You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
3.6 KiB
150 lines
3.6 KiB
5 months ago
|
"""Heuristic polynomial GCD algorithm (HEUGCD). """
|
||
|
|
||
|
from .polyerrors import HeuristicGCDFailed
|
||
|
|
||
|
HEU_GCD_MAX = 6
|
||
|
|
||
|
def heugcd(f, g):
|
||
|
"""
|
||
|
Heuristic polynomial GCD in ``Z[X]``.
|
||
|
|
||
|
Given univariate polynomials ``f`` and ``g`` in ``Z[X]``, returns
|
||
|
their GCD and cofactors, i.e. polynomials ``h``, ``cff`` and ``cfg``
|
||
|
such that::
|
||
|
|
||
|
h = gcd(f, g), cff = quo(f, h) and cfg = quo(g, h)
|
||
|
|
||
|
The algorithm is purely heuristic which means it may fail to compute
|
||
|
the GCD. This will be signaled by raising an exception. In this case
|
||
|
you will need to switch to another GCD method.
|
||
|
|
||
|
The algorithm computes the polynomial GCD by evaluating polynomials
|
||
|
``f`` and ``g`` at certain points and computing (fast) integer GCD
|
||
|
of those evaluations. The polynomial GCD is recovered from the integer
|
||
|
image by interpolation. The evaluation process reduces f and g variable
|
||
|
by variable into a large integer. The final step is to verify if the
|
||
|
interpolated polynomial is the correct GCD. This gives cofactors of
|
||
|
the input polynomials as a side effect.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.polys.heuristicgcd import heugcd
|
||
|
>>> from sympy.polys import ring, ZZ
|
||
|
|
||
|
>>> R, x,y, = ring("x,y", ZZ)
|
||
|
|
||
|
>>> f = x**2 + 2*x*y + y**2
|
||
|
>>> g = x**2 + x*y
|
||
|
|
||
|
>>> h, cff, cfg = heugcd(f, g)
|
||
|
>>> h, cff, cfg
|
||
|
(x + y, x + y, x)
|
||
|
|
||
|
>>> cff*h == f
|
||
|
True
|
||
|
>>> cfg*h == g
|
||
|
True
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] [Liao95]_
|
||
|
|
||
|
"""
|
||
|
assert f.ring == g.ring and f.ring.domain.is_ZZ
|
||
|
|
||
|
ring = f.ring
|
||
|
x0 = ring.gens[0]
|
||
|
domain = ring.domain
|
||
|
|
||
|
gcd, f, g = f.extract_ground(g)
|
||
|
|
||
|
f_norm = f.max_norm()
|
||
|
g_norm = g.max_norm()
|
||
|
|
||
|
B = domain(2*min(f_norm, g_norm) + 29)
|
||
|
|
||
|
x = max(min(B, 99*domain.sqrt(B)),
|
||
|
2*min(f_norm // abs(f.LC),
|
||
|
g_norm // abs(g.LC)) + 4)
|
||
|
|
||
|
for i in range(0, HEU_GCD_MAX):
|
||
|
ff = f.evaluate(x0, x)
|
||
|
gg = g.evaluate(x0, x)
|
||
|
|
||
|
if ff and gg:
|
||
|
if ring.ngens == 1:
|
||
|
h, cff, cfg = domain.cofactors(ff, gg)
|
||
|
else:
|
||
|
h, cff, cfg = heugcd(ff, gg)
|
||
|
|
||
|
h = _gcd_interpolate(h, x, ring)
|
||
|
h = h.primitive()[1]
|
||
|
|
||
|
cff_, r = f.div(h)
|
||
|
|
||
|
if not r:
|
||
|
cfg_, r = g.div(h)
|
||
|
|
||
|
if not r:
|
||
|
h = h.mul_ground(gcd)
|
||
|
return h, cff_, cfg_
|
||
|
|
||
|
cff = _gcd_interpolate(cff, x, ring)
|
||
|
|
||
|
h, r = f.div(cff)
|
||
|
|
||
|
if not r:
|
||
|
cfg_, r = g.div(h)
|
||
|
|
||
|
if not r:
|
||
|
h = h.mul_ground(gcd)
|
||
|
return h, cff, cfg_
|
||
|
|
||
|
cfg = _gcd_interpolate(cfg, x, ring)
|
||
|
|
||
|
h, r = g.div(cfg)
|
||
|
|
||
|
if not r:
|
||
|
cff_, r = f.div(h)
|
||
|
|
||
|
if not r:
|
||
|
h = h.mul_ground(gcd)
|
||
|
return h, cff_, cfg
|
||
|
|
||
|
x = 73794*x * domain.sqrt(domain.sqrt(x)) // 27011
|
||
|
|
||
|
raise HeuristicGCDFailed('no luck')
|
||
|
|
||
|
def _gcd_interpolate(h, x, ring):
|
||
|
"""Interpolate polynomial GCD from integer GCD. """
|
||
|
f, i = ring.zero, 0
|
||
|
|
||
|
# TODO: don't expose poly repr implementation details
|
||
|
if ring.ngens == 1:
|
||
|
while h:
|
||
|
g = h % x
|
||
|
if g > x // 2: g -= x
|
||
|
h = (h - g) // x
|
||
|
|
||
|
# f += X**i*g
|
||
|
if g:
|
||
|
f[(i,)] = g
|
||
|
i += 1
|
||
|
else:
|
||
|
while h:
|
||
|
g = h.trunc_ground(x)
|
||
|
h = (h - g).quo_ground(x)
|
||
|
|
||
|
# f += X**i*g
|
||
|
if g:
|
||
|
for monom, coeff in g.iterterms():
|
||
|
f[(i,) + monom] = coeff
|
||
|
i += 1
|
||
|
|
||
|
if f.LC < 0:
|
||
|
return -f
|
||
|
else:
|
||
|
return f
|