You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
947 lines
31 KiB
947 lines
31 KiB
5 months ago
|
""" Tools for doing common subexpression elimination.
|
||
|
"""
|
||
|
from collections import defaultdict
|
||
|
|
||
|
from sympy.core import Basic, Mul, Add, Pow, sympify
|
||
|
from sympy.core.containers import Tuple, OrderedSet
|
||
|
from sympy.core.exprtools import factor_terms
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.sorting import ordered
|
||
|
from sympy.core.symbol import symbols, Symbol
|
||
|
from sympy.matrices import (MatrixBase, Matrix, ImmutableMatrix,
|
||
|
SparseMatrix, ImmutableSparseMatrix)
|
||
|
from sympy.matrices.expressions import (MatrixExpr, MatrixSymbol, MatMul,
|
||
|
MatAdd, MatPow, Inverse)
|
||
|
from sympy.matrices.expressions.matexpr import MatrixElement
|
||
|
from sympy.polys.rootoftools import RootOf
|
||
|
from sympy.utilities.iterables import numbered_symbols, sift, \
|
||
|
topological_sort, iterable
|
||
|
|
||
|
from . import cse_opts
|
||
|
|
||
|
# (preprocessor, postprocessor) pairs which are commonly useful. They should
|
||
|
# each take a SymPy expression and return a possibly transformed expression.
|
||
|
# When used in the function ``cse()``, the target expressions will be transformed
|
||
|
# by each of the preprocessor functions in order. After the common
|
||
|
# subexpressions are eliminated, each resulting expression will have the
|
||
|
# postprocessor functions transform them in *reverse* order in order to undo the
|
||
|
# transformation if necessary. This allows the algorithm to operate on
|
||
|
# a representation of the expressions that allows for more optimization
|
||
|
# opportunities.
|
||
|
# ``None`` can be used to specify no transformation for either the preprocessor or
|
||
|
# postprocessor.
|
||
|
|
||
|
|
||
|
basic_optimizations = [(cse_opts.sub_pre, cse_opts.sub_post),
|
||
|
(factor_terms, None)]
|
||
|
|
||
|
# sometimes we want the output in a different format; non-trivial
|
||
|
# transformations can be put here for users
|
||
|
# ===============================================================
|
||
|
|
||
|
|
||
|
def reps_toposort(r):
|
||
|
"""Sort replacements ``r`` so (k1, v1) appears before (k2, v2)
|
||
|
if k2 is in v1's free symbols. This orders items in the
|
||
|
way that cse returns its results (hence, in order to use the
|
||
|
replacements in a substitution option it would make sense
|
||
|
to reverse the order).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.simplify.cse_main import reps_toposort
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> from sympy import Eq
|
||
|
>>> for l, r in reps_toposort([(x, y + 1), (y, 2)]):
|
||
|
... print(Eq(l, r))
|
||
|
...
|
||
|
Eq(y, 2)
|
||
|
Eq(x, y + 1)
|
||
|
|
||
|
"""
|
||
|
r = sympify(r)
|
||
|
E = []
|
||
|
for c1, (k1, v1) in enumerate(r):
|
||
|
for c2, (k2, v2) in enumerate(r):
|
||
|
if k1 in v2.free_symbols:
|
||
|
E.append((c1, c2))
|
||
|
return [r[i] for i in topological_sort((range(len(r)), E))]
|
||
|
|
||
|
|
||
|
def cse_separate(r, e):
|
||
|
"""Move expressions that are in the form (symbol, expr) out of the
|
||
|
expressions and sort them into the replacements using the reps_toposort.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.simplify.cse_main import cse_separate
|
||
|
>>> from sympy.abc import x, y, z
|
||
|
>>> from sympy import cos, exp, cse, Eq, symbols
|
||
|
>>> x0, x1 = symbols('x:2')
|
||
|
>>> eq = (x + 1 + exp((x + 1)/(y + 1)) + cos(y + 1))
|
||
|
>>> cse([eq, Eq(x, z + 1), z - 2], postprocess=cse_separate) in [
|
||
|
... [[(x0, y + 1), (x, z + 1), (x1, x + 1)],
|
||
|
... [x1 + exp(x1/x0) + cos(x0), z - 2]],
|
||
|
... [[(x1, y + 1), (x, z + 1), (x0, x + 1)],
|
||
|
... [x0 + exp(x0/x1) + cos(x1), z - 2]]]
|
||
|
...
|
||
|
True
|
||
|
"""
|
||
|
d = sift(e, lambda w: w.is_Equality and w.lhs.is_Symbol)
|
||
|
r = r + [w.args for w in d[True]]
|
||
|
e = d[False]
|
||
|
return [reps_toposort(r), e]
|
||
|
|
||
|
|
||
|
def cse_release_variables(r, e):
|
||
|
"""
|
||
|
Return tuples giving ``(a, b)`` where ``a`` is a symbol and ``b`` is
|
||
|
either an expression or None. The value of None is used when a
|
||
|
symbol is no longer needed for subsequent expressions.
|
||
|
|
||
|
Use of such output can reduce the memory footprint of lambdified
|
||
|
expressions that contain large, repeated subexpressions.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import cse
|
||
|
>>> from sympy.simplify.cse_main import cse_release_variables
|
||
|
>>> from sympy.abc import x, y
|
||
|
>>> eqs = [(x + y - 1)**2, x, x + y, (x + y)/(2*x + 1) + (x + y - 1)**2, (2*x + 1)**(x + y)]
|
||
|
>>> defs, rvs = cse_release_variables(*cse(eqs))
|
||
|
>>> for i in defs:
|
||
|
... print(i)
|
||
|
...
|
||
|
(x0, x + y)
|
||
|
(x1, (x0 - 1)**2)
|
||
|
(x2, 2*x + 1)
|
||
|
(_3, x0/x2 + x1)
|
||
|
(_4, x2**x0)
|
||
|
(x2, None)
|
||
|
(_0, x1)
|
||
|
(x1, None)
|
||
|
(_2, x0)
|
||
|
(x0, None)
|
||
|
(_1, x)
|
||
|
>>> print(rvs)
|
||
|
(_0, _1, _2, _3, _4)
|
||
|
"""
|
||
|
if not r:
|
||
|
return r, e
|
||
|
|
||
|
s, p = zip(*r)
|
||
|
esyms = symbols('_:%d' % len(e))
|
||
|
syms = list(esyms)
|
||
|
s = list(s)
|
||
|
in_use = set(s)
|
||
|
p = list(p)
|
||
|
# sort e so those with most sub-expressions appear first
|
||
|
e = [(e[i], syms[i]) for i in range(len(e))]
|
||
|
e, syms = zip(*sorted(e,
|
||
|
key=lambda x: -sum([p[s.index(i)].count_ops()
|
||
|
for i in x[0].free_symbols & in_use])))
|
||
|
syms = list(syms)
|
||
|
p += e
|
||
|
rv = []
|
||
|
i = len(p) - 1
|
||
|
while i >= 0:
|
||
|
_p = p.pop()
|
||
|
c = in_use & _p.free_symbols
|
||
|
if c: # sorting for canonical results
|
||
|
rv.extend([(s, None) for s in sorted(c, key=str)])
|
||
|
if i >= len(r):
|
||
|
rv.append((syms.pop(), _p))
|
||
|
else:
|
||
|
rv.append((s[i], _p))
|
||
|
in_use -= c
|
||
|
i -= 1
|
||
|
rv.reverse()
|
||
|
return rv, esyms
|
||
|
|
||
|
|
||
|
# ====end of cse postprocess idioms===========================
|
||
|
|
||
|
|
||
|
def preprocess_for_cse(expr, optimizations):
|
||
|
""" Preprocess an expression to optimize for common subexpression
|
||
|
elimination.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
expr : SymPy expression
|
||
|
The target expression to optimize.
|
||
|
optimizations : list of (callable, callable) pairs
|
||
|
The (preprocessor, postprocessor) pairs.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
expr : SymPy expression
|
||
|
The transformed expression.
|
||
|
"""
|
||
|
for pre, post in optimizations:
|
||
|
if pre is not None:
|
||
|
expr = pre(expr)
|
||
|
return expr
|
||
|
|
||
|
|
||
|
def postprocess_for_cse(expr, optimizations):
|
||
|
"""Postprocess an expression after common subexpression elimination to
|
||
|
return the expression to canonical SymPy form.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
expr : SymPy expression
|
||
|
The target expression to transform.
|
||
|
optimizations : list of (callable, callable) pairs, optional
|
||
|
The (preprocessor, postprocessor) pairs. The postprocessors will be
|
||
|
applied in reversed order to undo the effects of the preprocessors
|
||
|
correctly.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
expr : SymPy expression
|
||
|
The transformed expression.
|
||
|
"""
|
||
|
for pre, post in reversed(optimizations):
|
||
|
if post is not None:
|
||
|
expr = post(expr)
|
||
|
return expr
|
||
|
|
||
|
|
||
|
class FuncArgTracker:
|
||
|
"""
|
||
|
A class which manages a mapping from functions to arguments and an inverse
|
||
|
mapping from arguments to functions.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, funcs):
|
||
|
# To minimize the number of symbolic comparisons, all function arguments
|
||
|
# get assigned a value number.
|
||
|
self.value_numbers = {}
|
||
|
self.value_number_to_value = []
|
||
|
|
||
|
# Both of these maps use integer indices for arguments / functions.
|
||
|
self.arg_to_funcset = []
|
||
|
self.func_to_argset = []
|
||
|
|
||
|
for func_i, func in enumerate(funcs):
|
||
|
func_argset = OrderedSet()
|
||
|
|
||
|
for func_arg in func.args:
|
||
|
arg_number = self.get_or_add_value_number(func_arg)
|
||
|
func_argset.add(arg_number)
|
||
|
self.arg_to_funcset[arg_number].add(func_i)
|
||
|
|
||
|
self.func_to_argset.append(func_argset)
|
||
|
|
||
|
def get_args_in_value_order(self, argset):
|
||
|
"""
|
||
|
Return the list of arguments in sorted order according to their value
|
||
|
numbers.
|
||
|
"""
|
||
|
return [self.value_number_to_value[argn] for argn in sorted(argset)]
|
||
|
|
||
|
def get_or_add_value_number(self, value):
|
||
|
"""
|
||
|
Return the value number for the given argument.
|
||
|
"""
|
||
|
nvalues = len(self.value_numbers)
|
||
|
value_number = self.value_numbers.setdefault(value, nvalues)
|
||
|
if value_number == nvalues:
|
||
|
self.value_number_to_value.append(value)
|
||
|
self.arg_to_funcset.append(OrderedSet())
|
||
|
return value_number
|
||
|
|
||
|
def stop_arg_tracking(self, func_i):
|
||
|
"""
|
||
|
Remove the function func_i from the argument to function mapping.
|
||
|
"""
|
||
|
for arg in self.func_to_argset[func_i]:
|
||
|
self.arg_to_funcset[arg].remove(func_i)
|
||
|
|
||
|
|
||
|
def get_common_arg_candidates(self, argset, min_func_i=0):
|
||
|
"""Return a dict whose keys are function numbers. The entries of the dict are
|
||
|
the number of arguments said function has in common with
|
||
|
``argset``. Entries have at least 2 items in common. All keys have
|
||
|
value at least ``min_func_i``.
|
||
|
"""
|
||
|
count_map = defaultdict(lambda: 0)
|
||
|
if not argset:
|
||
|
return count_map
|
||
|
|
||
|
funcsets = [self.arg_to_funcset[arg] for arg in argset]
|
||
|
# As an optimization below, we handle the largest funcset separately from
|
||
|
# the others.
|
||
|
largest_funcset = max(funcsets, key=len)
|
||
|
|
||
|
for funcset in funcsets:
|
||
|
if largest_funcset is funcset:
|
||
|
continue
|
||
|
for func_i in funcset:
|
||
|
if func_i >= min_func_i:
|
||
|
count_map[func_i] += 1
|
||
|
|
||
|
# We pick the smaller of the two containers (count_map, largest_funcset)
|
||
|
# to iterate over to reduce the number of iterations needed.
|
||
|
(smaller_funcs_container,
|
||
|
larger_funcs_container) = sorted(
|
||
|
[largest_funcset, count_map],
|
||
|
key=len)
|
||
|
|
||
|
for func_i in smaller_funcs_container:
|
||
|
# Not already in count_map? It can't possibly be in the output, so
|
||
|
# skip it.
|
||
|
if count_map[func_i] < 1:
|
||
|
continue
|
||
|
|
||
|
if func_i in larger_funcs_container:
|
||
|
count_map[func_i] += 1
|
||
|
|
||
|
return {k: v for k, v in count_map.items() if v >= 2}
|
||
|
|
||
|
def get_subset_candidates(self, argset, restrict_to_funcset=None):
|
||
|
"""
|
||
|
Return a set of functions each of which whose argument list contains
|
||
|
``argset``, optionally filtered only to contain functions in
|
||
|
``restrict_to_funcset``.
|
||
|
"""
|
||
|
iarg = iter(argset)
|
||
|
|
||
|
indices = OrderedSet(
|
||
|
fi for fi in self.arg_to_funcset[next(iarg)])
|
||
|
|
||
|
if restrict_to_funcset is not None:
|
||
|
indices &= restrict_to_funcset
|
||
|
|
||
|
for arg in iarg:
|
||
|
indices &= self.arg_to_funcset[arg]
|
||
|
|
||
|
return indices
|
||
|
|
||
|
def update_func_argset(self, func_i, new_argset):
|
||
|
"""
|
||
|
Update a function with a new set of arguments.
|
||
|
"""
|
||
|
new_args = OrderedSet(new_argset)
|
||
|
old_args = self.func_to_argset[func_i]
|
||
|
|
||
|
for deleted_arg in old_args - new_args:
|
||
|
self.arg_to_funcset[deleted_arg].remove(func_i)
|
||
|
for added_arg in new_args - old_args:
|
||
|
self.arg_to_funcset[added_arg].add(func_i)
|
||
|
|
||
|
self.func_to_argset[func_i].clear()
|
||
|
self.func_to_argset[func_i].update(new_args)
|
||
|
|
||
|
|
||
|
class Unevaluated:
|
||
|
|
||
|
def __init__(self, func, args):
|
||
|
self.func = func
|
||
|
self.args = args
|
||
|
|
||
|
def __str__(self):
|
||
|
return "Uneval<{}>({})".format(
|
||
|
self.func, ", ".join(str(a) for a in self.args))
|
||
|
|
||
|
def as_unevaluated_basic(self):
|
||
|
return self.func(*self.args, evaluate=False)
|
||
|
|
||
|
@property
|
||
|
def free_symbols(self):
|
||
|
return set().union(*[a.free_symbols for a in self.args])
|
||
|
|
||
|
__repr__ = __str__
|
||
|
|
||
|
|
||
|
def match_common_args(func_class, funcs, opt_subs):
|
||
|
"""
|
||
|
Recognize and extract common subexpressions of function arguments within a
|
||
|
set of function calls. For instance, for the following function calls::
|
||
|
|
||
|
x + z + y
|
||
|
sin(x + y)
|
||
|
|
||
|
this will extract a common subexpression of `x + y`::
|
||
|
|
||
|
w = x + y
|
||
|
w + z
|
||
|
sin(w)
|
||
|
|
||
|
The function we work with is assumed to be associative and commutative.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
func_class: class
|
||
|
The function class (e.g. Add, Mul)
|
||
|
funcs: list of functions
|
||
|
A list of function calls.
|
||
|
opt_subs: dict
|
||
|
A dictionary of substitutions which this function may update.
|
||
|
"""
|
||
|
|
||
|
# Sort to ensure that whole-function subexpressions come before the items
|
||
|
# that use them.
|
||
|
funcs = sorted(funcs, key=lambda f: len(f.args))
|
||
|
arg_tracker = FuncArgTracker(funcs)
|
||
|
|
||
|
changed = OrderedSet()
|
||
|
|
||
|
for i in range(len(funcs)):
|
||
|
common_arg_candidates_counts = arg_tracker.get_common_arg_candidates(
|
||
|
arg_tracker.func_to_argset[i], min_func_i=i + 1)
|
||
|
|
||
|
# Sort the candidates in order of match size.
|
||
|
# This makes us try combining smaller matches first.
|
||
|
common_arg_candidates = OrderedSet(sorted(
|
||
|
common_arg_candidates_counts.keys(),
|
||
|
key=lambda k: (common_arg_candidates_counts[k], k)))
|
||
|
|
||
|
while common_arg_candidates:
|
||
|
j = common_arg_candidates.pop(last=False)
|
||
|
|
||
|
com_args = arg_tracker.func_to_argset[i].intersection(
|
||
|
arg_tracker.func_to_argset[j])
|
||
|
|
||
|
if len(com_args) <= 1:
|
||
|
# This may happen if a set of common arguments was already
|
||
|
# combined in a previous iteration.
|
||
|
continue
|
||
|
|
||
|
# For all sets, replace the common symbols by the function
|
||
|
# over them, to allow recursive matches.
|
||
|
|
||
|
diff_i = arg_tracker.func_to_argset[i].difference(com_args)
|
||
|
if diff_i:
|
||
|
# com_func needs to be unevaluated to allow for recursive matches.
|
||
|
com_func = Unevaluated(
|
||
|
func_class, arg_tracker.get_args_in_value_order(com_args))
|
||
|
com_func_number = arg_tracker.get_or_add_value_number(com_func)
|
||
|
arg_tracker.update_func_argset(i, diff_i | OrderedSet([com_func_number]))
|
||
|
changed.add(i)
|
||
|
else:
|
||
|
# Treat the whole expression as a CSE.
|
||
|
#
|
||
|
# The reason this needs to be done is somewhat subtle. Within
|
||
|
# tree_cse(), to_eliminate only contains expressions that are
|
||
|
# seen more than once. The problem is unevaluated expressions
|
||
|
# do not compare equal to the evaluated equivalent. So
|
||
|
# tree_cse() won't mark funcs[i] as a CSE if we use an
|
||
|
# unevaluated version.
|
||
|
com_func_number = arg_tracker.get_or_add_value_number(funcs[i])
|
||
|
|
||
|
diff_j = arg_tracker.func_to_argset[j].difference(com_args)
|
||
|
arg_tracker.update_func_argset(j, diff_j | OrderedSet([com_func_number]))
|
||
|
changed.add(j)
|
||
|
|
||
|
for k in arg_tracker.get_subset_candidates(
|
||
|
com_args, common_arg_candidates):
|
||
|
diff_k = arg_tracker.func_to_argset[k].difference(com_args)
|
||
|
arg_tracker.update_func_argset(k, diff_k | OrderedSet([com_func_number]))
|
||
|
changed.add(k)
|
||
|
|
||
|
if i in changed:
|
||
|
opt_subs[funcs[i]] = Unevaluated(func_class,
|
||
|
arg_tracker.get_args_in_value_order(arg_tracker.func_to_argset[i]))
|
||
|
|
||
|
arg_tracker.stop_arg_tracking(i)
|
||
|
|
||
|
|
||
|
def opt_cse(exprs, order='canonical'):
|
||
|
"""Find optimization opportunities in Adds, Muls, Pows and negative
|
||
|
coefficient Muls.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
exprs : list of SymPy expressions
|
||
|
The expressions to optimize.
|
||
|
order : string, 'none' or 'canonical'
|
||
|
The order by which Mul and Add arguments are processed. For large
|
||
|
expressions where speed is a concern, use the setting order='none'.
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
opt_subs : dictionary of expression substitutions
|
||
|
The expression substitutions which can be useful to optimize CSE.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.simplify.cse_main import opt_cse
|
||
|
>>> from sympy.abc import x
|
||
|
>>> opt_subs = opt_cse([x**-2])
|
||
|
>>> k, v = list(opt_subs.keys())[0], list(opt_subs.values())[0]
|
||
|
>>> print((k, v.as_unevaluated_basic()))
|
||
|
(x**(-2), 1/(x**2))
|
||
|
"""
|
||
|
opt_subs = {}
|
||
|
|
||
|
adds = OrderedSet()
|
||
|
muls = OrderedSet()
|
||
|
|
||
|
seen_subexp = set()
|
||
|
collapsible_subexp = set()
|
||
|
|
||
|
def _find_opts(expr):
|
||
|
|
||
|
if not isinstance(expr, (Basic, Unevaluated)):
|
||
|
return
|
||
|
|
||
|
if expr.is_Atom or expr.is_Order:
|
||
|
return
|
||
|
|
||
|
if iterable(expr):
|
||
|
list(map(_find_opts, expr))
|
||
|
return
|
||
|
|
||
|
if expr in seen_subexp:
|
||
|
return expr
|
||
|
seen_subexp.add(expr)
|
||
|
|
||
|
list(map(_find_opts, expr.args))
|
||
|
|
||
|
if not isinstance(expr, MatrixExpr) and expr.could_extract_minus_sign():
|
||
|
# XXX -expr does not always work rigorously for some expressions
|
||
|
# containing UnevaluatedExpr.
|
||
|
# https://github.com/sympy/sympy/issues/24818
|
||
|
if isinstance(expr, Add):
|
||
|
neg_expr = Add(*(-i for i in expr.args))
|
||
|
else:
|
||
|
neg_expr = -expr
|
||
|
|
||
|
if not neg_expr.is_Atom:
|
||
|
opt_subs[expr] = Unevaluated(Mul, (S.NegativeOne, neg_expr))
|
||
|
seen_subexp.add(neg_expr)
|
||
|
expr = neg_expr
|
||
|
|
||
|
if isinstance(expr, (Mul, MatMul)):
|
||
|
if len(expr.args) == 1:
|
||
|
collapsible_subexp.add(expr)
|
||
|
else:
|
||
|
muls.add(expr)
|
||
|
|
||
|
elif isinstance(expr, (Add, MatAdd)):
|
||
|
if len(expr.args) == 1:
|
||
|
collapsible_subexp.add(expr)
|
||
|
else:
|
||
|
adds.add(expr)
|
||
|
|
||
|
elif isinstance(expr, Inverse):
|
||
|
# Do not want to treat `Inverse` as a `MatPow`
|
||
|
pass
|
||
|
|
||
|
elif isinstance(expr, (Pow, MatPow)):
|
||
|
base, exp = expr.base, expr.exp
|
||
|
if exp.could_extract_minus_sign():
|
||
|
opt_subs[expr] = Unevaluated(Pow, (Pow(base, -exp), -1))
|
||
|
|
||
|
for e in exprs:
|
||
|
if isinstance(e, (Basic, Unevaluated)):
|
||
|
_find_opts(e)
|
||
|
|
||
|
# Handle collapsing of multinary operations with single arguments
|
||
|
edges = [(s, s.args[0]) for s in collapsible_subexp
|
||
|
if s.args[0] in collapsible_subexp]
|
||
|
for e in reversed(topological_sort((collapsible_subexp, edges))):
|
||
|
opt_subs[e] = opt_subs.get(e.args[0], e.args[0])
|
||
|
|
||
|
# split muls into commutative
|
||
|
commutative_muls = OrderedSet()
|
||
|
for m in muls:
|
||
|
c, nc = m.args_cnc(cset=False)
|
||
|
if c:
|
||
|
c_mul = m.func(*c)
|
||
|
if nc:
|
||
|
if c_mul == 1:
|
||
|
new_obj = m.func(*nc)
|
||
|
else:
|
||
|
if isinstance(m, MatMul):
|
||
|
new_obj = m.func(c_mul, *nc, evaluate=False)
|
||
|
else:
|
||
|
new_obj = m.func(c_mul, m.func(*nc), evaluate=False)
|
||
|
opt_subs[m] = new_obj
|
||
|
if len(c) > 1:
|
||
|
commutative_muls.add(c_mul)
|
||
|
|
||
|
match_common_args(Add, adds, opt_subs)
|
||
|
match_common_args(Mul, commutative_muls, opt_subs)
|
||
|
|
||
|
return opt_subs
|
||
|
|
||
|
|
||
|
def tree_cse(exprs, symbols, opt_subs=None, order='canonical', ignore=()):
|
||
|
"""Perform raw CSE on expression tree, taking opt_subs into account.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
exprs : list of SymPy expressions
|
||
|
The expressions to reduce.
|
||
|
symbols : infinite iterator yielding unique Symbols
|
||
|
The symbols used to label the common subexpressions which are pulled
|
||
|
out.
|
||
|
opt_subs : dictionary of expression substitutions
|
||
|
The expressions to be substituted before any CSE action is performed.
|
||
|
order : string, 'none' or 'canonical'
|
||
|
The order by which Mul and Add arguments are processed. For large
|
||
|
expressions where speed is a concern, use the setting order='none'.
|
||
|
ignore : iterable of Symbols
|
||
|
Substitutions containing any Symbol from ``ignore`` will be ignored.
|
||
|
"""
|
||
|
if opt_subs is None:
|
||
|
opt_subs = {}
|
||
|
|
||
|
## Find repeated sub-expressions
|
||
|
|
||
|
to_eliminate = set()
|
||
|
|
||
|
seen_subexp = set()
|
||
|
excluded_symbols = set()
|
||
|
|
||
|
def _find_repeated(expr):
|
||
|
if not isinstance(expr, (Basic, Unevaluated)):
|
||
|
return
|
||
|
|
||
|
if isinstance(expr, RootOf):
|
||
|
return
|
||
|
|
||
|
if isinstance(expr, Basic) and (
|
||
|
expr.is_Atom or
|
||
|
expr.is_Order or
|
||
|
isinstance(expr, (MatrixSymbol, MatrixElement))):
|
||
|
if expr.is_Symbol:
|
||
|
excluded_symbols.add(expr)
|
||
|
return
|
||
|
|
||
|
if iterable(expr):
|
||
|
args = expr
|
||
|
|
||
|
else:
|
||
|
if expr in seen_subexp:
|
||
|
for ign in ignore:
|
||
|
if ign in expr.free_symbols:
|
||
|
break
|
||
|
else:
|
||
|
to_eliminate.add(expr)
|
||
|
return
|
||
|
|
||
|
seen_subexp.add(expr)
|
||
|
|
||
|
if expr in opt_subs:
|
||
|
expr = opt_subs[expr]
|
||
|
|
||
|
args = expr.args
|
||
|
|
||
|
list(map(_find_repeated, args))
|
||
|
|
||
|
for e in exprs:
|
||
|
if isinstance(e, Basic):
|
||
|
_find_repeated(e)
|
||
|
|
||
|
## Rebuild tree
|
||
|
|
||
|
# Remove symbols from the generator that conflict with names in the expressions.
|
||
|
symbols = (symbol for symbol in symbols if symbol not in excluded_symbols)
|
||
|
|
||
|
replacements = []
|
||
|
|
||
|
subs = {}
|
||
|
|
||
|
def _rebuild(expr):
|
||
|
if not isinstance(expr, (Basic, Unevaluated)):
|
||
|
return expr
|
||
|
|
||
|
if not expr.args:
|
||
|
return expr
|
||
|
|
||
|
if iterable(expr):
|
||
|
new_args = [_rebuild(arg) for arg in expr.args]
|
||
|
return expr.func(*new_args)
|
||
|
|
||
|
if expr in subs:
|
||
|
return subs[expr]
|
||
|
|
||
|
orig_expr = expr
|
||
|
if expr in opt_subs:
|
||
|
expr = opt_subs[expr]
|
||
|
|
||
|
# If enabled, parse Muls and Adds arguments by order to ensure
|
||
|
# replacement order independent from hashes
|
||
|
if order != 'none':
|
||
|
if isinstance(expr, (Mul, MatMul)):
|
||
|
c, nc = expr.args_cnc()
|
||
|
if c == [1]:
|
||
|
args = nc
|
||
|
else:
|
||
|
args = list(ordered(c)) + nc
|
||
|
elif isinstance(expr, (Add, MatAdd)):
|
||
|
args = list(ordered(expr.args))
|
||
|
else:
|
||
|
args = expr.args
|
||
|
else:
|
||
|
args = expr.args
|
||
|
|
||
|
new_args = list(map(_rebuild, args))
|
||
|
if isinstance(expr, Unevaluated) or new_args != args:
|
||
|
new_expr = expr.func(*new_args)
|
||
|
else:
|
||
|
new_expr = expr
|
||
|
|
||
|
if orig_expr in to_eliminate:
|
||
|
try:
|
||
|
sym = next(symbols)
|
||
|
except StopIteration:
|
||
|
raise ValueError("Symbols iterator ran out of symbols.")
|
||
|
|
||
|
if isinstance(orig_expr, MatrixExpr):
|
||
|
sym = MatrixSymbol(sym.name, orig_expr.rows,
|
||
|
orig_expr.cols)
|
||
|
|
||
|
subs[orig_expr] = sym
|
||
|
replacements.append((sym, new_expr))
|
||
|
return sym
|
||
|
|
||
|
else:
|
||
|
return new_expr
|
||
|
|
||
|
reduced_exprs = []
|
||
|
for e in exprs:
|
||
|
if isinstance(e, Basic):
|
||
|
reduced_e = _rebuild(e)
|
||
|
else:
|
||
|
reduced_e = e
|
||
|
reduced_exprs.append(reduced_e)
|
||
|
return replacements, reduced_exprs
|
||
|
|
||
|
|
||
|
def cse(exprs, symbols=None, optimizations=None, postprocess=None,
|
||
|
order='canonical', ignore=(), list=True):
|
||
|
""" Perform common subexpression elimination on an expression.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
exprs : list of SymPy expressions, or a single SymPy expression
|
||
|
The expressions to reduce.
|
||
|
symbols : infinite iterator yielding unique Symbols
|
||
|
The symbols used to label the common subexpressions which are pulled
|
||
|
out. The ``numbered_symbols`` generator is useful. The default is a
|
||
|
stream of symbols of the form "x0", "x1", etc. This must be an
|
||
|
infinite iterator.
|
||
|
optimizations : list of (callable, callable) pairs
|
||
|
The (preprocessor, postprocessor) pairs of external optimization
|
||
|
functions. Optionally 'basic' can be passed for a set of predefined
|
||
|
basic optimizations. Such 'basic' optimizations were used by default
|
||
|
in old implementation, however they can be really slow on larger
|
||
|
expressions. Now, no pre or post optimizations are made by default.
|
||
|
postprocess : a function which accepts the two return values of cse and
|
||
|
returns the desired form of output from cse, e.g. if you want the
|
||
|
replacements reversed the function might be the following lambda:
|
||
|
lambda r, e: return reversed(r), e
|
||
|
order : string, 'none' or 'canonical'
|
||
|
The order by which Mul and Add arguments are processed. If set to
|
||
|
'canonical', arguments will be canonically ordered. If set to 'none',
|
||
|
ordering will be faster but dependent on expressions hashes, thus
|
||
|
machine dependent and variable. For large expressions where speed is a
|
||
|
concern, use the setting order='none'.
|
||
|
ignore : iterable of Symbols
|
||
|
Substitutions containing any Symbol from ``ignore`` will be ignored.
|
||
|
list : bool, (default True)
|
||
|
Returns expression in list or else with same type as input (when False).
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
replacements : list of (Symbol, expression) pairs
|
||
|
All of the common subexpressions that were replaced. Subexpressions
|
||
|
earlier in this list might show up in subexpressions later in this
|
||
|
list.
|
||
|
reduced_exprs : list of SymPy expressions
|
||
|
The reduced expressions with all of the replacements above.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy import cse, SparseMatrix
|
||
|
>>> from sympy.abc import x, y, z, w
|
||
|
>>> cse(((w + x + y + z)*(w + y + z))/(w + x)**3)
|
||
|
([(x0, y + z), (x1, w + x)], [(w + x0)*(x0 + x1)/x1**3])
|
||
|
|
||
|
|
||
|
List of expressions with recursive substitutions:
|
||
|
|
||
|
>>> m = SparseMatrix([x + y, x + y + z])
|
||
|
>>> cse([(x+y)**2, x + y + z, y + z, x + z + y, m])
|
||
|
([(x0, x + y), (x1, x0 + z)], [x0**2, x1, y + z, x1, Matrix([
|
||
|
[x0],
|
||
|
[x1]])])
|
||
|
|
||
|
Note: the type and mutability of input matrices is retained.
|
||
|
|
||
|
>>> isinstance(_[1][-1], SparseMatrix)
|
||
|
True
|
||
|
|
||
|
The user may disallow substitutions containing certain symbols:
|
||
|
|
||
|
>>> cse([y**2*(x + 1), 3*y**2*(x + 1)], ignore=(y,))
|
||
|
([(x0, x + 1)], [x0*y**2, 3*x0*y**2])
|
||
|
|
||
|
The default return value for the reduced expression(s) is a list, even if there is only
|
||
|
one expression. The `list` flag preserves the type of the input in the output:
|
||
|
|
||
|
>>> cse(x)
|
||
|
([], [x])
|
||
|
>>> cse(x, list=False)
|
||
|
([], x)
|
||
|
"""
|
||
|
if not list:
|
||
|
return _cse_homogeneous(exprs,
|
||
|
symbols=symbols, optimizations=optimizations,
|
||
|
postprocess=postprocess, order=order, ignore=ignore)
|
||
|
|
||
|
if isinstance(exprs, (int, float)):
|
||
|
exprs = sympify(exprs)
|
||
|
|
||
|
# Handle the case if just one expression was passed.
|
||
|
if isinstance(exprs, (Basic, MatrixBase)):
|
||
|
exprs = [exprs]
|
||
|
|
||
|
copy = exprs
|
||
|
temp = []
|
||
|
for e in exprs:
|
||
|
if isinstance(e, (Matrix, ImmutableMatrix)):
|
||
|
temp.append(Tuple(*e.flat()))
|
||
|
elif isinstance(e, (SparseMatrix, ImmutableSparseMatrix)):
|
||
|
temp.append(Tuple(*e.todok().items()))
|
||
|
else:
|
||
|
temp.append(e)
|
||
|
exprs = temp
|
||
|
del temp
|
||
|
|
||
|
if optimizations is None:
|
||
|
optimizations = []
|
||
|
elif optimizations == 'basic':
|
||
|
optimizations = basic_optimizations
|
||
|
|
||
|
# Preprocess the expressions to give us better optimization opportunities.
|
||
|
reduced_exprs = [preprocess_for_cse(e, optimizations) for e in exprs]
|
||
|
|
||
|
if symbols is None:
|
||
|
symbols = numbered_symbols(cls=Symbol)
|
||
|
else:
|
||
|
# In case we get passed an iterable with an __iter__ method instead of
|
||
|
# an actual iterator.
|
||
|
symbols = iter(symbols)
|
||
|
|
||
|
# Find other optimization opportunities.
|
||
|
opt_subs = opt_cse(reduced_exprs, order)
|
||
|
|
||
|
# Main CSE algorithm.
|
||
|
replacements, reduced_exprs = tree_cse(reduced_exprs, symbols, opt_subs,
|
||
|
order, ignore)
|
||
|
|
||
|
# Postprocess the expressions to return the expressions to canonical form.
|
||
|
exprs = copy
|
||
|
for i, (sym, subtree) in enumerate(replacements):
|
||
|
subtree = postprocess_for_cse(subtree, optimizations)
|
||
|
replacements[i] = (sym, subtree)
|
||
|
reduced_exprs = [postprocess_for_cse(e, optimizations)
|
||
|
for e in reduced_exprs]
|
||
|
|
||
|
# Get the matrices back
|
||
|
for i, e in enumerate(exprs):
|
||
|
if isinstance(e, (Matrix, ImmutableMatrix)):
|
||
|
reduced_exprs[i] = Matrix(e.rows, e.cols, reduced_exprs[i])
|
||
|
if isinstance(e, ImmutableMatrix):
|
||
|
reduced_exprs[i] = reduced_exprs[i].as_immutable()
|
||
|
elif isinstance(e, (SparseMatrix, ImmutableSparseMatrix)):
|
||
|
m = SparseMatrix(e.rows, e.cols, {})
|
||
|
for k, v in reduced_exprs[i]:
|
||
|
m[k] = v
|
||
|
if isinstance(e, ImmutableSparseMatrix):
|
||
|
m = m.as_immutable()
|
||
|
reduced_exprs[i] = m
|
||
|
|
||
|
if postprocess is None:
|
||
|
return replacements, reduced_exprs
|
||
|
|
||
|
return postprocess(replacements, reduced_exprs)
|
||
|
|
||
|
|
||
|
def _cse_homogeneous(exprs, **kwargs):
|
||
|
"""
|
||
|
Same as ``cse`` but the ``reduced_exprs`` are returned
|
||
|
with the same type as ``exprs`` or a sympified version of the same.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
exprs : an Expr, iterable of Expr or dictionary with Expr values
|
||
|
the expressions in which repeated subexpressions will be identified
|
||
|
kwargs : additional arguments for the ``cse`` function
|
||
|
|
||
|
Returns
|
||
|
=======
|
||
|
|
||
|
replacements : list of (Symbol, expression) pairs
|
||
|
All of the common subexpressions that were replaced. Subexpressions
|
||
|
earlier in this list might show up in subexpressions later in this
|
||
|
list.
|
||
|
reduced_exprs : list of SymPy expressions
|
||
|
The reduced expressions with all of the replacements above.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.simplify.cse_main import cse
|
||
|
>>> from sympy import cos, Tuple, Matrix
|
||
|
>>> from sympy.abc import x
|
||
|
>>> output = lambda x: type(cse(x, list=False)[1])
|
||
|
>>> output(1)
|
||
|
<class 'sympy.core.numbers.One'>
|
||
|
>>> output('cos(x)')
|
||
|
<class 'str'>
|
||
|
>>> output(cos(x))
|
||
|
cos
|
||
|
>>> output(Tuple(1, x))
|
||
|
<class 'sympy.core.containers.Tuple'>
|
||
|
>>> output(Matrix([[1,0], [0,1]]))
|
||
|
<class 'sympy.matrices.dense.MutableDenseMatrix'>
|
||
|
>>> output([1, x])
|
||
|
<class 'list'>
|
||
|
>>> output((1, x))
|
||
|
<class 'tuple'>
|
||
|
>>> output({1, x})
|
||
|
<class 'set'>
|
||
|
"""
|
||
|
if isinstance(exprs, str):
|
||
|
replacements, reduced_exprs = _cse_homogeneous(
|
||
|
sympify(exprs), **kwargs)
|
||
|
return replacements, repr(reduced_exprs)
|
||
|
if isinstance(exprs, (list, tuple, set)):
|
||
|
replacements, reduced_exprs = cse(exprs, **kwargs)
|
||
|
return replacements, type(exprs)(reduced_exprs)
|
||
|
if isinstance(exprs, dict):
|
||
|
keys = list(exprs.keys()) # In order to guarantee the order of the elements.
|
||
|
replacements, values = cse([exprs[k] for k in keys], **kwargs)
|
||
|
reduced_exprs = dict(zip(keys, values))
|
||
|
return replacements, reduced_exprs
|
||
|
|
||
|
try:
|
||
|
replacements, (reduced_exprs,) = cse(exprs, **kwargs)
|
||
|
except TypeError: # For example 'mpf' objects
|
||
|
return [], exprs
|
||
|
else:
|
||
|
return replacements, reduced_exprs
|