You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
824 lines
32 KiB
824 lines
32 KiB
5 months ago
|
"""Tests for real and complex root isolation and refinement algorithms. """
|
||
|
|
||
|
from sympy.polys.rings import ring
|
||
|
from sympy.polys.domains import ZZ, QQ, ZZ_I, EX
|
||
|
from sympy.polys.polyerrors import DomainError, RefinementFailed, PolynomialError
|
||
|
from sympy.polys.rootisolation import (
|
||
|
dup_cauchy_upper_bound, dup_cauchy_lower_bound,
|
||
|
dup_mignotte_sep_bound_squared,
|
||
|
)
|
||
|
from sympy.testing.pytest import raises
|
||
|
|
||
|
def test_dup_sturm():
|
||
|
R, x = ring("x", QQ)
|
||
|
|
||
|
assert R.dup_sturm(5) == [1]
|
||
|
assert R.dup_sturm(x) == [x, 1]
|
||
|
|
||
|
f = x**3 - 2*x**2 + 3*x - 5
|
||
|
assert R.dup_sturm(f) == [f, 3*x**2 - 4*x + 3, -QQ(10,9)*x + QQ(13,3), -QQ(3303,100)]
|
||
|
|
||
|
|
||
|
def test_dup_cauchy_upper_bound():
|
||
|
raises(PolynomialError, lambda: dup_cauchy_upper_bound([], QQ))
|
||
|
raises(PolynomialError, lambda: dup_cauchy_upper_bound([QQ(1)], QQ))
|
||
|
raises(DomainError, lambda: dup_cauchy_upper_bound([ZZ_I(1), ZZ_I(1)], ZZ_I))
|
||
|
|
||
|
assert dup_cauchy_upper_bound([QQ(1), QQ(0), QQ(0)], QQ) == QQ.zero
|
||
|
assert dup_cauchy_upper_bound([QQ(1), QQ(0), QQ(-2)], QQ) == QQ(3)
|
||
|
|
||
|
|
||
|
def test_dup_cauchy_lower_bound():
|
||
|
raises(PolynomialError, lambda: dup_cauchy_lower_bound([], QQ))
|
||
|
raises(PolynomialError, lambda: dup_cauchy_lower_bound([QQ(1)], QQ))
|
||
|
raises(PolynomialError, lambda: dup_cauchy_lower_bound([QQ(1), QQ(0), QQ(0)], QQ))
|
||
|
raises(DomainError, lambda: dup_cauchy_lower_bound([ZZ_I(1), ZZ_I(1)], ZZ_I))
|
||
|
|
||
|
assert dup_cauchy_lower_bound([QQ(1), QQ(0), QQ(-2)], QQ) == QQ(2, 3)
|
||
|
|
||
|
|
||
|
def test_dup_mignotte_sep_bound_squared():
|
||
|
raises(PolynomialError, lambda: dup_mignotte_sep_bound_squared([], QQ))
|
||
|
raises(PolynomialError, lambda: dup_mignotte_sep_bound_squared([QQ(1)], QQ))
|
||
|
|
||
|
assert dup_mignotte_sep_bound_squared([QQ(1), QQ(0), QQ(-2)], QQ) == QQ(3, 5)
|
||
|
|
||
|
|
||
|
def test_dup_refine_real_root():
|
||
|
R, x = ring("x", ZZ)
|
||
|
f = x**2 - 2
|
||
|
|
||
|
assert R.dup_refine_real_root(f, QQ(1), QQ(1), steps=1) == (QQ(1), QQ(1))
|
||
|
assert R.dup_refine_real_root(f, QQ(1), QQ(1), steps=9) == (QQ(1), QQ(1))
|
||
|
|
||
|
raises(ValueError, lambda: R.dup_refine_real_root(f, QQ(-2), QQ(2)))
|
||
|
|
||
|
s, t = QQ(1, 1), QQ(2, 1)
|
||
|
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=0) == (QQ(1, 1), QQ(2, 1))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=1) == (QQ(1, 1), QQ(3, 2))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=2) == (QQ(4, 3), QQ(3, 2))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=3) == (QQ(7, 5), QQ(3, 2))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=4) == (QQ(7, 5), QQ(10, 7))
|
||
|
|
||
|
s, t = QQ(1, 1), QQ(3, 2)
|
||
|
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=0) == (QQ(1, 1), QQ(3, 2))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=1) == (QQ(4, 3), QQ(3, 2))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=2) == (QQ(7, 5), QQ(3, 2))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=3) == (QQ(7, 5), QQ(10, 7))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=4) == (QQ(7, 5), QQ(17, 12))
|
||
|
|
||
|
s, t = QQ(1, 1), QQ(5, 3)
|
||
|
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=0) == (QQ(1, 1), QQ(5, 3))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=1) == (QQ(1, 1), QQ(3, 2))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=2) == (QQ(7, 5), QQ(3, 2))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=3) == (QQ(7, 5), QQ(13, 9))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=4) == (QQ(7, 5), QQ(27, 19))
|
||
|
|
||
|
s, t = QQ(-1, 1), QQ(-2, 1)
|
||
|
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=0) == (-QQ(2, 1), -QQ(1, 1))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=1) == (-QQ(3, 2), -QQ(1, 1))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=2) == (-QQ(3, 2), -QQ(4, 3))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=3) == (-QQ(3, 2), -QQ(7, 5))
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=4) == (-QQ(10, 7), -QQ(7, 5))
|
||
|
|
||
|
raises(RefinementFailed, lambda: R.dup_refine_real_root(f, QQ(0), QQ(1)))
|
||
|
|
||
|
s, t, u, v, w = QQ(1), QQ(2), QQ(24, 17), QQ(17, 12), QQ(7, 5)
|
||
|
|
||
|
assert R.dup_refine_real_root(f, s, t, eps=QQ(1, 100)) == (u, v)
|
||
|
assert R.dup_refine_real_root(f, s, t, steps=6) == (u, v)
|
||
|
|
||
|
assert R.dup_refine_real_root(f, s, t, eps=QQ(1, 100), steps=5) == (w, v)
|
||
|
assert R.dup_refine_real_root(f, s, t, eps=QQ(1, 100), steps=6) == (u, v)
|
||
|
assert R.dup_refine_real_root(f, s, t, eps=QQ(1, 100), steps=7) == (u, v)
|
||
|
|
||
|
s, t, u, v = QQ(-2), QQ(-1), QQ(-3, 2), QQ(-4, 3)
|
||
|
|
||
|
assert R.dup_refine_real_root(f, s, t, disjoint=QQ(-5)) == (s, t)
|
||
|
assert R.dup_refine_real_root(f, s, t, disjoint=-v) == (s, t)
|
||
|
assert R.dup_refine_real_root(f, s, t, disjoint=v) == (u, v)
|
||
|
|
||
|
s, t, u, v = QQ(1), QQ(2), QQ(4, 3), QQ(3, 2)
|
||
|
|
||
|
assert R.dup_refine_real_root(f, s, t, disjoint=QQ(5)) == (s, t)
|
||
|
assert R.dup_refine_real_root(f, s, t, disjoint=-u) == (s, t)
|
||
|
assert R.dup_refine_real_root(f, s, t, disjoint=u) == (u, v)
|
||
|
|
||
|
|
||
|
def test_dup_isolate_real_roots_sqf():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(0) == []
|
||
|
assert R.dup_isolate_real_roots_sqf(5) == []
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(x**2 + x) == [(-1, -1), (0, 0)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**2 - x) == [( 0, 0), (1, 1)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(x**4 + x + 1) == []
|
||
|
|
||
|
I = [(-2, -1), (1, 2)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(x**2 - 2) == I
|
||
|
assert R.dup_isolate_real_roots_sqf(-x**2 + 2) == I
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(x - 1) == \
|
||
|
[(1, 1)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**2 - 3*x + 2) == \
|
||
|
[(1, 1), (2, 2)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**3 - 6*x**2 + 11*x - 6) == \
|
||
|
[(1, 1), (2, 2), (3, 3)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**4 - 10*x**3 + 35*x**2 - 50*x + 24) == \
|
||
|
[(1, 1), (2, 2), (3, 3), (4, 4)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**5 - 15*x**4 + 85*x**3 - 225*x**2 + 274*x - 120) == \
|
||
|
[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(x - 10) == \
|
||
|
[(10, 10)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**2 - 30*x + 200) == \
|
||
|
[(10, 10), (20, 20)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**3 - 60*x**2 + 1100*x - 6000) == \
|
||
|
[(10, 10), (20, 20), (30, 30)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**4 - 100*x**3 + 3500*x**2 - 50000*x + 240000) == \
|
||
|
[(10, 10), (20, 20), (30, 30), (40, 40)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**5 - 150*x**4 + 8500*x**3 - 225000*x**2 + 2740000*x - 12000000) == \
|
||
|
[(10, 10), (20, 20), (30, 30), (40, 40), (50, 50)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(x + 1) == \
|
||
|
[(-1, -1)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**2 + 3*x + 2) == \
|
||
|
[(-2, -2), (-1, -1)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**3 + 6*x**2 + 11*x + 6) == \
|
||
|
[(-3, -3), (-2, -2), (-1, -1)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**4 + 10*x**3 + 35*x**2 + 50*x + 24) == \
|
||
|
[(-4, -4), (-3, -3), (-2, -2), (-1, -1)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**5 + 15*x**4 + 85*x**3 + 225*x**2 + 274*x + 120) == \
|
||
|
[(-5, -5), (-4, -4), (-3, -3), (-2, -2), (-1, -1)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(x + 10) == \
|
||
|
[(-10, -10)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**2 + 30*x + 200) == \
|
||
|
[(-20, -20), (-10, -10)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**3 + 60*x**2 + 1100*x + 6000) == \
|
||
|
[(-30, -30), (-20, -20), (-10, -10)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**4 + 100*x**3 + 3500*x**2 + 50000*x + 240000) == \
|
||
|
[(-40, -40), (-30, -30), (-20, -20), (-10, -10)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**5 + 150*x**4 + 8500*x**3 + 225000*x**2 + 2740000*x + 12000000) == \
|
||
|
[(-50, -50), (-40, -40), (-30, -30), (-20, -20), (-10, -10)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(x**2 - 5) == [(-3, -2), (2, 3)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**3 - 5) == [(1, 2)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**4 - 5) == [(-2, -1), (1, 2)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**5 - 5) == [(1, 2)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**6 - 5) == [(-2, -1), (1, 2)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**7 - 5) == [(1, 2)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**8 - 5) == [(-2, -1), (1, 2)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**9 - 5) == [(1, 2)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(x**2 - 1) == \
|
||
|
[(-1, -1), (1, 1)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**3 + 2*x**2 - x - 2) == \
|
||
|
[(-2, -2), (-1, -1), (1, 1)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**4 - 5*x**2 + 4) == \
|
||
|
[(-2, -2), (-1, -1), (1, 1), (2, 2)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**5 + 3*x**4 - 5*x**3 - 15*x**2 + 4*x + 12) == \
|
||
|
[(-3, -3), (-2, -2), (-1, -1), (1, 1), (2, 2)]
|
||
|
assert R.dup_isolate_real_roots_sqf(x**6 - 14*x**4 + 49*x**2 - 36) == \
|
||
|
[(-3, -3), (-2, -2), (-1, -1), (1, 1), (2, 2), (3, 3)]
|
||
|
assert R.dup_isolate_real_roots_sqf(2*x**7 + x**6 - 28*x**5 - 14*x**4 + 98*x**3 + 49*x**2 - 72*x - 36) == \
|
||
|
[(-3, -3), (-2, -2), (-1, -1), (-1, 0), (1, 1), (2, 2), (3, 3)]
|
||
|
assert R.dup_isolate_real_roots_sqf(4*x**8 - 57*x**6 + 210*x**4 - 193*x**2 + 36) == \
|
||
|
[(-3, -3), (-2, -2), (-1, -1), (-1, 0), (0, 1), (1, 1), (2, 2), (3, 3)]
|
||
|
|
||
|
f = 9*x**2 - 2
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f) == \
|
||
|
[(-1, 0), (0, 1)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f, eps=QQ(1, 10)) == \
|
||
|
[(QQ(-1, 2), QQ(-3, 7)), (QQ(3, 7), QQ(1, 2))]
|
||
|
assert R.dup_isolate_real_roots_sqf(f, eps=QQ(1, 100)) == \
|
||
|
[(QQ(-9, 19), QQ(-8, 17)), (QQ(8, 17), QQ(9, 19))]
|
||
|
assert R.dup_isolate_real_roots_sqf(f, eps=QQ(1, 1000)) == \
|
||
|
[(QQ(-33, 70), QQ(-8, 17)), (QQ(8, 17), QQ(33, 70))]
|
||
|
assert R.dup_isolate_real_roots_sqf(f, eps=QQ(1, 10000)) == \
|
||
|
[(QQ(-33, 70), QQ(-107, 227)), (QQ(107, 227), QQ(33, 70))]
|
||
|
assert R.dup_isolate_real_roots_sqf(f, eps=QQ(1, 100000)) == \
|
||
|
[(QQ(-305, 647), QQ(-272, 577)), (QQ(272, 577), QQ(305, 647))]
|
||
|
assert R.dup_isolate_real_roots_sqf(f, eps=QQ(1, 1000000)) == \
|
||
|
[(QQ(-1121, 2378), QQ(-272, 577)), (QQ(272, 577), QQ(1121, 2378))]
|
||
|
|
||
|
f = 200100012*x**5 - 700390052*x**4 + 700490079*x**3 - 200240054*x**2 + 40017*x - 2
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f) == \
|
||
|
[(QQ(0), QQ(1, 10002)), (QQ(1, 10002), QQ(1, 10002)),
|
||
|
(QQ(1, 2), QQ(1, 2)), (QQ(1), QQ(1)), (QQ(2), QQ(2))]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f, eps=QQ(1, 100000)) == \
|
||
|
[(QQ(1, 10003), QQ(1, 10003)), (QQ(1, 10002), QQ(1, 10002)),
|
||
|
(QQ(1, 2), QQ(1, 2)), (QQ(1), QQ(1)), (QQ(2), QQ(2))]
|
||
|
|
||
|
a, b, c, d = 10000090000001, 2000100003, 10000300007, 10000005000008
|
||
|
|
||
|
f = 20001600074001600021*x**4 \
|
||
|
+ 1700135866278935491773999857*x**3 \
|
||
|
- 2000179008931031182161141026995283662899200197*x**2 \
|
||
|
- 800027600594323913802305066986600025*x \
|
||
|
+ 100000950000540000725000008
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f) == \
|
||
|
[(-a, -a), (-1, 0), (0, 1), (d, d)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f, eps=QQ(1, 100000000000)) == \
|
||
|
[(-QQ(a), -QQ(a)), (-QQ(1, b), -QQ(1, b)), (QQ(1, c), QQ(1, c)), (QQ(d), QQ(d))]
|
||
|
|
||
|
(u, v), B, C, (s, t) = R.dup_isolate_real_roots_sqf(f, fast=True)
|
||
|
|
||
|
assert u < -a < v and B == (-QQ(1), QQ(0)) and C == (QQ(0), QQ(1)) and s < d < t
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f, fast=True, eps=QQ(1, 100000000000000000000000000000)) == \
|
||
|
[(-QQ(a), -QQ(a)), (-QQ(1, b), -QQ(1, b)), (QQ(1, c), QQ(1, c)), (QQ(d), QQ(d))]
|
||
|
|
||
|
f = -10*x**4 + 8*x**3 + 80*x**2 - 32*x - 160
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f) == \
|
||
|
[(-2, -2), (-2, -1), (2, 2), (2, 3)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f, eps=QQ(1, 100)) == \
|
||
|
[(-QQ(2), -QQ(2)), (-QQ(23, 14), -QQ(18, 11)), (QQ(2), QQ(2)), (QQ(39, 16), QQ(22, 9))]
|
||
|
|
||
|
f = x - 1
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f, inf=2) == []
|
||
|
assert R.dup_isolate_real_roots_sqf(f, sup=0) == []
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f) == [(1, 1)]
|
||
|
assert R.dup_isolate_real_roots_sqf(f, inf=1) == [(1, 1)]
|
||
|
assert R.dup_isolate_real_roots_sqf(f, sup=1) == [(1, 1)]
|
||
|
assert R.dup_isolate_real_roots_sqf(f, inf=1, sup=1) == [(1, 1)]
|
||
|
|
||
|
f = x**2 - 2
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f, inf=QQ(7, 4)) == []
|
||
|
assert R.dup_isolate_real_roots_sqf(f, inf=QQ(7, 5)) == [(QQ(7, 5), QQ(3, 2))]
|
||
|
assert R.dup_isolate_real_roots_sqf(f, sup=QQ(7, 5)) == [(-2, -1)]
|
||
|
assert R.dup_isolate_real_roots_sqf(f, sup=QQ(7, 4)) == [(-2, -1), (1, QQ(3, 2))]
|
||
|
assert R.dup_isolate_real_roots_sqf(f, sup=-QQ(7, 4)) == []
|
||
|
assert R.dup_isolate_real_roots_sqf(f, sup=-QQ(7, 5)) == [(-QQ(3, 2), -QQ(7, 5))]
|
||
|
assert R.dup_isolate_real_roots_sqf(f, inf=-QQ(7, 5)) == [(1, 2)]
|
||
|
assert R.dup_isolate_real_roots_sqf(f, inf=-QQ(7, 4)) == [(-QQ(3, 2), -1), (1, 2)]
|
||
|
|
||
|
I = [(-2, -1), (1, 2)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f, inf=-2) == I
|
||
|
assert R.dup_isolate_real_roots_sqf(f, sup=+2) == I
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f, inf=-2, sup=2) == I
|
||
|
|
||
|
R, x = ring("x", QQ)
|
||
|
f = QQ(8, 5)*x**2 - QQ(87374, 3855)*x - QQ(17, 771)
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(f) == [(-1, 0), (14, 15)]
|
||
|
|
||
|
R, x = ring("x", EX)
|
||
|
raises(DomainError, lambda: R.dup_isolate_real_roots_sqf(x + 3))
|
||
|
|
||
|
def test_dup_isolate_real_roots():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
assert R.dup_isolate_real_roots(0) == []
|
||
|
assert R.dup_isolate_real_roots(3) == []
|
||
|
|
||
|
assert R.dup_isolate_real_roots(5*x) == [((0, 0), 1)]
|
||
|
assert R.dup_isolate_real_roots(7*x**4) == [((0, 0), 4)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots(x**2 + x) == [((-1, -1), 1), ((0, 0), 1)]
|
||
|
assert R.dup_isolate_real_roots(x**2 - x) == [((0, 0), 1), ((1, 1), 1)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots(x**4 + x + 1) == []
|
||
|
|
||
|
I = [((-2, -1), 1), ((1, 2), 1)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots(x**2 - 2) == I
|
||
|
assert R.dup_isolate_real_roots(-x**2 + 2) == I
|
||
|
|
||
|
f = 16*x**14 - 96*x**13 + 24*x**12 + 936*x**11 - 1599*x**10 - 2880*x**9 + 9196*x**8 \
|
||
|
+ 552*x**7 - 21831*x**6 + 13968*x**5 + 21690*x**4 - 26784*x**3 - 2916*x**2 + 15552*x - 5832
|
||
|
g = R.dup_sqf_part(f)
|
||
|
|
||
|
assert R.dup_isolate_real_roots(f) == \
|
||
|
[((-QQ(2), -QQ(3, 2)), 2), ((-QQ(3, 2), -QQ(1, 1)), 3), ((QQ(1), QQ(3, 2)), 3),
|
||
|
((QQ(3, 2), QQ(3, 2)), 4), ((QQ(5, 3), QQ(2)), 2)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_sqf(g) == \
|
||
|
[(-QQ(2), -QQ(3, 2)), (-QQ(3, 2), -QQ(1, 1)), (QQ(1), QQ(3, 2)),
|
||
|
(QQ(3, 2), QQ(3, 2)), (QQ(3, 2), QQ(2))]
|
||
|
assert R.dup_isolate_real_roots(g) == \
|
||
|
[((-QQ(2), -QQ(3, 2)), 1), ((-QQ(3, 2), -QQ(1, 1)), 1), ((QQ(1), QQ(3, 2)), 1),
|
||
|
((QQ(3, 2), QQ(3, 2)), 1), ((QQ(3, 2), QQ(2)), 1)]
|
||
|
|
||
|
f = x - 1
|
||
|
|
||
|
assert R.dup_isolate_real_roots(f, inf=2) == []
|
||
|
assert R.dup_isolate_real_roots(f, sup=0) == []
|
||
|
|
||
|
assert R.dup_isolate_real_roots(f) == [((1, 1), 1)]
|
||
|
assert R.dup_isolate_real_roots(f, inf=1) == [((1, 1), 1)]
|
||
|
assert R.dup_isolate_real_roots(f, sup=1) == [((1, 1), 1)]
|
||
|
assert R.dup_isolate_real_roots(f, inf=1, sup=1) == [((1, 1), 1)]
|
||
|
|
||
|
f = x**4 - 4*x**2 + 4
|
||
|
|
||
|
assert R.dup_isolate_real_roots(f, inf=QQ(7, 4)) == []
|
||
|
assert R.dup_isolate_real_roots(f, inf=QQ(7, 5)) == [((QQ(7, 5), QQ(3, 2)), 2)]
|
||
|
assert R.dup_isolate_real_roots(f, sup=QQ(7, 5)) == [((-2, -1), 2)]
|
||
|
assert R.dup_isolate_real_roots(f, sup=QQ(7, 4)) == [((-2, -1), 2), ((1, QQ(3, 2)), 2)]
|
||
|
assert R.dup_isolate_real_roots(f, sup=-QQ(7, 4)) == []
|
||
|
assert R.dup_isolate_real_roots(f, sup=-QQ(7, 5)) == [((-QQ(3, 2), -QQ(7, 5)), 2)]
|
||
|
assert R.dup_isolate_real_roots(f, inf=-QQ(7, 5)) == [((1, 2), 2)]
|
||
|
assert R.dup_isolate_real_roots(f, inf=-QQ(7, 4)) == [((-QQ(3, 2), -1), 2), ((1, 2), 2)]
|
||
|
|
||
|
I = [((-2, -1), 2), ((1, 2), 2)]
|
||
|
|
||
|
assert R.dup_isolate_real_roots(f, inf=-2) == I
|
||
|
assert R.dup_isolate_real_roots(f, sup=+2) == I
|
||
|
|
||
|
assert R.dup_isolate_real_roots(f, inf=-2, sup=2) == I
|
||
|
|
||
|
f = x**11 - 3*x**10 - x**9 + 11*x**8 - 8*x**7 - 8*x**6 + 12*x**5 - 4*x**4
|
||
|
|
||
|
assert R.dup_isolate_real_roots(f, basis=False) == \
|
||
|
[((-2, -1), 2), ((0, 0), 4), ((1, 1), 3), ((1, 2), 2)]
|
||
|
assert R.dup_isolate_real_roots(f, basis=True) == \
|
||
|
[((-2, -1), 2, [1, 0, -2]), ((0, 0), 4, [1, 0]), ((1, 1), 3, [1, -1]), ((1, 2), 2, [1, 0, -2])]
|
||
|
|
||
|
f = (x**45 - 45*x**44 + 990*x**43 - 1)
|
||
|
g = (x**46 - 15180*x**43 + 9366819*x**40 - 53524680*x**39 + 260932815*x**38 - 1101716330*x**37 + 4076350421*x**36 - 13340783196*x**35 + 38910617655*x**34 - 101766230790*x**33 + 239877544005*x**32 - 511738760544*x**31 + 991493848554*x**30 - 1749695026860*x**29 + 2818953098830*x**28 - 4154246671960*x**27 + 5608233007146*x**26 - 6943526580276*x**25 + 7890371113950*x**24 - 8233430727600*x**23 + 7890371113950*x**22 - 6943526580276*x**21 + 5608233007146*x**20 - 4154246671960*x**19 + 2818953098830*x**18 - 1749695026860*x**17 + 991493848554*x**16 - 511738760544*x**15 + 239877544005*x**14 - 101766230790*x**13 + 38910617655*x**12 - 13340783196*x**11 + 4076350421*x**10 - 1101716330*x**9 + 260932815*x**8 - 53524680*x**7 + 9366819*x**6 - 1370754*x**5 + 163185*x**4 - 15180*x**3 + 1035*x**2 - 47*x + 1)
|
||
|
|
||
|
assert R.dup_isolate_real_roots(f*g) == \
|
||
|
[((0, QQ(1, 2)), 1), ((QQ(2, 3), QQ(3, 4)), 1), ((QQ(3, 4), 1), 1), ((6, 7), 1), ((24, 25), 1)]
|
||
|
|
||
|
R, x = ring("x", EX)
|
||
|
raises(DomainError, lambda: R.dup_isolate_real_roots(x + 3))
|
||
|
|
||
|
|
||
|
def test_dup_isolate_real_roots_list():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
assert R.dup_isolate_real_roots_list([x**2 + x, x]) == \
|
||
|
[((-1, -1), {0: 1}), ((0, 0), {0: 1, 1: 1})]
|
||
|
assert R.dup_isolate_real_roots_list([x**2 - x, x]) == \
|
||
|
[((0, 0), {0: 1, 1: 1}), ((1, 1), {0: 1})]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_list([x + 1, x + 2, x - 1, x + 1, x - 1, x - 1]) == \
|
||
|
[((-QQ(2), -QQ(2)), {1: 1}), ((-QQ(1), -QQ(1)), {0: 1, 3: 1}), ((QQ(1), QQ(1)), {2: 1, 4: 1, 5: 1})]
|
||
|
|
||
|
assert R.dup_isolate_real_roots_list([x + 1, x + 2, x - 1, x + 1, x - 1, x + 2]) == \
|
||
|
[((-QQ(2), -QQ(2)), {1: 1, 5: 1}), ((-QQ(1), -QQ(1)), {0: 1, 3: 1}), ((QQ(1), QQ(1)), {2: 1, 4: 1})]
|
||
|
|
||
|
f, g = x**4 - 4*x**2 + 4, x - 1
|
||
|
|
||
|
assert R.dup_isolate_real_roots_list([f, g], inf=QQ(7, 4)) == []
|
||
|
assert R.dup_isolate_real_roots_list([f, g], inf=QQ(7, 5)) == \
|
||
|
[((QQ(7, 5), QQ(3, 2)), {0: 2})]
|
||
|
assert R.dup_isolate_real_roots_list([f, g], sup=QQ(7, 5)) == \
|
||
|
[((-2, -1), {0: 2}), ((1, 1), {1: 1})]
|
||
|
assert R.dup_isolate_real_roots_list([f, g], sup=QQ(7, 4)) == \
|
||
|
[((-2, -1), {0: 2}), ((1, 1), {1: 1}), ((1, QQ(3, 2)), {0: 2})]
|
||
|
assert R.dup_isolate_real_roots_list([f, g], sup=-QQ(7, 4)) == []
|
||
|
assert R.dup_isolate_real_roots_list([f, g], sup=-QQ(7, 5)) == \
|
||
|
[((-QQ(3, 2), -QQ(7, 5)), {0: 2})]
|
||
|
assert R.dup_isolate_real_roots_list([f, g], inf=-QQ(7, 5)) == \
|
||
|
[((1, 1), {1: 1}), ((1, 2), {0: 2})]
|
||
|
assert R.dup_isolate_real_roots_list([f, g], inf=-QQ(7, 4)) == \
|
||
|
[((-QQ(3, 2), -1), {0: 2}), ((1, 1), {1: 1}), ((1, 2), {0: 2})]
|
||
|
|
||
|
f, g = 2*x**2 - 1, x**2 - 2
|
||
|
|
||
|
assert R.dup_isolate_real_roots_list([f, g]) == \
|
||
|
[((-QQ(2), -QQ(1)), {1: 1}), ((-QQ(1), QQ(0)), {0: 1}),
|
||
|
((QQ(0), QQ(1)), {0: 1}), ((QQ(1), QQ(2)), {1: 1})]
|
||
|
assert R.dup_isolate_real_roots_list([f, g], strict=True) == \
|
||
|
[((-QQ(3, 2), -QQ(4, 3)), {1: 1}), ((-QQ(1), -QQ(2, 3)), {0: 1}),
|
||
|
((QQ(2, 3), QQ(1)), {0: 1}), ((QQ(4, 3), QQ(3, 2)), {1: 1})]
|
||
|
|
||
|
f, g = x**2 - 2, x**3 - x**2 - 2*x + 2
|
||
|
|
||
|
assert R.dup_isolate_real_roots_list([f, g]) == \
|
||
|
[((-QQ(2), -QQ(1)), {1: 1, 0: 1}), ((QQ(1), QQ(1)), {1: 1}), ((QQ(1), QQ(2)), {1: 1, 0: 1})]
|
||
|
|
||
|
f, g = x**3 - 2*x, x**5 - x**4 - 2*x**3 + 2*x**2
|
||
|
|
||
|
assert R.dup_isolate_real_roots_list([f, g]) == \
|
||
|
[((-QQ(2), -QQ(1)), {1: 1, 0: 1}), ((QQ(0), QQ(0)), {0: 1, 1: 2}),
|
||
|
((QQ(1), QQ(1)), {1: 1}), ((QQ(1), QQ(2)), {1: 1, 0: 1})]
|
||
|
|
||
|
f, g = x**9 - 3*x**8 - x**7 + 11*x**6 - 8*x**5 - 8*x**4 + 12*x**3 - 4*x**2, x**5 - 2*x**4 + 3*x**3 - 4*x**2 + 2*x
|
||
|
|
||
|
assert R.dup_isolate_real_roots_list([f, g], basis=False) == \
|
||
|
[((-2, -1), {0: 2}), ((0, 0), {0: 2, 1: 1}), ((1, 1), {0: 3, 1: 2}), ((1, 2), {0: 2})]
|
||
|
assert R.dup_isolate_real_roots_list([f, g], basis=True) == \
|
||
|
[((-2, -1), {0: 2}, [1, 0, -2]), ((0, 0), {0: 2, 1: 1}, [1, 0]),
|
||
|
((1, 1), {0: 3, 1: 2}, [1, -1]), ((1, 2), {0: 2}, [1, 0, -2])]
|
||
|
|
||
|
R, x = ring("x", EX)
|
||
|
raises(DomainError, lambda: R.dup_isolate_real_roots_list([x + 3]))
|
||
|
|
||
|
|
||
|
def test_dup_isolate_real_roots_list_QQ():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
f = x**5 - 200
|
||
|
g = x**5 - 201
|
||
|
|
||
|
assert R.dup_isolate_real_roots_list([f, g]) == \
|
||
|
[((QQ(75, 26), QQ(101, 35)), {0: 1}), ((QQ(309, 107), QQ(26, 9)), {1: 1})]
|
||
|
|
||
|
R, x = ring("x", QQ)
|
||
|
|
||
|
f = -QQ(1, 200)*x**5 + 1
|
||
|
g = -QQ(1, 201)*x**5 + 1
|
||
|
|
||
|
assert R.dup_isolate_real_roots_list([f, g]) == \
|
||
|
[((QQ(75, 26), QQ(101, 35)), {0: 1}), ((QQ(309, 107), QQ(26, 9)), {1: 1})]
|
||
|
|
||
|
|
||
|
def test_dup_count_real_roots():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
assert R.dup_count_real_roots(0) == 0
|
||
|
assert R.dup_count_real_roots(7) == 0
|
||
|
|
||
|
f = x - 1
|
||
|
assert R.dup_count_real_roots(f) == 1
|
||
|
assert R.dup_count_real_roots(f, inf=1) == 1
|
||
|
assert R.dup_count_real_roots(f, sup=0) == 0
|
||
|
assert R.dup_count_real_roots(f, sup=1) == 1
|
||
|
assert R.dup_count_real_roots(f, inf=0, sup=1) == 1
|
||
|
assert R.dup_count_real_roots(f, inf=0, sup=2) == 1
|
||
|
assert R.dup_count_real_roots(f, inf=1, sup=2) == 1
|
||
|
|
||
|
f = x**2 - 2
|
||
|
assert R.dup_count_real_roots(f) == 2
|
||
|
assert R.dup_count_real_roots(f, sup=0) == 1
|
||
|
assert R.dup_count_real_roots(f, inf=-1, sup=1) == 0
|
||
|
|
||
|
|
||
|
# parameters for test_dup_count_complex_roots_n(): n = 1..8
|
||
|
a, b = (-QQ(1), -QQ(1)), (QQ(1), QQ(1))
|
||
|
c, d = ( QQ(0), QQ(0)), (QQ(1), QQ(1))
|
||
|
|
||
|
def test_dup_count_complex_roots_1():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
# z-1
|
||
|
f = x - 1
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 1
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
# z+1
|
||
|
f = x + 1
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 1
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 0
|
||
|
|
||
|
|
||
|
def test_dup_count_complex_roots_2():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
# (z-1)*(z)
|
||
|
f = x**2 - x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 2
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z-1)*(-z)
|
||
|
f = -x**2 + x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 2
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z+1)*(z)
|
||
|
f = x**2 + x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 2
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
# (z+1)*(-z)
|
||
|
f = -x**2 - x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 2
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
|
||
|
def test_dup_count_complex_roots_3():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
# (z-1)*(z+1)
|
||
|
f = x**2 - 1
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 2
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
# (z-1)*(z+1)*(z)
|
||
|
f = x**3 - x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 3
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z-1)*(z+1)*(-z)
|
||
|
f = -x**3 + x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 3
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
|
||
|
def test_dup_count_complex_roots_4():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
# (z-I)*(z+I)
|
||
|
f = x**2 + 1
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 2
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
# (z-I)*(z+I)*(z)
|
||
|
f = x**3 + x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 3
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z-I)*(z+I)*(-z)
|
||
|
f = -x**3 - x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 3
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z-I)*(z+I)*(z-1)
|
||
|
f = x**3 - x**2 + x - 1
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 3
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z-I)*(z+I)*(z-1)*(z)
|
||
|
f = x**4 - x**3 + x**2 - x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 4
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 3
|
||
|
|
||
|
# (z-I)*(z+I)*(z-1)*(-z)
|
||
|
f = -x**4 + x**3 - x**2 + x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 4
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 3
|
||
|
|
||
|
# (z-I)*(z+I)*(z-1)*(z+1)
|
||
|
f = x**4 - 1
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 4
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z-I)*(z+I)*(z-1)*(z+1)*(z)
|
||
|
f = x**5 - x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 5
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 3
|
||
|
|
||
|
# (z-I)*(z+I)*(z-1)*(z+1)*(-z)
|
||
|
f = -x**5 + x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 5
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 3
|
||
|
|
||
|
|
||
|
def test_dup_count_complex_roots_5():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
# (z-I+1)*(z+I+1)
|
||
|
f = x**2 + 2*x + 2
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 2
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 0
|
||
|
|
||
|
# (z-I+1)*(z+I+1)*(z-1)
|
||
|
f = x**3 + x**2 - 2
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 3
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
# (z-I+1)*(z+I+1)*(z-1)*z
|
||
|
f = x**4 + x**3 - 2*x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 4
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z-I+1)*(z+I+1)*(z+1)
|
||
|
f = x**3 + 3*x**2 + 4*x + 2
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 3
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 0
|
||
|
|
||
|
# (z-I+1)*(z+I+1)*(z+1)*z
|
||
|
f = x**4 + 3*x**3 + 4*x**2 + 2*x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 4
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
# (z-I+1)*(z+I+1)*(z-1)*(z+1)
|
||
|
f = x**4 + 2*x**3 + x**2 - 2*x - 2
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 4
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
# (z-I+1)*(z+I+1)*(z-1)*(z+1)*z
|
||
|
f = x**5 + 2*x**4 + x**3 - 2*x**2 - 2*x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 5
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
|
||
|
def test_dup_count_complex_roots_6():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
# (z-I-1)*(z+I-1)
|
||
|
f = x**2 - 2*x + 2
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 2
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-1)
|
||
|
f = x**3 - 3*x**2 + 4*x - 2
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 3
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-1)*z
|
||
|
f = x**4 - 3*x**3 + 4*x**2 - 2*x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 4
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 3
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z+1)
|
||
|
f = x**3 - x**2 + 2
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 3
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z+1)*z
|
||
|
f = x**4 - x**3 + 2*x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 4
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-1)*(z+1)
|
||
|
f = x**4 - 2*x**3 + x**2 + 2*x - 2
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 4
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-1)*(z+1)*z
|
||
|
f = x**5 - 2*x**4 + x**3 + 2*x**2 - 2*x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 5
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 3
|
||
|
|
||
|
|
||
|
def test_dup_count_complex_roots_7():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-I+1)*(z+I+1)
|
||
|
f = x**4 + 4
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 4
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-I+1)*(z+I+1)*(z-2)
|
||
|
f = x**5 - 2*x**4 + 4*x - 8
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 4
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-I+1)*(z+I+1)*(z**2-2)
|
||
|
f = x**6 - 2*x**4 + 4*x**2 - 8
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 4
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-I+1)*(z+I+1)*(z-1)
|
||
|
f = x**5 - x**4 + 4*x - 4
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 5
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-I+1)*(z+I+1)*(z-1)*z
|
||
|
f = x**6 - x**5 + 4*x**2 - 4*x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 6
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 3
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-I+1)*(z+I+1)*(z+1)
|
||
|
f = x**5 + x**4 + 4*x + 4
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 5
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 1
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-I+1)*(z+I+1)*(z+1)*z
|
||
|
f = x**6 + x**5 + 4*x**2 + 4*x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 6
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-I+1)*(z+I+1)*(z-1)*(z+1)
|
||
|
f = x**6 - x**4 + 4*x**2 - 4
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 6
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 2
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-I+1)*(z+I+1)*(z-1)*(z+1)*z
|
||
|
f = x**7 - x**5 + 4*x**3 - 4*x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 7
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 3
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-I+1)*(z+I+1)*(z-1)*(z+1)*(z-I)*(z+I)
|
||
|
f = x**8 + 3*x**4 - 4
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 8
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 3
|
||
|
|
||
|
|
||
|
def test_dup_count_complex_roots_8():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-I+1)*(z+I+1)*(z-1)*(z+1)*(z-I)*(z+I)*z
|
||
|
f = x**9 + 3*x**5 - 4*x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 9
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 4
|
||
|
|
||
|
# (z-I-1)*(z+I-1)*(z-I+1)*(z+I+1)*(z-1)*(z+1)*(z-I)*(z+I)*(z**2-2)*z
|
||
|
f = x**11 - 2*x**9 + 3*x**7 - 6*x**5 - 4*x**3 + 8*x
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 9
|
||
|
assert R.dup_count_complex_roots(f, c, d) == 4
|
||
|
|
||
|
|
||
|
def test_dup_count_complex_roots_implicit():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
# z*(z-1)*(z+1)*(z-I)*(z+I)
|
||
|
f = x**5 - x
|
||
|
|
||
|
assert R.dup_count_complex_roots(f) == 5
|
||
|
|
||
|
assert R.dup_count_complex_roots(f, sup=(0, 0)) == 3
|
||
|
assert R.dup_count_complex_roots(f, inf=(0, 0)) == 3
|
||
|
|
||
|
|
||
|
def test_dup_count_complex_roots_exclude():
|
||
|
R, x = ring("x", ZZ)
|
||
|
|
||
|
# z*(z-1)*(z+1)*(z-I)*(z+I)
|
||
|
f = x**5 - x
|
||
|
|
||
|
a, b = (-QQ(1), QQ(0)), (QQ(1), QQ(1))
|
||
|
|
||
|
assert R.dup_count_complex_roots(f, a, b) == 4
|
||
|
|
||
|
assert R.dup_count_complex_roots(f, a, b, exclude=['S']) == 3
|
||
|
assert R.dup_count_complex_roots(f, a, b, exclude=['N']) == 3
|
||
|
|
||
|
assert R.dup_count_complex_roots(f, a, b, exclude=['S', 'N']) == 2
|
||
|
|
||
|
assert R.dup_count_complex_roots(f, a, b, exclude=['E']) == 4
|
||
|
assert R.dup_count_complex_roots(f, a, b, exclude=['W']) == 4
|
||
|
|
||
|
assert R.dup_count_complex_roots(f, a, b, exclude=['E', 'W']) == 4
|
||
|
|
||
|
assert R.dup_count_complex_roots(f, a, b, exclude=['N', 'S', 'E', 'W']) == 2
|
||
|
|
||
|
assert R.dup_count_complex_roots(f, a, b, exclude=['SW']) == 3
|
||
|
assert R.dup_count_complex_roots(f, a, b, exclude=['SE']) == 3
|
||
|
|
||
|
assert R.dup_count_complex_roots(f, a, b, exclude=['SW', 'SE']) == 2
|
||
|
assert R.dup_count_complex_roots(f, a, b, exclude=['SW', 'SE', 'S']) == 1
|
||
|
assert R.dup_count_complex_roots(f, a, b, exclude=['SW', 'SE', 'S', 'N']) == 0
|
||
|
|
||
|
a, b = (QQ(0), QQ(0)), (QQ(1), QQ(1))
|
||
|
|
||
|
assert R.dup_count_complex_roots(f, a, b, exclude=True) == 1
|
||
|
|
||
|
|
||
|
def test_dup_isolate_complex_roots_sqf():
|
||
|
R, x = ring("x", ZZ)
|
||
|
f = x**2 - 2*x + 3
|
||
|
|
||
|
assert R.dup_isolate_complex_roots_sqf(f) == \
|
||
|
[((0, -6), (6, 0)), ((0, 0), (6, 6))]
|
||
|
assert [ r.as_tuple() for r in R.dup_isolate_complex_roots_sqf(f, blackbox=True) ] == \
|
||
|
[((0, -6), (6, 0)), ((0, 0), (6, 6))]
|
||
|
|
||
|
assert R.dup_isolate_complex_roots_sqf(f, eps=QQ(1, 10)) == \
|
||
|
[((QQ(15, 16), -QQ(3, 2)), (QQ(33, 32), -QQ(45, 32))),
|
||
|
((QQ(15, 16), QQ(45, 32)), (QQ(33, 32), QQ(3, 2)))]
|
||
|
assert R.dup_isolate_complex_roots_sqf(f, eps=QQ(1, 100)) == \
|
||
|
[((QQ(255, 256), -QQ(363, 256)), (QQ(513, 512), -QQ(723, 512))),
|
||
|
((QQ(255, 256), QQ(723, 512)), (QQ(513, 512), QQ(363, 256)))]
|
||
|
|
||
|
f = 7*x**4 - 19*x**3 + 20*x**2 + 17*x + 20
|
||
|
|
||
|
assert R.dup_isolate_complex_roots_sqf(f) == \
|
||
|
[((-QQ(40, 7), -QQ(40, 7)), (0, 0)), ((-QQ(40, 7), 0), (0, QQ(40, 7))),
|
||
|
((0, -QQ(40, 7)), (QQ(40, 7), 0)), ((0, 0), (QQ(40, 7), QQ(40, 7)))]
|
||
|
|
||
|
|
||
|
def test_dup_isolate_all_roots_sqf():
|
||
|
R, x = ring("x", ZZ)
|
||
|
f = 4*x**4 - x**3 + 2*x**2 + 5*x
|
||
|
|
||
|
assert R.dup_isolate_all_roots_sqf(f) == \
|
||
|
([(-1, 0), (0, 0)],
|
||
|
[((0, -QQ(5, 2)), (QQ(5, 2), 0)), ((0, 0), (QQ(5, 2), QQ(5, 2)))])
|
||
|
|
||
|
assert R.dup_isolate_all_roots_sqf(f, eps=QQ(1, 10)) == \
|
||
|
([(QQ(-7, 8), QQ(-6, 7)), (0, 0)],
|
||
|
[((QQ(35, 64), -QQ(35, 32)), (QQ(5, 8), -QQ(65, 64))), ((QQ(35, 64), QQ(65, 64)), (QQ(5, 8), QQ(35, 32)))])
|
||
|
|
||
|
|
||
|
def test_dup_isolate_all_roots():
|
||
|
R, x = ring("x", ZZ)
|
||
|
f = 4*x**4 - x**3 + 2*x**2 + 5*x
|
||
|
|
||
|
assert R.dup_isolate_all_roots(f) == \
|
||
|
([((-1, 0), 1), ((0, 0), 1)],
|
||
|
[(((0, -QQ(5, 2)), (QQ(5, 2), 0)), 1),
|
||
|
(((0, 0), (QQ(5, 2), QQ(5, 2))), 1)])
|
||
|
|
||
|
assert R.dup_isolate_all_roots(f, eps=QQ(1, 10)) == \
|
||
|
([((QQ(-7, 8), QQ(-6, 7)), 1), ((0, 0), 1)],
|
||
|
[(((QQ(35, 64), -QQ(35, 32)), (QQ(5, 8), -QQ(65, 64))), 1),
|
||
|
(((QQ(35, 64), QQ(65, 64)), (QQ(5, 8), QQ(35, 32))), 1)])
|
||
|
|
||
|
f = x**5 + x**4 - 2*x**3 - 2*x**2 + x + 1
|
||
|
raises(NotImplementedError, lambda: R.dup_isolate_all_roots(f))
|