You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
91 lines
2.9 KiB
91 lines
2.9 KiB
5 months ago
|
"""
|
||
|
|
||
|
Routines for computing eigenvectors with DomainMatrix.
|
||
|
|
||
|
"""
|
||
|
from sympy.core.symbol import Dummy
|
||
|
|
||
|
from ..agca.extensions import FiniteExtension
|
||
|
from ..factortools import dup_factor_list
|
||
|
from ..polyroots import roots
|
||
|
from ..polytools import Poly
|
||
|
from ..rootoftools import CRootOf
|
||
|
|
||
|
from .domainmatrix import DomainMatrix
|
||
|
|
||
|
|
||
|
def dom_eigenvects(A, l=Dummy('lambda')):
|
||
|
charpoly = A.charpoly()
|
||
|
rows, cols = A.shape
|
||
|
domain = A.domain
|
||
|
_, factors = dup_factor_list(charpoly, domain)
|
||
|
|
||
|
rational_eigenvects = []
|
||
|
algebraic_eigenvects = []
|
||
|
for base, exp in factors:
|
||
|
if len(base) == 2:
|
||
|
field = domain
|
||
|
eigenval = -base[1] / base[0]
|
||
|
|
||
|
EE_items = [
|
||
|
[eigenval if i == j else field.zero for j in range(cols)]
|
||
|
for i in range(rows)]
|
||
|
EE = DomainMatrix(EE_items, (rows, cols), field)
|
||
|
|
||
|
basis = (A - EE).nullspace()
|
||
|
rational_eigenvects.append((field, eigenval, exp, basis))
|
||
|
else:
|
||
|
minpoly = Poly.from_list(base, l, domain=domain)
|
||
|
field = FiniteExtension(minpoly)
|
||
|
eigenval = field(l)
|
||
|
|
||
|
AA_items = [
|
||
|
[Poly.from_list([item], l, domain=domain).rep for item in row]
|
||
|
for row in A.rep.to_ddm()]
|
||
|
AA_items = [[field(item) for item in row] for row in AA_items]
|
||
|
AA = DomainMatrix(AA_items, (rows, cols), field)
|
||
|
EE_items = [
|
||
|
[eigenval if i == j else field.zero for j in range(cols)]
|
||
|
for i in range(rows)]
|
||
|
EE = DomainMatrix(EE_items, (rows, cols), field)
|
||
|
|
||
|
basis = (AA - EE).nullspace()
|
||
|
algebraic_eigenvects.append((field, minpoly, exp, basis))
|
||
|
|
||
|
return rational_eigenvects, algebraic_eigenvects
|
||
|
|
||
|
|
||
|
def dom_eigenvects_to_sympy(
|
||
|
rational_eigenvects, algebraic_eigenvects,
|
||
|
Matrix, **kwargs
|
||
|
):
|
||
|
result = []
|
||
|
|
||
|
for field, eigenvalue, multiplicity, eigenvects in rational_eigenvects:
|
||
|
eigenvects = eigenvects.rep.to_ddm()
|
||
|
eigenvalue = field.to_sympy(eigenvalue)
|
||
|
new_eigenvects = [
|
||
|
Matrix([field.to_sympy(x) for x in vect])
|
||
|
for vect in eigenvects]
|
||
|
result.append((eigenvalue, multiplicity, new_eigenvects))
|
||
|
|
||
|
for field, minpoly, multiplicity, eigenvects in algebraic_eigenvects:
|
||
|
eigenvects = eigenvects.rep.to_ddm()
|
||
|
l = minpoly.gens[0]
|
||
|
|
||
|
eigenvects = [[field.to_sympy(x) for x in vect] for vect in eigenvects]
|
||
|
|
||
|
degree = minpoly.degree()
|
||
|
minpoly = minpoly.as_expr()
|
||
|
eigenvals = roots(minpoly, l, **kwargs)
|
||
|
if len(eigenvals) != degree:
|
||
|
eigenvals = [CRootOf(minpoly, l, idx) for idx in range(degree)]
|
||
|
|
||
|
for eigenvalue in eigenvals:
|
||
|
new_eigenvects = [
|
||
|
Matrix([x.subs(l, eigenvalue) for x in vect])
|
||
|
for vect in eigenvects]
|
||
|
result.append((eigenvalue, multiplicity, new_eigenvects))
|
||
|
|
||
|
return result
|