not up-to-date). See
|
||
|
https://github.com/mikeboers/PyAV#installation for instructions on how to
|
||
|
install PyAV on your system.
|
||
|
"""
|
||
|
)
|
||
|
except ImportError:
|
||
|
av = ImportError(
|
||
|
"""\
|
||
|
PyAV is not installed, and is necessary for the video operations in torchvision.
|
||
|
See https://github.com/mikeboers/PyAV#installation for instructions on how to
|
||
|
install PyAV on your system.
|
||
|
"""
|
||
|
)
|
||
|
|
||
|
|
||
|
def _check_av_available() -> None:
|
||
|
if isinstance(av, Exception):
|
||
|
raise av
|
||
|
|
||
|
|
||
|
def _av_available() -> bool:
|
||
|
return not isinstance(av, Exception)
|
||
|
|
||
|
|
||
|
# PyAV has some reference cycles
|
||
|
_CALLED_TIMES = 0
|
||
|
_GC_COLLECTION_INTERVAL = 10
|
||
|
|
||
|
|
||
|
def write_video(
|
||
|
filename: str,
|
||
|
video_array: torch.Tensor,
|
||
|
fps: float,
|
||
|
video_codec: str = "libx264",
|
||
|
options: Optional[Dict[str, Any]] = None,
|
||
|
audio_array: Optional[torch.Tensor] = None,
|
||
|
audio_fps: Optional[float] = None,
|
||
|
audio_codec: Optional[str] = None,
|
||
|
audio_options: Optional[Dict[str, Any]] = None,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Writes a 4d tensor in [T, H, W, C] format in a video file
|
||
|
|
||
|
Args:
|
||
|
filename (str): path where the video will be saved
|
||
|
video_array (Tensor[T, H, W, C]): tensor containing the individual frames,
|
||
|
as a uint8 tensor in [T, H, W, C] format
|
||
|
fps (Number): video frames per second
|
||
|
video_codec (str): the name of the video codec, i.e. "libx264", "h264", etc.
|
||
|
options (Dict): dictionary containing options to be passed into the PyAV video stream
|
||
|
audio_array (Tensor[C, N]): tensor containing the audio, where C is the number of channels
|
||
|
and N is the number of samples
|
||
|
audio_fps (Number): audio sample rate, typically 44100 or 48000
|
||
|
audio_codec (str): the name of the audio codec, i.e. "mp3", "aac", etc.
|
||
|
audio_options (Dict): dictionary containing options to be passed into the PyAV audio stream
|
||
|
"""
|
||
|
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
||
|
_log_api_usage_once(write_video)
|
||
|
_check_av_available()
|
||
|
video_array = torch.as_tensor(video_array, dtype=torch.uint8).numpy()
|
||
|
|
||
|
# PyAV does not support floating point numbers with decimal point
|
||
|
# and will throw OverflowException in case this is not the case
|
||
|
if isinstance(fps, float):
|
||
|
fps = np.round(fps)
|
||
|
|
||
|
with av.open(filename, mode="w") as container:
|
||
|
stream = container.add_stream(video_codec, rate=fps)
|
||
|
stream.width = video_array.shape[2]
|
||
|
stream.height = video_array.shape[1]
|
||
|
stream.pix_fmt = "yuv420p" if video_codec != "libx264rgb" else "rgb24"
|
||
|
stream.options = options or {}
|
||
|
|
||
|
if audio_array is not None:
|
||
|
audio_format_dtypes = {
|
||
|
"dbl": "<f8",
|
||
|
"dblp": "<f8",
|
||
|
"flt": "<f4",
|
||
|
"fltp": "<f4",
|
||
|
"s16": "<i2",
|
||
|
"s16p": "<i2",
|
||
|
"s32": "<i4",
|
||
|
"s32p": "<i4",
|
||
|
"u8": "u1",
|
||
|
"u8p": "u1",
|
||
|
}
|
||
|
a_stream = container.add_stream(audio_codec, rate=audio_fps)
|
||
|
a_stream.options = audio_options or {}
|
||
|
|
||
|
num_channels = audio_array.shape[0]
|
||
|
audio_layout = "stereo" if num_channels > 1 else "mono"
|
||
|
audio_sample_fmt = container.streams.audio[0].format.name
|
||
|
|
||
|
format_dtype = np.dtype(audio_format_dtypes[audio_sample_fmt])
|
||
|
audio_array = torch.as_tensor(audio_array).numpy().astype(format_dtype)
|
||
|
|
||
|
frame = av.AudioFrame.from_ndarray(audio_array, format=audio_sample_fmt, layout=audio_layout)
|
||
|
|
||
|
frame.sample_rate = audio_fps
|
||
|
|
||
|
for packet in a_stream.encode(frame):
|
||
|
container.mux(packet)
|
||
|
|
||
|
for packet in a_stream.encode():
|
||
|
container.mux(packet)
|
||
|
|
||
|
for img in video_array:
|
||
|
frame = av.VideoFrame.from_ndarray(img, format="rgb24")
|
||
|
frame.pict_type = "NONE"
|
||
|
for packet in stream.encode(frame):
|
||
|
container.mux(packet)
|
||
|
|
||
|
# Flush stream
|
||
|
for packet in stream.encode():
|
||
|
container.mux(packet)
|
||
|
|
||
|
|
||
|
def _read_from_stream(
|
||
|
container: "av.container.Container",
|
||
|
start_offset: float,
|
||
|
end_offset: float,
|
||
|
pts_unit: str,
|
||
|
stream: "av.stream.Stream",
|
||
|
stream_name: Dict[str, Optional[Union[int, Tuple[int, ...], List[int]]]],
|
||
|
) -> List["av.frame.Frame"]:
|
||
|
global _CALLED_TIMES, _GC_COLLECTION_INTERVAL
|
||
|
_CALLED_TIMES += 1
|
||
|
if _CALLED_TIMES % _GC_COLLECTION_INTERVAL == _GC_COLLECTION_INTERVAL - 1:
|
||
|
gc.collect()
|
||
|
|
||
|
if pts_unit == "sec":
|
||
|
# TODO: we should change all of this from ground up to simply take
|
||
|
# sec and convert to MS in C++
|
||
|
start_offset = int(math.floor(start_offset * (1 / stream.time_base)))
|
||
|
if end_offset != float("inf"):
|
||
|
end_offset = int(math.ceil(end_offset * (1 / stream.time_base)))
|
||
|
else:
|
||
|
warnings.warn("The pts_unit 'pts' gives wrong results. Please use pts_unit 'sec'.")
|
||
|
|
||
|
frames = {}
|
||
|
should_buffer = True
|
||
|
max_buffer_size = 5
|
||
|
if stream.type == "video":
|
||
|
# DivX-style packed B-frames can have out-of-order pts (2 frames in a single pkt)
|
||
|
# so need to buffer some extra frames to sort everything
|
||
|
# properly
|
||
|
extradata = stream.codec_context.extradata
|
||
|
# overly complicated way of finding if `divx_packed` is set, following
|
||
|
# https://github.com/FFmpeg/FFmpeg/commit/d5a21172283572af587b3d939eba0091484d3263
|
||
|
if extradata and b"DivX" in extradata:
|
||
|
# can't use regex directly because of some weird characters sometimes...
|
||
|
pos = extradata.find(b"DivX")
|
||
|
d = extradata[pos:]
|
||
|
o = re.search(rb"DivX(\d+)Build(\d+)(\w)", d)
|
||
|
if o is None:
|
||
|
o = re.search(rb"DivX(\d+)b(\d+)(\w)", d)
|
||
|
if o is not None:
|
||
|
should_buffer = o.group(3) == b"p"
|
||
|
seek_offset = start_offset
|
||
|
# some files don't seek to the right location, so better be safe here
|
||
|
seek_offset = max(seek_offset - 1, 0)
|
||
|
if should_buffer:
|
||
|
# FIXME this is kind of a hack, but we will jump to the previous keyframe
|
||
|
# so this will be safe
|
||
|
seek_offset = max(seek_offset - max_buffer_size, 0)
|
||
|
try:
|
||
|
# TODO check if stream needs to always be the video stream here or not
|
||
|
container.seek(seek_offset, any_frame=False, backward=True, stream=stream)
|
||
|
except av.AVError:
|
||
|
# TODO add some warnings in this case
|
||
|
# print("Corrupted file?", container.name)
|
||
|
return []
|
||
|
buffer_count = 0
|
||
|
try:
|
||
|
for _idx, frame in enumerate(container.decode(**stream_name)):
|
||
|
frames[frame.pts] = frame
|
||
|
if frame.pts >= end_offset:
|
||
|
if should_buffer and buffer_count < max_buffer_size:
|
||
|
buffer_count += 1
|
||
|
continue
|
||
|
break
|
||
|
except av.AVError:
|
||
|
# TODO add a warning
|
||
|
pass
|
||
|
# ensure that the results are sorted wrt the pts
|
||
|
result = [frames[i] for i in sorted(frames) if start_offset <= frames[i].pts <= end_offset]
|
||
|
if len(frames) > 0 and start_offset > 0 and start_offset not in frames:
|
||
|
# if there is no frame that exactly matches the pts of start_offset
|
||
|
# add the last frame smaller than start_offset, to guarantee that
|
||
|
# we will have all the necessary data. This is most useful for audio
|
||
|
preceding_frames = [i for i in frames if i < start_offset]
|
||
|
if len(preceding_frames) > 0:
|
||
|
first_frame_pts = max(preceding_frames)
|
||
|
result.insert(0, frames[first_frame_pts])
|
||
|
return result
|
||
|
|
||
|
|
||
|
def _align_audio_frames(
|
||
|
aframes: torch.Tensor, audio_frames: List["av.frame.Frame"], ref_start: int, ref_end: float
|
||
|
) -> torch.Tensor:
|
||
|
start, end = audio_frames[0].pts, audio_frames[-1].pts
|
||
|
total_aframes = aframes.shape[1]
|
||
|
step_per_aframe = (end - start + 1) / total_aframes
|
||
|
s_idx = 0
|
||
|
e_idx = total_aframes
|
||
|
if start < ref_start:
|
||
|
s_idx = int((ref_start - start) / step_per_aframe)
|
||
|
if end > ref_end:
|
||
|
e_idx = int((ref_end - end) / step_per_aframe)
|
||
|
return aframes[:, s_idx:e_idx]
|
||
|
|
||
|
|
||
|
def read_video(
|
||
|
filename: str,
|
||
|
start_pts: Union[float, Fraction] = 0,
|
||
|
end_pts: Optional[Union[float, Fraction]] = None,
|
||
|
pts_unit: str = "pts",
|
||
|
output_format: str = "THWC",
|
||
|
) -> Tuple[torch.Tensor, torch.Tensor, Dict[str, Any]]:
|
||
|
"""
|
||
|
Reads a video from a file, returning both the video frames and the audio frames
|
||
|
|
||
|
Args:
|
||
|
filename (str): path to the video file
|
||
|
start_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
|
||
|
The start presentation time of the video
|
||
|
end_pts (int if pts_unit = 'pts', float / Fraction if pts_unit = 'sec', optional):
|
||
|
The end presentation time
|
||
|
pts_unit (str, optional): unit in which start_pts and end_pts values will be interpreted,
|
||
|
either 'pts' or 'sec'. Defaults to 'pts'.
|
||
|
output_format (str, optional): The format of the output video tensors. Can be either "THWC" (default) or "TCHW".
|
||
|
|
||
|
Returns:
|
||
|
vframes (Tensor[T, H, W, C] or Tensor[T, C, H, W]): the `T` video frames
|
||
|
aframes (Tensor[K, L]): the audio frames, where `K` is the number of channels and `L` is the number of points
|
||
|
info (Dict): metadata for the video and audio. Can contain the fields video_fps (float) and audio_fps (int)
|
||
|
"""
|
||
|
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
||
|
_log_api_usage_once(read_video)
|
||
|
|
||
|
output_format = output_format.upper()
|
||
|
if output_format not in ("THWC", "TCHW"):
|
||
|
raise ValueError(f"output_format should be either 'THWC' or 'TCHW', got {output_format}.")
|
||
|
|
||
|
from torchvision import get_video_backend
|
||
|
|
||
|
if not os.path.exists(filename):
|
||
|
raise RuntimeError(f"File not found: {filename}")
|
||
|
|
||
|
if get_video_backend() != "pyav":
|
||
|
vframes, aframes, info = _video_opt._read_video(filename, start_pts, end_pts, pts_unit)
|
||
|
else:
|
||
|
_check_av_available()
|
||
|
|
||
|
if end_pts is None:
|
||
|
end_pts = float("inf")
|
||
|
|
||
|
if end_pts < start_pts:
|
||
|
raise ValueError(
|
||
|
f"end_pts should be larger than start_pts, got start_pts={start_pts} and end_pts={end_pts}"
|
||
|
)
|
||
|
|
||
|
info = {}
|
||
|
video_frames = []
|
||
|
audio_frames = []
|
||
|
audio_timebase = _video_opt.default_timebase
|
||
|
|
||
|
try:
|
||
|
with av.open(filename, metadata_errors="ignore") as container:
|
||
|
if container.streams.audio:
|
||
|
audio_timebase = container.streams.audio[0].time_base
|
||
|
if container.streams.video:
|
||
|
video_frames = _read_from_stream(
|
||
|
container,
|
||
|
start_pts,
|
||
|
end_pts,
|
||
|
pts_unit,
|
||
|
container.streams.video[0],
|
||
|
{"video": 0},
|
||
|
)
|
||
|
video_fps = container.streams.video[0].average_rate
|
||
|
# guard against potentially corrupted files
|
||
|
if video_fps is not None:
|
||
|
info["video_fps"] = float(video_fps)
|
||
|
|
||
|
if container.streams.audio:
|
||
|
audio_frames = _read_from_stream(
|
||
|
container,
|
||
|
start_pts,
|
||
|
end_pts,
|
||
|
pts_unit,
|
||
|
container.streams.audio[0],
|
||
|
{"audio": 0},
|
||
|
)
|
||
|
info["audio_fps"] = container.streams.audio[0].rate
|
||
|
|
||
|
except av.AVError:
|
||
|
# TODO raise a warning?
|
||
|
pass
|
||
|
|
||
|
vframes_list = [frame.to_rgb().to_ndarray() for frame in video_frames]
|
||
|
aframes_list = [frame.to_ndarray() for frame in audio_frames]
|
||
|
|
||
|
if vframes_list:
|
||
|
vframes = torch.as_tensor(np.stack(vframes_list))
|
||
|
else:
|
||
|
vframes = torch.empty((0, 1, 1, 3), dtype=torch.uint8)
|
||
|
|
||
|
if aframes_list:
|
||
|
aframes = np.concatenate(aframes_list, 1)
|
||
|
aframes = torch.as_tensor(aframes)
|
||
|
if pts_unit == "sec":
|
||
|
start_pts = int(math.floor(start_pts * (1 / audio_timebase)))
|
||
|
if end_pts != float("inf"):
|
||
|
end_pts = int(math.ceil(end_pts * (1 / audio_timebase)))
|
||
|
aframes = _align_audio_frames(aframes, audio_frames, start_pts, end_pts)
|
||
|
else:
|
||
|
aframes = torch.empty((1, 0), dtype=torch.float32)
|
||
|
|
||
|
if output_format == "TCHW":
|
||
|
# [T,H,W,C] --> [T,C,H,W]
|
||
|
vframes = vframes.permute(0, 3, 1, 2)
|
||
|
|
||
|
return vframes, aframes, info
|
||
|
|
||
|
|
||
|
def _can_read_timestamps_from_packets(container: "av.container.Container") -> bool:
|
||
|
extradata = container.streams[0].codec_context.extradata
|
||
|
if extradata is None:
|
||
|
return False
|
||
|
if b"Lavc" in extradata:
|
||
|
return True
|
||
|
return False
|
||
|
|
||
|
|
||
|
def _decode_video_timestamps(container: "av.container.Container") -> List[int]:
|
||
|
if _can_read_timestamps_from_packets(container):
|
||
|
# fast path
|
||
|
return [x.pts for x in container.demux(video=0) if x.pts is not None]
|
||
|
else:
|
||
|
return [x.pts for x in container.decode(video=0) if x.pts is not None]
|
||
|
|
||
|
|
||
|
def read_video_timestamps(filename: str, pts_unit: str = "pts") -> Tuple[List[int], Optional[float]]:
|
||
|
"""
|
||
|
List the video frames timestamps.
|
||
|
|
||
|
Note that the function decodes the whole video frame-by-frame.
|
||
|
|
||
|
Args:
|
||
|
filename (str): path to the video file
|
||
|
pts_unit (str, optional): unit in which timestamp values will be returned
|
||
|
either 'pts' or 'sec'. Defaults to 'pts'.
|
||
|
|
||
|
Returns:
|
||
|
pts (List[int] if pts_unit = 'pts', List[Fraction] if pts_unit = 'sec'):
|
||
|
presentation timestamps for each one of the frames in the video.
|
||
|
video_fps (float, optional): the frame rate for the video
|
||
|
|
||
|
"""
|
||
|
if not torch.jit.is_scripting() and not torch.jit.is_tracing():
|
||
|
_log_api_usage_once(read_video_timestamps)
|
||
|
from torchvision import get_video_backend
|
||
|
|
||
|
if get_video_backend() != "pyav":
|
||
|
return _video_opt._read_video_timestamps(filename, pts_unit)
|
||
|
|
||
|
_check_av_available()
|
||
|
|
||
|
video_fps = None
|
||
|
pts = []
|
||
|
|
||
|
try:
|
||
|
with av.open(filename, metadata_errors="ignore") as container:
|
||
|
if container.streams.video:
|
||
|
video_stream = container.streams.video[0]
|
||
|
video_time_base = video_stream.time_base
|
||
|
try:
|
||
|
pts = _decode_video_timestamps(container)
|
||
|
except av.AVError:
|
||
|
warnings.warn(f"Failed decoding frames for file {filename}")
|
||
|
video_fps = float(video_stream.average_rate)
|
||
|
except av.AVError as e:
|
||
|
msg = f"Failed to open container for {filename}; Caught error: {e}"
|
||
|
warnings.warn(msg, RuntimeWarning)
|
||
|
|
||
|
pts.sort()
|
||
|
|
||
|
if pts_unit == "sec":
|
||
|
pts = [x * video_time_base for x in pts]
|
||
|
|
||
|
return pts, video_fps
|