You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
109 lines
3.4 KiB
109 lines
3.4 KiB
5 months ago
|
"""
|
||
|
This module implements a method to find
|
||
|
Euler-Lagrange Equations for given Lagrangian.
|
||
|
"""
|
||
|
from itertools import combinations_with_replacement
|
||
|
from sympy.core.function import (Derivative, Function, diff)
|
||
|
from sympy.core.relational import Eq
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import Symbol
|
||
|
from sympy.core.sympify import sympify
|
||
|
from sympy.utilities.iterables import iterable
|
||
|
|
||
|
|
||
|
def euler_equations(L, funcs=(), vars=()):
|
||
|
r"""
|
||
|
Find the Euler-Lagrange equations [1]_ for a given Lagrangian.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
L : Expr
|
||
|
The Lagrangian that should be a function of the functions listed
|
||
|
in the second argument and their derivatives.
|
||
|
|
||
|
For example, in the case of two functions $f(x,y)$, $g(x,y)$ and
|
||
|
two independent variables $x$, $y$ the Lagrangian has the form:
|
||
|
|
||
|
.. math:: L\left(f(x,y),g(x,y),\frac{\partial f(x,y)}{\partial x},
|
||
|
\frac{\partial f(x,y)}{\partial y},
|
||
|
\frac{\partial g(x,y)}{\partial x},
|
||
|
\frac{\partial g(x,y)}{\partial y},x,y\right)
|
||
|
|
||
|
In many cases it is not necessary to provide anything, except the
|
||
|
Lagrangian, it will be auto-detected (and an error raised if this
|
||
|
cannot be done).
|
||
|
|
||
|
funcs : Function or an iterable of Functions
|
||
|
The functions that the Lagrangian depends on. The Euler equations
|
||
|
are differential equations for each of these functions.
|
||
|
|
||
|
vars : Symbol or an iterable of Symbols
|
||
|
The Symbols that are the independent variables of the functions.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
eqns : list of Eq
|
||
|
The list of differential equations, one for each function.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import euler_equations, Symbol, Function
|
||
|
>>> x = Function('x')
|
||
|
>>> t = Symbol('t')
|
||
|
>>> L = (x(t).diff(t))**2/2 - x(t)**2/2
|
||
|
>>> euler_equations(L, x(t), t)
|
||
|
[Eq(-x(t) - Derivative(x(t), (t, 2)), 0)]
|
||
|
>>> u = Function('u')
|
||
|
>>> x = Symbol('x')
|
||
|
>>> L = (u(t, x).diff(t))**2/2 - (u(t, x).diff(x))**2/2
|
||
|
>>> euler_equations(L, u(t, x), [t, x])
|
||
|
[Eq(-Derivative(u(t, x), (t, 2)) + Derivative(u(t, x), (x, 2)), 0)]
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Euler%E2%80%93Lagrange_equation
|
||
|
|
||
|
"""
|
||
|
|
||
|
funcs = tuple(funcs) if iterable(funcs) else (funcs,)
|
||
|
|
||
|
if not funcs:
|
||
|
funcs = tuple(L.atoms(Function))
|
||
|
else:
|
||
|
for f in funcs:
|
||
|
if not isinstance(f, Function):
|
||
|
raise TypeError('Function expected, got: %s' % f)
|
||
|
|
||
|
vars = tuple(vars) if iterable(vars) else (vars,)
|
||
|
|
||
|
if not vars:
|
||
|
vars = funcs[0].args
|
||
|
else:
|
||
|
vars = tuple(sympify(var) for var in vars)
|
||
|
|
||
|
if not all(isinstance(v, Symbol) for v in vars):
|
||
|
raise TypeError('Variables are not symbols, got %s' % vars)
|
||
|
|
||
|
for f in funcs:
|
||
|
if not vars == f.args:
|
||
|
raise ValueError("Variables %s do not match args: %s" % (vars, f))
|
||
|
|
||
|
order = max([len(d.variables) for d in L.atoms(Derivative)
|
||
|
if d.expr in funcs] + [0])
|
||
|
|
||
|
eqns = []
|
||
|
for f in funcs:
|
||
|
eq = diff(L, f)
|
||
|
for i in range(1, order + 1):
|
||
|
for p in combinations_with_replacement(vars, i):
|
||
|
eq = eq + S.NegativeOne**i*diff(L, diff(f, *p), *p)
|
||
|
new_eq = Eq(eq, 0)
|
||
|
if isinstance(new_eq, Eq):
|
||
|
eqns.append(new_eq)
|
||
|
|
||
|
return eqns
|