You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
39 lines
1.9 KiB
39 lines
1.9 KiB
5 months ago
|
from sympy.core.numbers import Rational
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.geometry import Circle, Line, Point, Polygon, Segment
|
||
|
from sympy.sets import FiniteSet, Union, Intersection, EmptySet
|
||
|
|
||
|
|
||
|
def test_booleans():
|
||
|
""" test basic unions and intersections """
|
||
|
half = S.Half
|
||
|
|
||
|
p1, p2, p3, p4 = map(Point, [(0, 0), (1, 0), (5, 1), (0, 1)])
|
||
|
p5, p6, p7 = map(Point, [(3, 2), (1, -1), (0, 2)])
|
||
|
l1 = Line(Point(0,0), Point(1,1))
|
||
|
l2 = Line(Point(half, half), Point(5,5))
|
||
|
l3 = Line(p2, p3)
|
||
|
l4 = Line(p3, p4)
|
||
|
poly1 = Polygon(p1, p2, p3, p4)
|
||
|
poly2 = Polygon(p5, p6, p7)
|
||
|
poly3 = Polygon(p1, p2, p5)
|
||
|
assert Union(l1, l2).equals(l1)
|
||
|
assert Intersection(l1, l2).equals(l1)
|
||
|
assert Intersection(l1, l4) == FiniteSet(Point(1,1))
|
||
|
assert Intersection(Union(l1, l4), l3) == FiniteSet(Point(Rational(-1, 3), Rational(-1, 3)), Point(5, 1))
|
||
|
assert Intersection(l1, FiniteSet(Point(7,-7))) == EmptySet
|
||
|
assert Intersection(Circle(Point(0,0), 3), Line(p1,p2)) == FiniteSet(Point(-3,0), Point(3,0))
|
||
|
assert Intersection(l1, FiniteSet(p1)) == FiniteSet(p1)
|
||
|
assert Union(l1, FiniteSet(p1)) == l1
|
||
|
|
||
|
fs = FiniteSet(Point(Rational(1, 3), 1), Point(Rational(2, 3), 0), Point(Rational(9, 5), Rational(1, 5)), Point(Rational(7, 3), 1))
|
||
|
# test the intersection of polygons
|
||
|
assert Intersection(poly1, poly2) == fs
|
||
|
# make sure if we union polygons with subsets, the subsets go away
|
||
|
assert Union(poly1, poly2, fs) == Union(poly1, poly2)
|
||
|
# make sure that if we union with a FiniteSet that isn't a subset,
|
||
|
# that the points in the intersection stop being listed
|
||
|
assert Union(poly1, FiniteSet(Point(0,0), Point(3,5))) == Union(poly1, FiniteSet(Point(3,5)))
|
||
|
# intersect two polygons that share an edge
|
||
|
assert Intersection(poly1, poly3) == Union(FiniteSet(Point(Rational(3, 2), 1), Point(2, 1)), Segment(Point(0, 0), Point(1, 0)))
|