You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
120 lines
2.8 KiB
120 lines
2.8 KiB
5 months ago
|
from sympy.core.decorators import _sympifyit
|
||
|
from sympy.core.parameters import global_parameters
|
||
|
from sympy.core.logic import fuzzy_bool
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.sympify import _sympify
|
||
|
|
||
|
from .sets import Set, FiniteSet, SetKind
|
||
|
|
||
|
|
||
|
class PowerSet(Set):
|
||
|
r"""A symbolic object representing a power set.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
arg : Set
|
||
|
The set to take power of.
|
||
|
|
||
|
evaluate : bool
|
||
|
The flag to control evaluation.
|
||
|
|
||
|
If the evaluation is disabled for finite sets, it can take
|
||
|
advantage of using subset test as a membership test.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Power set `\mathcal{P}(S)` is defined as a set containing all the
|
||
|
subsets of `S`.
|
||
|
|
||
|
If the set `S` is a finite set, its power set would have
|
||
|
`2^{\left| S \right|}` elements, where `\left| S \right|` denotes
|
||
|
the cardinality of `S`.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import PowerSet, S, FiniteSet
|
||
|
|
||
|
A power set of a finite set:
|
||
|
|
||
|
>>> PowerSet(FiniteSet(1, 2, 3))
|
||
|
PowerSet({1, 2, 3})
|
||
|
|
||
|
A power set of an empty set:
|
||
|
|
||
|
>>> PowerSet(S.EmptySet)
|
||
|
PowerSet(EmptySet)
|
||
|
>>> PowerSet(PowerSet(S.EmptySet))
|
||
|
PowerSet(PowerSet(EmptySet))
|
||
|
|
||
|
A power set of an infinite set:
|
||
|
|
||
|
>>> PowerSet(S.Reals)
|
||
|
PowerSet(Reals)
|
||
|
|
||
|
Evaluating the power set of a finite set to its explicit form:
|
||
|
|
||
|
>>> PowerSet(FiniteSet(1, 2, 3)).rewrite(FiniteSet)
|
||
|
FiniteSet(EmptySet, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3})
|
||
|
|
||
|
References
|
||
|
==========
|
||
|
|
||
|
.. [1] https://en.wikipedia.org/wiki/Power_set
|
||
|
|
||
|
.. [2] https://en.wikipedia.org/wiki/Axiom_of_power_set
|
||
|
"""
|
||
|
def __new__(cls, arg, evaluate=None):
|
||
|
if evaluate is None:
|
||
|
evaluate=global_parameters.evaluate
|
||
|
|
||
|
arg = _sympify(arg)
|
||
|
|
||
|
if not isinstance(arg, Set):
|
||
|
raise ValueError('{} must be a set.'.format(arg))
|
||
|
|
||
|
return super().__new__(cls, arg)
|
||
|
|
||
|
@property
|
||
|
def arg(self):
|
||
|
return self.args[0]
|
||
|
|
||
|
def _eval_rewrite_as_FiniteSet(self, *args, **kwargs):
|
||
|
arg = self.arg
|
||
|
if arg.is_FiniteSet:
|
||
|
return arg.powerset()
|
||
|
return None
|
||
|
|
||
|
@_sympifyit('other', NotImplemented)
|
||
|
def _contains(self, other):
|
||
|
if not isinstance(other, Set):
|
||
|
return None
|
||
|
|
||
|
return fuzzy_bool(self.arg.is_superset(other))
|
||
|
|
||
|
def _eval_is_subset(self, other):
|
||
|
if isinstance(other, PowerSet):
|
||
|
return self.arg.is_subset(other.arg)
|
||
|
|
||
|
def __len__(self):
|
||
|
return 2 ** len(self.arg)
|
||
|
|
||
|
def __iter__(self):
|
||
|
found = [S.EmptySet]
|
||
|
yield S.EmptySet
|
||
|
|
||
|
for x in self.arg:
|
||
|
temp = []
|
||
|
x = FiniteSet(x)
|
||
|
for y in found:
|
||
|
new = x + y
|
||
|
yield new
|
||
|
temp.append(new)
|
||
|
found.extend(temp)
|
||
|
|
||
|
@property
|
||
|
def kind(self):
|
||
|
return SetKind(self.arg.kind)
|