You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

347 lines
9.0 KiB

5 months ago
"""Finite extensions of ring domains."""
from sympy.polys.domains.domain import Domain
from sympy.polys.domains.domainelement import DomainElement
from sympy.polys.polyerrors import (CoercionFailed, NotInvertible,
GeneratorsError)
from sympy.polys.polytools import Poly
from sympy.printing.defaults import DefaultPrinting
class ExtensionElement(DomainElement, DefaultPrinting):
"""
Element of a finite extension.
A class of univariate polynomials modulo the ``modulus``
of the extension ``ext``. It is represented by the
unique polynomial ``rep`` of lowest degree. Both
``rep`` and the representation ``mod`` of ``modulus``
are of class DMP.
"""
__slots__ = ('rep', 'ext')
def __init__(self, rep, ext):
self.rep = rep
self.ext = ext
def parent(f):
return f.ext
def __bool__(f):
return bool(f.rep)
def __pos__(f):
return f
def __neg__(f):
return ExtElem(-f.rep, f.ext)
def _get_rep(f, g):
if isinstance(g, ExtElem):
if g.ext == f.ext:
return g.rep
else:
return None
else:
try:
g = f.ext.convert(g)
return g.rep
except CoercionFailed:
return None
def __add__(f, g):
rep = f._get_rep(g)
if rep is not None:
return ExtElem(f.rep + rep, f.ext)
else:
return NotImplemented
__radd__ = __add__
def __sub__(f, g):
rep = f._get_rep(g)
if rep is not None:
return ExtElem(f.rep - rep, f.ext)
else:
return NotImplemented
def __rsub__(f, g):
rep = f._get_rep(g)
if rep is not None:
return ExtElem(rep - f.rep, f.ext)
else:
return NotImplemented
def __mul__(f, g):
rep = f._get_rep(g)
if rep is not None:
return ExtElem((f.rep * rep) % f.ext.mod, f.ext)
else:
return NotImplemented
__rmul__ = __mul__
def _divcheck(f):
"""Raise if division is not implemented for this divisor"""
if not f:
raise NotInvertible('Zero divisor')
elif f.ext.is_Field:
return True
elif f.rep.is_ground and f.ext.domain.is_unit(f.rep.rep[0]):
return True
else:
# Some cases like (2*x + 2)/2 over ZZ will fail here. It is
# unclear how to implement division in general if the ground
# domain is not a field so for now it was decided to restrict the
# implementation to division by invertible constants.
msg = (f"Can not invert {f} in {f.ext}. "
"Only division by invertible constants is implemented.")
raise NotImplementedError(msg)
def inverse(f):
"""Multiplicative inverse.
Raises
======
NotInvertible
If the element is a zero divisor.
"""
f._divcheck()
if f.ext.is_Field:
invrep = f.rep.invert(f.ext.mod)
else:
R = f.ext.ring
invrep = R.exquo(R.one, f.rep)
return ExtElem(invrep, f.ext)
def __truediv__(f, g):
rep = f._get_rep(g)
if rep is None:
return NotImplemented
g = ExtElem(rep, f.ext)
try:
ginv = g.inverse()
except NotInvertible:
raise ZeroDivisionError(f"{f} / {g}")
return f * ginv
__floordiv__ = __truediv__
def __rtruediv__(f, g):
try:
g = f.ext.convert(g)
except CoercionFailed:
return NotImplemented
return g / f
__rfloordiv__ = __rtruediv__
def __mod__(f, g):
rep = f._get_rep(g)
if rep is None:
return NotImplemented
g = ExtElem(rep, f.ext)
try:
g._divcheck()
except NotInvertible:
raise ZeroDivisionError(f"{f} % {g}")
# Division where defined is always exact so there is no remainder
return f.ext.zero
def __rmod__(f, g):
try:
g = f.ext.convert(g)
except CoercionFailed:
return NotImplemented
return g % f
def __pow__(f, n):
if not isinstance(n, int):
raise TypeError("exponent of type 'int' expected")
if n < 0:
try:
f, n = f.inverse(), -n
except NotImplementedError:
raise ValueError("negative powers are not defined")
b = f.rep
m = f.ext.mod
r = f.ext.one.rep
while n > 0:
if n % 2:
r = (r*b) % m
b = (b*b) % m
n //= 2
return ExtElem(r, f.ext)
def __eq__(f, g):
if isinstance(g, ExtElem):
return f.rep == g.rep and f.ext == g.ext
else:
return NotImplemented
def __ne__(f, g):
return not f == g
def __hash__(f):
return hash((f.rep, f.ext))
def __str__(f):
from sympy.printing.str import sstr
return sstr(f.rep)
__repr__ = __str__
@property
def is_ground(f):
return f.rep.is_ground
def to_ground(f):
[c] = f.rep.to_list()
return c
ExtElem = ExtensionElement
class MonogenicFiniteExtension(Domain):
r"""
Finite extension generated by an integral element.
The generator is defined by a monic univariate
polynomial derived from the argument ``mod``.
A shorter alias is ``FiniteExtension``.
Examples
========
Quadratic integer ring $\mathbb{Z}[\sqrt2]$:
>>> from sympy import Symbol, Poly
>>> from sympy.polys.agca.extensions import FiniteExtension
>>> x = Symbol('x')
>>> R = FiniteExtension(Poly(x**2 - 2)); R
ZZ[x]/(x**2 - 2)
>>> R.rank
2
>>> R(1 + x)*(3 - 2*x)
x - 1
Finite field $GF(5^3)$ defined by the primitive
polynomial $x^3 + x^2 + 2$ (over $\mathbb{Z}_5$).
>>> F = FiniteExtension(Poly(x**3 + x**2 + 2, modulus=5)); F
GF(5)[x]/(x**3 + x**2 + 2)
>>> F.basis
(1, x, x**2)
>>> F(x + 3)/(x**2 + 2)
-2*x**2 + x + 2
Function field of an elliptic curve:
>>> t = Symbol('t')
>>> FiniteExtension(Poly(t**2 - x**3 - x + 1, t, field=True))
ZZ(x)[t]/(t**2 - x**3 - x + 1)
"""
is_FiniteExtension = True
dtype = ExtensionElement
def __init__(self, mod):
if not (isinstance(mod, Poly) and mod.is_univariate):
raise TypeError("modulus must be a univariate Poly")
# Using auto=True (default) potentially changes the ground domain to a
# field whereas auto=False raises if division is not exact. We'll let
# the caller decide whether or not they want to put the ground domain
# over a field. In most uses mod is already monic.
mod = mod.monic(auto=False)
self.rank = mod.degree()
self.modulus = mod
self.mod = mod.rep # DMP representation
self.domain = dom = mod.domain
self.ring = mod.rep.ring or dom.old_poly_ring(*mod.gens)
self.zero = self.convert(self.ring.zero)
self.one = self.convert(self.ring.one)
gen = self.ring.gens[0]
self.symbol = self.ring.symbols[0]
self.generator = self.convert(gen)
self.basis = tuple(self.convert(gen**i) for i in range(self.rank))
# XXX: It might be necessary to check mod.is_irreducible here
self.is_Field = self.domain.is_Field
def new(self, arg):
rep = self.ring.convert(arg)
return ExtElem(rep % self.mod, self)
def __eq__(self, other):
if not isinstance(other, FiniteExtension):
return False
return self.modulus == other.modulus
def __hash__(self):
return hash((self.__class__.__name__, self.modulus))
def __str__(self):
return "%s/(%s)" % (self.ring, self.modulus.as_expr())
__repr__ = __str__
def convert(self, f, base=None):
rep = self.ring.convert(f, base)
return ExtElem(rep % self.mod, self)
def convert_from(self, f, base):
rep = self.ring.convert(f, base)
return ExtElem(rep % self.mod, self)
def to_sympy(self, f):
return self.ring.to_sympy(f.rep)
def from_sympy(self, f):
return self.convert(f)
def set_domain(self, K):
mod = self.modulus.set_domain(K)
return self.__class__(mod)
def drop(self, *symbols):
if self.symbol in symbols:
raise GeneratorsError('Can not drop generator from FiniteExtension')
K = self.domain.drop(*symbols)
return self.set_domain(K)
def quo(self, f, g):
return self.exquo(f, g)
def exquo(self, f, g):
rep = self.ring.exquo(f.rep, g.rep)
return ExtElem(rep % self.mod, self)
def is_negative(self, a):
return False
def is_unit(self, a):
if self.is_Field:
return bool(a)
elif a.is_ground:
return self.domain.is_unit(a.to_ground())
FiniteExtension = MonogenicFiniteExtension