You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1340 lines
48 KiB

5 months ago
"""
This module defines the mpf, mpc classes, and standard functions for
operating with them.
"""
__docformat__ = 'plaintext'
import functools
import re
from .ctx_base import StandardBaseContext
from .libmp.backend import basestring, BACKEND
from . import libmp
from .libmp import (MPZ, MPZ_ZERO, MPZ_ONE, int_types, repr_dps,
round_floor, round_ceiling, dps_to_prec, round_nearest, prec_to_dps,
ComplexResult, to_pickable, from_pickable, normalize,
from_int, from_float, from_str, to_int, to_float, to_str,
from_rational, from_man_exp,
fone, fzero, finf, fninf, fnan,
mpf_abs, mpf_pos, mpf_neg, mpf_add, mpf_sub, mpf_mul, mpf_mul_int,
mpf_div, mpf_rdiv_int, mpf_pow_int, mpf_mod,
mpf_eq, mpf_cmp, mpf_lt, mpf_gt, mpf_le, mpf_ge,
mpf_hash, mpf_rand,
mpf_sum,
bitcount, to_fixed,
mpc_to_str,
mpc_to_complex, mpc_hash, mpc_pos, mpc_is_nonzero, mpc_neg, mpc_conjugate,
mpc_abs, mpc_add, mpc_add_mpf, mpc_sub, mpc_sub_mpf, mpc_mul, mpc_mul_mpf,
mpc_mul_int, mpc_div, mpc_div_mpf, mpc_pow, mpc_pow_mpf, mpc_pow_int,
mpc_mpf_div,
mpf_pow,
mpf_pi, mpf_degree, mpf_e, mpf_phi, mpf_ln2, mpf_ln10,
mpf_euler, mpf_catalan, mpf_apery, mpf_khinchin,
mpf_glaisher, mpf_twinprime, mpf_mertens,
int_types)
from . import function_docs
from . import rational
new = object.__new__
get_complex = re.compile(r'^\(?(?P<re>[\+\-]?\d*(\.\d*)?(e[\+\-]?\d+)?)??'
r'(?P<im>[\+\-]?\d*(\.\d*)?(e[\+\-]?\d+)?j)?\)?$')
if BACKEND == 'sage':
from sage.libs.mpmath.ext_main import Context as BaseMPContext
# pickle hack
import sage.libs.mpmath.ext_main as _mpf_module
else:
from .ctx_mp_python import PythonMPContext as BaseMPContext
from . import ctx_mp_python as _mpf_module
from .ctx_mp_python import _mpf, _mpc, mpnumeric
class MPContext(BaseMPContext, StandardBaseContext):
"""
Context for multiprecision arithmetic with a global precision.
"""
def __init__(ctx):
BaseMPContext.__init__(ctx)
ctx.trap_complex = False
ctx.pretty = False
ctx.types = [ctx.mpf, ctx.mpc, ctx.constant]
ctx._mpq = rational.mpq
ctx.default()
StandardBaseContext.__init__(ctx)
ctx.mpq = rational.mpq
ctx.init_builtins()
ctx.hyp_summators = {}
ctx._init_aliases()
# XXX: automate
try:
ctx.bernoulli.im_func.func_doc = function_docs.bernoulli
ctx.primepi.im_func.func_doc = function_docs.primepi
ctx.psi.im_func.func_doc = function_docs.psi
ctx.atan2.im_func.func_doc = function_docs.atan2
except AttributeError:
# python 3
ctx.bernoulli.__func__.func_doc = function_docs.bernoulli
ctx.primepi.__func__.func_doc = function_docs.primepi
ctx.psi.__func__.func_doc = function_docs.psi
ctx.atan2.__func__.func_doc = function_docs.atan2
ctx.digamma.func_doc = function_docs.digamma
ctx.cospi.func_doc = function_docs.cospi
ctx.sinpi.func_doc = function_docs.sinpi
def init_builtins(ctx):
mpf = ctx.mpf
mpc = ctx.mpc
# Exact constants
ctx.one = ctx.make_mpf(fone)
ctx.zero = ctx.make_mpf(fzero)
ctx.j = ctx.make_mpc((fzero,fone))
ctx.inf = ctx.make_mpf(finf)
ctx.ninf = ctx.make_mpf(fninf)
ctx.nan = ctx.make_mpf(fnan)
eps = ctx.constant(lambda prec, rnd: (0, MPZ_ONE, 1-prec, 1),
"epsilon of working precision", "eps")
ctx.eps = eps
# Approximate constants
ctx.pi = ctx.constant(mpf_pi, "pi", "pi")
ctx.ln2 = ctx.constant(mpf_ln2, "ln(2)", "ln2")
ctx.ln10 = ctx.constant(mpf_ln10, "ln(10)", "ln10")
ctx.phi = ctx.constant(mpf_phi, "Golden ratio phi", "phi")
ctx.e = ctx.constant(mpf_e, "e = exp(1)", "e")
ctx.euler = ctx.constant(mpf_euler, "Euler's constant", "euler")
ctx.catalan = ctx.constant(mpf_catalan, "Catalan's constant", "catalan")
ctx.khinchin = ctx.constant(mpf_khinchin, "Khinchin's constant", "khinchin")
ctx.glaisher = ctx.constant(mpf_glaisher, "Glaisher's constant", "glaisher")
ctx.apery = ctx.constant(mpf_apery, "Apery's constant", "apery")
ctx.degree = ctx.constant(mpf_degree, "1 deg = pi / 180", "degree")
ctx.twinprime = ctx.constant(mpf_twinprime, "Twin prime constant", "twinprime")
ctx.mertens = ctx.constant(mpf_mertens, "Mertens' constant", "mertens")
# Standard functions
ctx.sqrt = ctx._wrap_libmp_function(libmp.mpf_sqrt, libmp.mpc_sqrt)
ctx.cbrt = ctx._wrap_libmp_function(libmp.mpf_cbrt, libmp.mpc_cbrt)
ctx.ln = ctx._wrap_libmp_function(libmp.mpf_log, libmp.mpc_log)
ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
ctx.exp = ctx._wrap_libmp_function(libmp.mpf_exp, libmp.mpc_exp)
ctx.expj = ctx._wrap_libmp_function(libmp.mpf_expj, libmp.mpc_expj)
ctx.expjpi = ctx._wrap_libmp_function(libmp.mpf_expjpi, libmp.mpc_expjpi)
ctx.sin = ctx._wrap_libmp_function(libmp.mpf_sin, libmp.mpc_sin)
ctx.cos = ctx._wrap_libmp_function(libmp.mpf_cos, libmp.mpc_cos)
ctx.tan = ctx._wrap_libmp_function(libmp.mpf_tan, libmp.mpc_tan)
ctx.sinh = ctx._wrap_libmp_function(libmp.mpf_sinh, libmp.mpc_sinh)
ctx.cosh = ctx._wrap_libmp_function(libmp.mpf_cosh, libmp.mpc_cosh)
ctx.tanh = ctx._wrap_libmp_function(libmp.mpf_tanh, libmp.mpc_tanh)
ctx.asin = ctx._wrap_libmp_function(libmp.mpf_asin, libmp.mpc_asin)
ctx.acos = ctx._wrap_libmp_function(libmp.mpf_acos, libmp.mpc_acos)
ctx.atan = ctx._wrap_libmp_function(libmp.mpf_atan, libmp.mpc_atan)
ctx.asinh = ctx._wrap_libmp_function(libmp.mpf_asinh, libmp.mpc_asinh)
ctx.acosh = ctx._wrap_libmp_function(libmp.mpf_acosh, libmp.mpc_acosh)
ctx.atanh = ctx._wrap_libmp_function(libmp.mpf_atanh, libmp.mpc_atanh)
ctx.sinpi = ctx._wrap_libmp_function(libmp.mpf_sin_pi, libmp.mpc_sin_pi)
ctx.cospi = ctx._wrap_libmp_function(libmp.mpf_cos_pi, libmp.mpc_cos_pi)
ctx.floor = ctx._wrap_libmp_function(libmp.mpf_floor, libmp.mpc_floor)
ctx.ceil = ctx._wrap_libmp_function(libmp.mpf_ceil, libmp.mpc_ceil)
ctx.nint = ctx._wrap_libmp_function(libmp.mpf_nint, libmp.mpc_nint)
ctx.frac = ctx._wrap_libmp_function(libmp.mpf_frac, libmp.mpc_frac)
ctx.fib = ctx.fibonacci = ctx._wrap_libmp_function(libmp.mpf_fibonacci, libmp.mpc_fibonacci)
ctx.gamma = ctx._wrap_libmp_function(libmp.mpf_gamma, libmp.mpc_gamma)
ctx.rgamma = ctx._wrap_libmp_function(libmp.mpf_rgamma, libmp.mpc_rgamma)
ctx.loggamma = ctx._wrap_libmp_function(libmp.mpf_loggamma, libmp.mpc_loggamma)
ctx.fac = ctx.factorial = ctx._wrap_libmp_function(libmp.mpf_factorial, libmp.mpc_factorial)
ctx.digamma = ctx._wrap_libmp_function(libmp.mpf_psi0, libmp.mpc_psi0)
ctx.harmonic = ctx._wrap_libmp_function(libmp.mpf_harmonic, libmp.mpc_harmonic)
ctx.ei = ctx._wrap_libmp_function(libmp.mpf_ei, libmp.mpc_ei)
ctx.e1 = ctx._wrap_libmp_function(libmp.mpf_e1, libmp.mpc_e1)
ctx._ci = ctx._wrap_libmp_function(libmp.mpf_ci, libmp.mpc_ci)
ctx._si = ctx._wrap_libmp_function(libmp.mpf_si, libmp.mpc_si)
ctx.ellipk = ctx._wrap_libmp_function(libmp.mpf_ellipk, libmp.mpc_ellipk)
ctx._ellipe = ctx._wrap_libmp_function(libmp.mpf_ellipe, libmp.mpc_ellipe)
ctx.agm1 = ctx._wrap_libmp_function(libmp.mpf_agm1, libmp.mpc_agm1)
ctx._erf = ctx._wrap_libmp_function(libmp.mpf_erf, None)
ctx._erfc = ctx._wrap_libmp_function(libmp.mpf_erfc, None)
ctx._zeta = ctx._wrap_libmp_function(libmp.mpf_zeta, libmp.mpc_zeta)
ctx._altzeta = ctx._wrap_libmp_function(libmp.mpf_altzeta, libmp.mpc_altzeta)
# Faster versions
ctx.sqrt = getattr(ctx, "_sage_sqrt", ctx.sqrt)
ctx.exp = getattr(ctx, "_sage_exp", ctx.exp)
ctx.ln = getattr(ctx, "_sage_ln", ctx.ln)
ctx.cos = getattr(ctx, "_sage_cos", ctx.cos)
ctx.sin = getattr(ctx, "_sage_sin", ctx.sin)
def to_fixed(ctx, x, prec):
return x.to_fixed(prec)
def hypot(ctx, x, y):
r"""
Computes the Euclidean norm of the vector `(x, y)`, equal
to `\sqrt{x^2 + y^2}`. Both `x` and `y` must be real."""
x = ctx.convert(x)
y = ctx.convert(y)
return ctx.make_mpf(libmp.mpf_hypot(x._mpf_, y._mpf_, *ctx._prec_rounding))
def _gamma_upper_int(ctx, n, z):
n = int(ctx._re(n))
if n == 0:
return ctx.e1(z)
if not hasattr(z, '_mpf_'):
raise NotImplementedError
prec, rounding = ctx._prec_rounding
real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding, gamma=True)
if imag is None:
return ctx.make_mpf(real)
else:
return ctx.make_mpc((real, imag))
def _expint_int(ctx, n, z):
n = int(n)
if n == 1:
return ctx.e1(z)
if not hasattr(z, '_mpf_'):
raise NotImplementedError
prec, rounding = ctx._prec_rounding
real, imag = libmp.mpf_expint(n, z._mpf_, prec, rounding)
if imag is None:
return ctx.make_mpf(real)
else:
return ctx.make_mpc((real, imag))
def _nthroot(ctx, x, n):
if hasattr(x, '_mpf_'):
try:
return ctx.make_mpf(libmp.mpf_nthroot(x._mpf_, n, *ctx._prec_rounding))
except ComplexResult:
if ctx.trap_complex:
raise
x = (x._mpf_, libmp.fzero)
else:
x = x._mpc_
return ctx.make_mpc(libmp.mpc_nthroot(x, n, *ctx._prec_rounding))
def _besselj(ctx, n, z):
prec, rounding = ctx._prec_rounding
if hasattr(z, '_mpf_'):
return ctx.make_mpf(libmp.mpf_besseljn(n, z._mpf_, prec, rounding))
elif hasattr(z, '_mpc_'):
return ctx.make_mpc(libmp.mpc_besseljn(n, z._mpc_, prec, rounding))
def _agm(ctx, a, b=1):
prec, rounding = ctx._prec_rounding
if hasattr(a, '_mpf_') and hasattr(b, '_mpf_'):
try:
v = libmp.mpf_agm(a._mpf_, b._mpf_, prec, rounding)
return ctx.make_mpf(v)
except ComplexResult:
pass
if hasattr(a, '_mpf_'): a = (a._mpf_, libmp.fzero)
else: a = a._mpc_
if hasattr(b, '_mpf_'): b = (b._mpf_, libmp.fzero)
else: b = b._mpc_
return ctx.make_mpc(libmp.mpc_agm(a, b, prec, rounding))
def bernoulli(ctx, n):
return ctx.make_mpf(libmp.mpf_bernoulli(int(n), *ctx._prec_rounding))
def _zeta_int(ctx, n):
return ctx.make_mpf(libmp.mpf_zeta_int(int(n), *ctx._prec_rounding))
def atan2(ctx, y, x):
x = ctx.convert(x)
y = ctx.convert(y)
return ctx.make_mpf(libmp.mpf_atan2(y._mpf_, x._mpf_, *ctx._prec_rounding))
def psi(ctx, m, z):
z = ctx.convert(z)
m = int(m)
if ctx._is_real_type(z):
return ctx.make_mpf(libmp.mpf_psi(m, z._mpf_, *ctx._prec_rounding))
else:
return ctx.make_mpc(libmp.mpc_psi(m, z._mpc_, *ctx._prec_rounding))
def cos_sin(ctx, x, **kwargs):
if type(x) not in ctx.types:
x = ctx.convert(x)
prec, rounding = ctx._parse_prec(kwargs)
if hasattr(x, '_mpf_'):
c, s = libmp.mpf_cos_sin(x._mpf_, prec, rounding)
return ctx.make_mpf(c), ctx.make_mpf(s)
elif hasattr(x, '_mpc_'):
c, s = libmp.mpc_cos_sin(x._mpc_, prec, rounding)
return ctx.make_mpc(c), ctx.make_mpc(s)
else:
return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)
def cospi_sinpi(ctx, x, **kwargs):
if type(x) not in ctx.types:
x = ctx.convert(x)
prec, rounding = ctx._parse_prec(kwargs)
if hasattr(x, '_mpf_'):
c, s = libmp.mpf_cos_sin_pi(x._mpf_, prec, rounding)
return ctx.make_mpf(c), ctx.make_mpf(s)
elif hasattr(x, '_mpc_'):
c, s = libmp.mpc_cos_sin_pi(x._mpc_, prec, rounding)
return ctx.make_mpc(c), ctx.make_mpc(s)
else:
return ctx.cos(x, **kwargs), ctx.sin(x, **kwargs)
def clone(ctx):
"""
Create a copy of the context, with the same working precision.
"""
a = ctx.__class__()
a.prec = ctx.prec
return a
# Several helper methods
# TODO: add more of these, make consistent, write docstrings, ...
def _is_real_type(ctx, x):
if hasattr(x, '_mpc_') or type(x) is complex:
return False
return True
def _is_complex_type(ctx, x):
if hasattr(x, '_mpc_') or type(x) is complex:
return True
return False
def isnan(ctx, x):
"""
Return *True* if *x* is a NaN (not-a-number), or for a complex
number, whether either the real or complex part is NaN;
otherwise return *False*::
>>> from mpmath import *
>>> isnan(3.14)
False
>>> isnan(nan)
True
>>> isnan(mpc(3.14,2.72))
False
>>> isnan(mpc(3.14,nan))
True
"""
if hasattr(x, "_mpf_"):
return x._mpf_ == fnan
if hasattr(x, "_mpc_"):
return fnan in x._mpc_
if isinstance(x, int_types) or isinstance(x, rational.mpq):
return False
x = ctx.convert(x)
if hasattr(x, '_mpf_') or hasattr(x, '_mpc_'):
return ctx.isnan(x)
raise TypeError("isnan() needs a number as input")
def isfinite(ctx, x):
"""
Return *True* if *x* is a finite number, i.e. neither
an infinity or a NaN.
>>> from mpmath import *
>>> isfinite(inf)
False
>>> isfinite(-inf)
False
>>> isfinite(3)
True
>>> isfinite(nan)
False
>>> isfinite(3+4j)
True
>>> isfinite(mpc(3,inf))
False
>>> isfinite(mpc(nan,3))
False
"""
if ctx.isinf(x) or ctx.isnan(x):
return False
return True
def isnpint(ctx, x):
"""
Determine if *x* is a nonpositive integer.
"""
if not x:
return True
if hasattr(x, '_mpf_'):
sign, man, exp, bc = x._mpf_
return sign and exp >= 0
if hasattr(x, '_mpc_'):
return not x.imag and ctx.isnpint(x.real)
if type(x) in int_types:
return x <= 0
if isinstance(x, ctx.mpq):
p, q = x._mpq_
if not p:
return True
return q == 1 and p <= 0
return ctx.isnpint(ctx.convert(x))
def __str__(ctx):
lines = ["Mpmath settings:",
(" mp.prec = %s" % ctx.prec).ljust(30) + "[default: 53]",
(" mp.dps = %s" % ctx.dps).ljust(30) + "[default: 15]",
(" mp.trap_complex = %s" % ctx.trap_complex).ljust(30) + "[default: False]",
]
return "\n".join(lines)
@property
def _repr_digits(ctx):
return repr_dps(ctx._prec)
@property
def _str_digits(ctx):
return ctx._dps
def extraprec(ctx, n, normalize_output=False):
"""
The block
with extraprec(n):
<code>
increases the precision n bits, executes <code>, and then
restores the precision.
extraprec(n)(f) returns a decorated version of the function f
that increases the working precision by n bits before execution,
and restores the parent precision afterwards. With
normalize_output=True, it rounds the return value to the parent
precision.
"""
return PrecisionManager(ctx, lambda p: p + n, None, normalize_output)
def extradps(ctx, n, normalize_output=False):
"""
This function is analogous to extraprec (see documentation)
but changes the decimal precision instead of the number of bits.
"""
return PrecisionManager(ctx, None, lambda d: d + n, normalize_output)
def workprec(ctx, n, normalize_output=False):
"""
The block
with workprec(n):
<code>
sets the precision to n bits, executes <code>, and then restores
the precision.
workprec(n)(f) returns a decorated version of the function f
that sets the precision to n bits before execution,
and restores the precision afterwards. With normalize_output=True,
it rounds the return value to the parent precision.
"""
return PrecisionManager(ctx, lambda p: n, None, normalize_output)
def workdps(ctx, n, normalize_output=False):
"""
This function is analogous to workprec (see documentation)
but changes the decimal precision instead of the number of bits.
"""
return PrecisionManager(ctx, None, lambda d: n, normalize_output)
def autoprec(ctx, f, maxprec=None, catch=(), verbose=False):
r"""
Return a wrapped copy of *f* that repeatedly evaluates *f*
with increasing precision until the result converges to the
full precision used at the point of the call.
This heuristically protects against rounding errors, at the cost of
roughly a 2x slowdown compared to manually setting the optimal
precision. This method can, however, easily be fooled if the results
from *f* depend "discontinuously" on the precision, for instance
if catastrophic cancellation can occur. Therefore, :func:`~mpmath.autoprec`
should be used judiciously.
**Examples**
Many functions are sensitive to perturbations of the input arguments.
If the arguments are decimal numbers, they may have to be converted
to binary at a much higher precision. If the amount of required
extra precision is unknown, :func:`~mpmath.autoprec` is convenient::
>>> from mpmath import *
>>> mp.dps = 15
>>> mp.pretty = True
>>> besselj(5, 125 * 10**28) # Exact input
-8.03284785591801e-17
>>> besselj(5, '1.25e30') # Bad
7.12954868316652e-16
>>> autoprec(besselj)(5, '1.25e30') # Good
-8.03284785591801e-17
The following fails to converge because `\sin(\pi) = 0` whereas all
finite-precision approximations of `\pi` give nonzero values::
>>> autoprec(sin)(pi) # doctest: +IGNORE_EXCEPTION_DETAIL
Traceback (most recent call last):
...
NoConvergence: autoprec: prec increased to 2910 without convergence
As the following example shows, :func:`~mpmath.autoprec` can protect against
cancellation, but is fooled by too severe cancellation::
>>> x = 1e-10
>>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
1.00000008274037e-10
1.00000000005e-10
1.00000000005e-10
>>> x = 1e-50
>>> exp(x)-1; expm1(x); autoprec(lambda t: exp(t)-1)(x)
0.0
1.0e-50
0.0
With *catch*, an exception or list of exceptions to intercept
may be specified. The raised exception is interpreted
as signaling insufficient precision. This permits, for example,
evaluating a function where a too low precision results in a
division by zero::
>>> f = lambda x: 1/(exp(x)-1)
>>> f(1e-30)
Traceback (most recent call last):
...
ZeroDivisionError
>>> autoprec(f, catch=ZeroDivisionError)(1e-30)
1.0e+30
"""
def f_autoprec_wrapped(*args, **kwargs):
prec = ctx.prec
if maxprec is None:
maxprec2 = ctx._default_hyper_maxprec(prec)
else:
maxprec2 = maxprec
try:
ctx.prec = prec + 10
try:
v1 = f(*args, **kwargs)
except catch:
v1 = ctx.nan
prec2 = prec + 20
while 1:
ctx.prec = prec2
try:
v2 = f(*args, **kwargs)
except catch:
v2 = ctx.nan
if v1 == v2:
break
err = ctx.mag(v2-v1) - ctx.mag(v2)
if err < (-prec):
break
if verbose:
print("autoprec: target=%s, prec=%s, accuracy=%s" \
% (prec, prec2, -err))
v1 = v2
if prec2 >= maxprec2:
raise ctx.NoConvergence(\
"autoprec: prec increased to %i without convergence"\
% prec2)
prec2 += int(prec2*2)
prec2 = min(prec2, maxprec2)
finally:
ctx.prec = prec
return +v2
return f_autoprec_wrapped
def nstr(ctx, x, n=6, **kwargs):
"""
Convert an ``mpf`` or ``mpc`` to a decimal string literal with *n*
significant digits. The small default value for *n* is chosen to
make this function useful for printing collections of numbers
(lists, matrices, etc).
If *x* is a list or tuple, :func:`~mpmath.nstr` is applied recursively
to each element. For unrecognized classes, :func:`~mpmath.nstr`
simply returns ``str(x)``.
The companion function :func:`~mpmath.nprint` prints the result
instead of returning it.
The keyword arguments *strip_zeros*, *min_fixed*, *max_fixed*
and *show_zero_exponent* are forwarded to :func:`~mpmath.libmp.to_str`.
The number will be printed in fixed-point format if the position
of the leading digit is strictly between min_fixed
(default = min(-dps/3,-5)) and max_fixed (default = dps).
To force fixed-point format always, set min_fixed = -inf,
max_fixed = +inf. To force floating-point format, set
min_fixed >= max_fixed.
>>> from mpmath import *
>>> nstr([+pi, ldexp(1,-500)])
'[3.14159, 3.05494e-151]'
>>> nprint([+pi, ldexp(1,-500)])
[3.14159, 3.05494e-151]
>>> nstr(mpf("5e-10"), 5)
'5.0e-10'
>>> nstr(mpf("5e-10"), 5, strip_zeros=False)
'5.0000e-10'
>>> nstr(mpf("5e-10"), 5, strip_zeros=False, min_fixed=-11)
'0.00000000050000'
>>> nstr(mpf(0), 5, show_zero_exponent=True)
'0.0e+0'
"""
if isinstance(x, list):
return "[%s]" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
if isinstance(x, tuple):
return "(%s)" % (", ".join(ctx.nstr(c, n, **kwargs) for c in x))
if hasattr(x, '_mpf_'):
return to_str(x._mpf_, n, **kwargs)
if hasattr(x, '_mpc_'):
return "(" + mpc_to_str(x._mpc_, n, **kwargs) + ")"
if isinstance(x, basestring):
return repr(x)
if isinstance(x, ctx.matrix):
return x.__nstr__(n, **kwargs)
return str(x)
def _convert_fallback(ctx, x, strings):
if strings and isinstance(x, basestring):
if 'j' in x.lower():
x = x.lower().replace(' ', '')
match = get_complex.match(x)
re = match.group('re')
if not re:
re = 0
im = match.group('im').rstrip('j')
return ctx.mpc(ctx.convert(re), ctx.convert(im))
if hasattr(x, "_mpi_"):
a, b = x._mpi_
if a == b:
return ctx.make_mpf(a)
else:
raise ValueError("can only create mpf from zero-width interval")
raise TypeError("cannot create mpf from " + repr(x))
def mpmathify(ctx, *args, **kwargs):
return ctx.convert(*args, **kwargs)
def _parse_prec(ctx, kwargs):
if kwargs:
if kwargs.get('exact'):
return 0, 'f'
prec, rounding = ctx._prec_rounding
if 'rounding' in kwargs:
rounding = kwargs['rounding']
if 'prec' in kwargs:
prec = kwargs['prec']
if prec == ctx.inf:
return 0, 'f'
else:
prec = int(prec)
elif 'dps' in kwargs:
dps = kwargs['dps']
if dps == ctx.inf:
return 0, 'f'
prec = dps_to_prec(dps)
return prec, rounding
return ctx._prec_rounding
_exact_overflow_msg = "the exact result does not fit in memory"
_hypsum_msg = """hypsum() failed to converge to the requested %i bits of accuracy
using a working precision of %i bits. Try with a higher maxprec,
maxterms, or set zeroprec."""
def hypsum(ctx, p, q, flags, coeffs, z, accurate_small=True, **kwargs):
if hasattr(z, "_mpf_"):
key = p, q, flags, 'R'
v = z._mpf_
elif hasattr(z, "_mpc_"):
key = p, q, flags, 'C'
v = z._mpc_
if key not in ctx.hyp_summators:
ctx.hyp_summators[key] = libmp.make_hyp_summator(key)[1]
summator = ctx.hyp_summators[key]
prec = ctx.prec
maxprec = kwargs.get('maxprec', ctx._default_hyper_maxprec(prec))
extraprec = 50
epsshift = 25
# Jumps in magnitude occur when parameters are close to negative
# integers. We must ensure that these terms are included in
# the sum and added accurately
magnitude_check = {}
max_total_jump = 0
for i, c in enumerate(coeffs):
if flags[i] == 'Z':
if i >= p and c <= 0:
ok = False
for ii, cc in enumerate(coeffs[:p]):
# Note: c <= cc or c < cc, depending on convention
if flags[ii] == 'Z' and cc <= 0 and c <= cc:
ok = True
if not ok:
raise ZeroDivisionError("pole in hypergeometric series")
continue
n, d = ctx.nint_distance(c)
n = -int(n)
d = -d
if i >= p and n >= 0 and d > 4:
if n in magnitude_check:
magnitude_check[n] += d
else:
magnitude_check[n] = d
extraprec = max(extraprec, d - prec + 60)
max_total_jump += abs(d)
while 1:
if extraprec > maxprec:
raise ValueError(ctx._hypsum_msg % (prec, prec+extraprec))
wp = prec + extraprec
if magnitude_check:
mag_dict = dict((n,None) for n in magnitude_check)
else:
mag_dict = {}
zv, have_complex, magnitude = summator(coeffs, v, prec, wp, \
epsshift, mag_dict, **kwargs)
cancel = -magnitude
jumps_resolved = True
if extraprec < max_total_jump:
for n in mag_dict.values():
if (n is None) or (n < prec):
jumps_resolved = False
break
accurate = (cancel < extraprec-25-5 or not accurate_small)
if jumps_resolved:
if accurate:
break
# zero?
zeroprec = kwargs.get('zeroprec')
if zeroprec is not None:
if cancel > zeroprec:
if have_complex:
return ctx.mpc(0)
else:
return ctx.zero
# Some near-singularities were not included, so increase
# precision and repeat until they are
extraprec *= 2
# Possible workaround for bad roundoff in fixed-point arithmetic
epsshift += 5
extraprec += 5
if type(zv) is tuple:
if have_complex:
return ctx.make_mpc(zv)
else:
return ctx.make_mpf(zv)
else:
return zv
def ldexp(ctx, x, n):
r"""
Computes `x 2^n` efficiently. No rounding is performed.
The argument `x` must be a real floating-point number (or
possible to convert into one) and `n` must be a Python ``int``.
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> ldexp(1, 10)
mpf('1024.0')
>>> ldexp(1, -3)
mpf('0.125')
"""
x = ctx.convert(x)
return ctx.make_mpf(libmp.mpf_shift(x._mpf_, n))
def frexp(ctx, x):
r"""
Given a real number `x`, returns `(y, n)` with `y \in [0.5, 1)`,
`n` a Python integer, and such that `x = y 2^n`. No rounding is
performed.
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> frexp(7.5)
(mpf('0.9375'), 3)
"""
x = ctx.convert(x)
y, n = libmp.mpf_frexp(x._mpf_)
return ctx.make_mpf(y), n
def fneg(ctx, x, **kwargs):
"""
Negates the number *x*, giving a floating-point result, optionally
using a custom precision and rounding mode.
See the documentation of :func:`~mpmath.fadd` for a detailed description
of how to specify precision and rounding.
**Examples**
An mpmath number is returned::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> fneg(2.5)
mpf('-2.5')
>>> fneg(-5+2j)
mpc(real='5.0', imag='-2.0')
Precise control over rounding is possible::
>>> x = fadd(2, 1e-100, exact=True)
>>> fneg(x)
mpf('-2.0')
>>> fneg(x, rounding='f')
mpf('-2.0000000000000004')
Negating with and without roundoff::
>>> n = 200000000000000000000001
>>> print(int(-mpf(n)))
-200000000000000016777216
>>> print(int(fneg(n)))
-200000000000000016777216
>>> print(int(fneg(n, prec=log(n,2)+1)))
-200000000000000000000001
>>> print(int(fneg(n, dps=log(n,10)+1)))
-200000000000000000000001
>>> print(int(fneg(n, prec=inf)))
-200000000000000000000001
>>> print(int(fneg(n, dps=inf)))
-200000000000000000000001
>>> print(int(fneg(n, exact=True)))
-200000000000000000000001
"""
prec, rounding = ctx._parse_prec(kwargs)
x = ctx.convert(x)
if hasattr(x, '_mpf_'):
return ctx.make_mpf(mpf_neg(x._mpf_, prec, rounding))
if hasattr(x, '_mpc_'):
return ctx.make_mpc(mpc_neg(x._mpc_, prec, rounding))
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
def fadd(ctx, x, y, **kwargs):
"""
Adds the numbers *x* and *y*, giving a floating-point result,
optionally using a custom precision and rounding mode.
The default precision is the working precision of the context.
You can specify a custom precision in bits by passing the *prec* keyword
argument, or by providing an equivalent decimal precision with the *dps*
keyword argument. If the precision is set to ``+inf``, or if the flag
*exact=True* is passed, an exact addition with no rounding is performed.
When the precision is finite, the optional *rounding* keyword argument
specifies the direction of rounding. Valid options are ``'n'`` for
nearest (default), ``'f'`` for floor, ``'c'`` for ceiling, ``'d'``
for down, ``'u'`` for up.
**Examples**
Using :func:`~mpmath.fadd` with precision and rounding control::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> fadd(2, 1e-20)
mpf('2.0')
>>> fadd(2, 1e-20, rounding='u')
mpf('2.0000000000000004')
>>> nprint(fadd(2, 1e-20, prec=100), 25)
2.00000000000000000001
>>> nprint(fadd(2, 1e-20, dps=15), 25)
2.0
>>> nprint(fadd(2, 1e-20, dps=25), 25)
2.00000000000000000001
>>> nprint(fadd(2, 1e-20, exact=True), 25)
2.00000000000000000001
Exact addition avoids cancellation errors, enforcing familiar laws
of numbers such as `x+y-x = y`, which don't hold in floating-point
arithmetic with finite precision::
>>> x, y = mpf(2), mpf('1e-1000')
>>> print(x + y - x)
0.0
>>> print(fadd(x, y, prec=inf) - x)
1.0e-1000
>>> print(fadd(x, y, exact=True) - x)
1.0e-1000
Exact addition can be inefficient and may be impossible to perform
with large magnitude differences::
>>> fadd(1, '1e-100000000000000000000', prec=inf)
Traceback (most recent call last):
...
OverflowError: the exact result does not fit in memory
"""
prec, rounding = ctx._parse_prec(kwargs)
x = ctx.convert(x)
y = ctx.convert(y)
try:
if hasattr(x, '_mpf_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpf(mpf_add(x._mpf_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_add_mpf(y._mpc_, x._mpf_, prec, rounding))
if hasattr(x, '_mpc_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpc(mpc_add_mpf(x._mpc_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_add(x._mpc_, y._mpc_, prec, rounding))
except (ValueError, OverflowError):
raise OverflowError(ctx._exact_overflow_msg)
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
def fsub(ctx, x, y, **kwargs):
"""
Subtracts the numbers *x* and *y*, giving a floating-point result,
optionally using a custom precision and rounding mode.
See the documentation of :func:`~mpmath.fadd` for a detailed description
of how to specify precision and rounding.
**Examples**
Using :func:`~mpmath.fsub` with precision and rounding control::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> fsub(2, 1e-20)
mpf('2.0')
>>> fsub(2, 1e-20, rounding='d')
mpf('1.9999999999999998')
>>> nprint(fsub(2, 1e-20, prec=100), 25)
1.99999999999999999999
>>> nprint(fsub(2, 1e-20, dps=15), 25)
2.0
>>> nprint(fsub(2, 1e-20, dps=25), 25)
1.99999999999999999999
>>> nprint(fsub(2, 1e-20, exact=True), 25)
1.99999999999999999999
Exact subtraction avoids cancellation errors, enforcing familiar laws
of numbers such as `x-y+y = x`, which don't hold in floating-point
arithmetic with finite precision::
>>> x, y = mpf(2), mpf('1e1000')
>>> print(x - y + y)
0.0
>>> print(fsub(x, y, prec=inf) + y)
2.0
>>> print(fsub(x, y, exact=True) + y)
2.0
Exact addition can be inefficient and may be impossible to perform
with large magnitude differences::
>>> fsub(1, '1e-100000000000000000000', prec=inf)
Traceback (most recent call last):
...
OverflowError: the exact result does not fit in memory
"""
prec, rounding = ctx._parse_prec(kwargs)
x = ctx.convert(x)
y = ctx.convert(y)
try:
if hasattr(x, '_mpf_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpf(mpf_sub(x._mpf_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_sub((x._mpf_, fzero), y._mpc_, prec, rounding))
if hasattr(x, '_mpc_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpc(mpc_sub_mpf(x._mpc_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_sub(x._mpc_, y._mpc_, prec, rounding))
except (ValueError, OverflowError):
raise OverflowError(ctx._exact_overflow_msg)
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
def fmul(ctx, x, y, **kwargs):
"""
Multiplies the numbers *x* and *y*, giving a floating-point result,
optionally using a custom precision and rounding mode.
See the documentation of :func:`~mpmath.fadd` for a detailed description
of how to specify precision and rounding.
**Examples**
The result is an mpmath number::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> fmul(2, 5.0)
mpf('10.0')
>>> fmul(0.5j, 0.5)
mpc(real='0.0', imag='0.25')
Avoiding roundoff::
>>> x, y = 10**10+1, 10**15+1
>>> print(x*y)
10000000001000010000000001
>>> print(mpf(x) * mpf(y))
1.0000000001e+25
>>> print(int(mpf(x) * mpf(y)))
10000000001000011026399232
>>> print(int(fmul(x, y)))
10000000001000011026399232
>>> print(int(fmul(x, y, dps=25)))
10000000001000010000000001
>>> print(int(fmul(x, y, exact=True)))
10000000001000010000000001
Exact multiplication with complex numbers can be inefficient and may
be impossible to perform with large magnitude differences between
real and imaginary parts::
>>> x = 1+2j
>>> y = mpc(2, '1e-100000000000000000000')
>>> fmul(x, y)
mpc(real='2.0', imag='4.0')
>>> fmul(x, y, rounding='u')
mpc(real='2.0', imag='4.0000000000000009')
>>> fmul(x, y, exact=True)
Traceback (most recent call last):
...
OverflowError: the exact result does not fit in memory
"""
prec, rounding = ctx._parse_prec(kwargs)
x = ctx.convert(x)
y = ctx.convert(y)
try:
if hasattr(x, '_mpf_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpf(mpf_mul(x._mpf_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_mul_mpf(y._mpc_, x._mpf_, prec, rounding))
if hasattr(x, '_mpc_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpc(mpc_mul_mpf(x._mpc_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_mul(x._mpc_, y._mpc_, prec, rounding))
except (ValueError, OverflowError):
raise OverflowError(ctx._exact_overflow_msg)
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
def fdiv(ctx, x, y, **kwargs):
"""
Divides the numbers *x* and *y*, giving a floating-point result,
optionally using a custom precision and rounding mode.
See the documentation of :func:`~mpmath.fadd` for a detailed description
of how to specify precision and rounding.
**Examples**
The result is an mpmath number::
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> fdiv(3, 2)
mpf('1.5')
>>> fdiv(2, 3)
mpf('0.66666666666666663')
>>> fdiv(2+4j, 0.5)
mpc(real='4.0', imag='8.0')
The rounding direction and precision can be controlled::
>>> fdiv(2, 3, dps=3) # Should be accurate to at least 3 digits
mpf('0.6666259765625')
>>> fdiv(2, 3, rounding='d')
mpf('0.66666666666666663')
>>> fdiv(2, 3, prec=60)
mpf('0.66666666666666667')
>>> fdiv(2, 3, rounding='u')
mpf('0.66666666666666674')
Checking the error of a division by performing it at higher precision::
>>> fdiv(2, 3) - fdiv(2, 3, prec=100)
mpf('-3.7007434154172148e-17')
Unlike :func:`~mpmath.fadd`, :func:`~mpmath.fmul`, etc., exact division is not
allowed since the quotient of two floating-point numbers generally
does not have an exact floating-point representation. (In the
future this might be changed to allow the case where the division
is actually exact.)
>>> fdiv(2, 3, exact=True)
Traceback (most recent call last):
...
ValueError: division is not an exact operation
"""
prec, rounding = ctx._parse_prec(kwargs)
if not prec:
raise ValueError("division is not an exact operation")
x = ctx.convert(x)
y = ctx.convert(y)
if hasattr(x, '_mpf_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpf(mpf_div(x._mpf_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_div((x._mpf_, fzero), y._mpc_, prec, rounding))
if hasattr(x, '_mpc_'):
if hasattr(y, '_mpf_'):
return ctx.make_mpc(mpc_div_mpf(x._mpc_, y._mpf_, prec, rounding))
if hasattr(y, '_mpc_'):
return ctx.make_mpc(mpc_div(x._mpc_, y._mpc_, prec, rounding))
raise ValueError("Arguments need to be mpf or mpc compatible numbers")
def nint_distance(ctx, x):
r"""
Return `(n,d)` where `n` is the nearest integer to `x` and `d` is
an estimate of `\log_2(|x-n|)`. If `d < 0`, `-d` gives the precision
(measured in bits) lost to cancellation when computing `x-n`.
>>> from mpmath import *
>>> n, d = nint_distance(5)
>>> print(n); print(d)
5
-inf
>>> n, d = nint_distance(mpf(5))
>>> print(n); print(d)
5
-inf
>>> n, d = nint_distance(mpf(5.00000001))
>>> print(n); print(d)
5
-26
>>> n, d = nint_distance(mpf(4.99999999))
>>> print(n); print(d)
5
-26
>>> n, d = nint_distance(mpc(5,10))
>>> print(n); print(d)
5
4
>>> n, d = nint_distance(mpc(5,0.000001))
>>> print(n); print(d)
5
-19
"""
typx = type(x)
if typx in int_types:
return int(x), ctx.ninf
elif typx is rational.mpq:
p, q = x._mpq_
n, r = divmod(p, q)
if 2*r >= q:
n += 1
elif not r:
return n, ctx.ninf
# log(p/q-n) = log((p-nq)/q) = log(p-nq) - log(q)
d = bitcount(abs(p-n*q)) - bitcount(q)
return n, d
if hasattr(x, "_mpf_"):
re = x._mpf_
im_dist = ctx.ninf
elif hasattr(x, "_mpc_"):
re, im = x._mpc_
isign, iman, iexp, ibc = im
if iman:
im_dist = iexp + ibc
elif im == fzero:
im_dist = ctx.ninf
else:
raise ValueError("requires a finite number")
else:
x = ctx.convert(x)
if hasattr(x, "_mpf_") or hasattr(x, "_mpc_"):
return ctx.nint_distance(x)
else:
raise TypeError("requires an mpf/mpc")
sign, man, exp, bc = re
mag = exp+bc
# |x| < 0.5
if mag < 0:
n = 0
re_dist = mag
elif man:
# exact integer
if exp >= 0:
n = man << exp
re_dist = ctx.ninf
# exact half-integer
elif exp == -1:
n = (man>>1)+1
re_dist = 0
else:
d = (-exp-1)
t = man >> d
if t & 1:
t += 1
man = (t<<d) - man
else:
man -= (t<<d)
n = t>>1 # int(t)>>1
re_dist = exp+bitcount(man)
if sign:
n = -n
elif re == fzero:
re_dist = ctx.ninf
n = 0
else:
raise ValueError("requires a finite number")
return n, max(re_dist, im_dist)
def fprod(ctx, factors):
r"""
Calculates a product containing a finite number of factors (for
infinite products, see :func:`~mpmath.nprod`). The factors will be
converted to mpmath numbers.
>>> from mpmath import *
>>> mp.dps = 15; mp.pretty = False
>>> fprod([1, 2, 0.5, 7])
mpf('7.0')
"""
orig = ctx.prec
try:
v = ctx.one
for p in factors:
v *= p
finally:
ctx.prec = orig
return +v
def rand(ctx):
"""
Returns an ``mpf`` with value chosen randomly from `[0, 1)`.
The number of randomly generated bits in the mantissa is equal
to the working precision.
"""
return ctx.make_mpf(mpf_rand(ctx._prec))
def fraction(ctx, p, q):
"""
Given Python integers `(p, q)`, returns a lazy ``mpf`` representing
the fraction `p/q`. The value is updated with the precision.
>>> from mpmath import *
>>> mp.dps = 15
>>> a = fraction(1,100)
>>> b = mpf(1)/100
>>> print(a); print(b)
0.01
0.01
>>> mp.dps = 30
>>> print(a); print(b) # a will be accurate
0.01
0.0100000000000000002081668171172
>>> mp.dps = 15
"""
return ctx.constant(lambda prec, rnd: from_rational(p, q, prec, rnd),
'%s/%s' % (p, q))
def absmin(ctx, x):
return abs(ctx.convert(x))
def absmax(ctx, x):
return abs(ctx.convert(x))
def _as_points(ctx, x):
# XXX: remove this?
if hasattr(x, '_mpi_'):
a, b = x._mpi_
return [ctx.make_mpf(a), ctx.make_mpf(b)]
return x
'''
def _zetasum(ctx, s, a, b):
"""
Computes sum of k^(-s) for k = a, a+1, ..., b with a, b both small
integers.
"""
a = int(a)
b = int(b)
s = ctx.convert(s)
prec, rounding = ctx._prec_rounding
if hasattr(s, '_mpf_'):
v = ctx.make_mpf(libmp.mpf_zetasum(s._mpf_, a, b, prec))
elif hasattr(s, '_mpc_'):
v = ctx.make_mpc(libmp.mpc_zetasum(s._mpc_, a, b, prec))
return v
'''
def _zetasum_fast(ctx, s, a, n, derivatives=[0], reflect=False):
if not (ctx.isint(a) and hasattr(s, "_mpc_")):
raise NotImplementedError
a = int(a)
prec = ctx._prec
xs, ys = libmp.mpc_zetasum(s._mpc_, a, n, derivatives, reflect, prec)
xs = [ctx.make_mpc(x) for x in xs]
ys = [ctx.make_mpc(y) for y in ys]
return xs, ys
class PrecisionManager:
def __init__(self, ctx, precfun, dpsfun, normalize_output=False):
self.ctx = ctx
self.precfun = precfun
self.dpsfun = dpsfun
self.normalize_output = normalize_output
def __call__(self, f):
@functools.wraps(f)
def g(*args, **kwargs):
orig = self.ctx.prec
try:
if self.precfun:
self.ctx.prec = self.precfun(self.ctx.prec)
else:
self.ctx.dps = self.dpsfun(self.ctx.dps)
if self.normalize_output:
v = f(*args, **kwargs)
if type(v) is tuple:
return tuple([+a for a in v])
return +v
else:
return f(*args, **kwargs)
finally:
self.ctx.prec = orig
return g
def __enter__(self):
self.origp = self.ctx.prec
if self.precfun:
self.ctx.prec = self.precfun(self.ctx.prec)
else:
self.ctx.dps = self.dpsfun(self.ctx.dps)
def __exit__(self, exc_type, exc_val, exc_tb):
self.ctx.prec = self.origp
return False
if __name__ == '__main__':
import doctest
doctest.testmod()