You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
469 lines
18 KiB
469 lines
18 KiB
5 months ago
|
from sympy.core.add import Add
|
||
|
from sympy.core.mul import Mul
|
||
|
from sympy.core.numbers import (I, Rational, pi)
|
||
|
from sympy.core.singleton import S
|
||
|
from sympy.core.symbol import (Dummy, Symbol, symbols)
|
||
|
from sympy.functions.elementary.hyperbolic import (cosh, coth, csch, sech, sinh, tanh)
|
||
|
from sympy.functions.elementary.miscellaneous import (root, sqrt)
|
||
|
from sympy.functions.elementary.trigonometric import (cos, cot, csc, sec, sin, tan)
|
||
|
from sympy.simplify.powsimp import powsimp
|
||
|
from sympy.simplify.fu import (
|
||
|
L, TR1, TR10, TR10i, TR11, _TR11, TR12, TR12i, TR13, TR14, TR15, TR16,
|
||
|
TR111, TR2, TR2i, TR3, TR5, TR6, TR7, TR8, TR9, TRmorrie, _TR56 as T,
|
||
|
TRpower, hyper_as_trig, fu, process_common_addends, trig_split,
|
||
|
as_f_sign_1)
|
||
|
from sympy.core.random import verify_numerically
|
||
|
from sympy.abc import a, b, c, x, y, z
|
||
|
|
||
|
|
||
|
def test_TR1():
|
||
|
assert TR1(2*csc(x) + sec(x)) == 1/cos(x) + 2/sin(x)
|
||
|
|
||
|
|
||
|
def test_TR2():
|
||
|
assert TR2(tan(x)) == sin(x)/cos(x)
|
||
|
assert TR2(cot(x)) == cos(x)/sin(x)
|
||
|
assert TR2(tan(tan(x) - sin(x)/cos(x))) == 0
|
||
|
|
||
|
|
||
|
def test_TR2i():
|
||
|
# just a reminder that ratios of powers only simplify if both
|
||
|
# numerator and denominator satisfy the condition that each
|
||
|
# has a positive base or an integer exponent; e.g. the following,
|
||
|
# at y=-1, x=1/2 gives sqrt(2)*I != -sqrt(2)*I
|
||
|
assert powsimp(2**x/y**x) != (2/y)**x
|
||
|
|
||
|
assert TR2i(sin(x)/cos(x)) == tan(x)
|
||
|
assert TR2i(sin(x)*sin(y)/cos(x)) == tan(x)*sin(y)
|
||
|
assert TR2i(1/(sin(x)/cos(x))) == 1/tan(x)
|
||
|
assert TR2i(1/(sin(x)*sin(y)/cos(x))) == 1/tan(x)/sin(y)
|
||
|
assert TR2i(sin(x)/2/(cos(x) + 1)) == sin(x)/(cos(x) + 1)/2
|
||
|
|
||
|
assert TR2i(sin(x)/2/(cos(x) + 1), half=True) == tan(x/2)/2
|
||
|
assert TR2i(sin(1)/(cos(1) + 1), half=True) == tan(S.Half)
|
||
|
assert TR2i(sin(2)/(cos(2) + 1), half=True) == tan(1)
|
||
|
assert TR2i(sin(4)/(cos(4) + 1), half=True) == tan(2)
|
||
|
assert TR2i(sin(5)/(cos(5) + 1), half=True) == tan(5*S.Half)
|
||
|
assert TR2i((cos(1) + 1)/sin(1), half=True) == 1/tan(S.Half)
|
||
|
assert TR2i((cos(2) + 1)/sin(2), half=True) == 1/tan(1)
|
||
|
assert TR2i((cos(4) + 1)/sin(4), half=True) == 1/tan(2)
|
||
|
assert TR2i((cos(5) + 1)/sin(5), half=True) == 1/tan(5*S.Half)
|
||
|
assert TR2i((cos(1) + 1)**(-a)*sin(1)**a, half=True) == tan(S.Half)**a
|
||
|
assert TR2i((cos(2) + 1)**(-a)*sin(2)**a, half=True) == tan(1)**a
|
||
|
assert TR2i((cos(4) + 1)**(-a)*sin(4)**a, half=True) == (cos(4) + 1)**(-a)*sin(4)**a
|
||
|
assert TR2i((cos(5) + 1)**(-a)*sin(5)**a, half=True) == (cos(5) + 1)**(-a)*sin(5)**a
|
||
|
assert TR2i((cos(1) + 1)**a*sin(1)**(-a), half=True) == tan(S.Half)**(-a)
|
||
|
assert TR2i((cos(2) + 1)**a*sin(2)**(-a), half=True) == tan(1)**(-a)
|
||
|
assert TR2i((cos(4) + 1)**a*sin(4)**(-a), half=True) == (cos(4) + 1)**a*sin(4)**(-a)
|
||
|
assert TR2i((cos(5) + 1)**a*sin(5)**(-a), half=True) == (cos(5) + 1)**a*sin(5)**(-a)
|
||
|
|
||
|
i = symbols('i', integer=True)
|
||
|
assert TR2i(((cos(5) + 1)**i*sin(5)**(-i)), half=True) == tan(5*S.Half)**(-i)
|
||
|
assert TR2i(1/((cos(5) + 1)**i*sin(5)**(-i)), half=True) == tan(5*S.Half)**i
|
||
|
|
||
|
|
||
|
def test_TR3():
|
||
|
assert TR3(cos(y - x*(y - x))) == cos(x*(x - y) + y)
|
||
|
assert cos(pi/2 + x) == -sin(x)
|
||
|
assert cos(30*pi/2 + x) == -cos(x)
|
||
|
|
||
|
for f in (cos, sin, tan, cot, csc, sec):
|
||
|
i = f(pi*Rational(3, 7))
|
||
|
j = TR3(i)
|
||
|
assert verify_numerically(i, j) and i.func != j.func
|
||
|
|
||
|
|
||
|
def test__TR56():
|
||
|
h = lambda x: 1 - x
|
||
|
assert T(sin(x)**3, sin, cos, h, 4, False) == sin(x)*(-cos(x)**2 + 1)
|
||
|
assert T(sin(x)**10, sin, cos, h, 4, False) == sin(x)**10
|
||
|
assert T(sin(x)**6, sin, cos, h, 6, False) == (-cos(x)**2 + 1)**3
|
||
|
assert T(sin(x)**6, sin, cos, h, 6, True) == sin(x)**6
|
||
|
assert T(sin(x)**8, sin, cos, h, 10, True) == (-cos(x)**2 + 1)**4
|
||
|
|
||
|
# issue 17137
|
||
|
assert T(sin(x)**I, sin, cos, h, 4, True) == sin(x)**I
|
||
|
assert T(sin(x)**(2*I + 1), sin, cos, h, 4, True) == sin(x)**(2*I + 1)
|
||
|
|
||
|
|
||
|
def test_TR5():
|
||
|
assert TR5(sin(x)**2) == -cos(x)**2 + 1
|
||
|
assert TR5(sin(x)**-2) == sin(x)**(-2)
|
||
|
assert TR5(sin(x)**4) == (-cos(x)**2 + 1)**2
|
||
|
|
||
|
|
||
|
def test_TR6():
|
||
|
assert TR6(cos(x)**2) == -sin(x)**2 + 1
|
||
|
assert TR6(cos(x)**-2) == cos(x)**(-2)
|
||
|
assert TR6(cos(x)**4) == (-sin(x)**2 + 1)**2
|
||
|
|
||
|
|
||
|
def test_TR7():
|
||
|
assert TR7(cos(x)**2) == cos(2*x)/2 + S.Half
|
||
|
assert TR7(cos(x)**2 + 1) == cos(2*x)/2 + Rational(3, 2)
|
||
|
|
||
|
|
||
|
def test_TR8():
|
||
|
assert TR8(cos(2)*cos(3)) == cos(5)/2 + cos(1)/2
|
||
|
assert TR8(cos(2)*sin(3)) == sin(5)/2 + sin(1)/2
|
||
|
assert TR8(sin(2)*sin(3)) == -cos(5)/2 + cos(1)/2
|
||
|
assert TR8(sin(1)*sin(2)*sin(3)) == sin(4)/4 - sin(6)/4 + sin(2)/4
|
||
|
assert TR8(cos(2)*cos(3)*cos(4)*cos(5)) == \
|
||
|
cos(4)/4 + cos(10)/8 + cos(2)/8 + cos(8)/8 + cos(14)/8 + \
|
||
|
cos(6)/8 + Rational(1, 8)
|
||
|
assert TR8(cos(2)*cos(3)*cos(4)*cos(5)*cos(6)) == \
|
||
|
cos(10)/8 + cos(4)/8 + 3*cos(2)/16 + cos(16)/16 + cos(8)/8 + \
|
||
|
cos(14)/16 + cos(20)/16 + cos(12)/16 + Rational(1, 16) + cos(6)/8
|
||
|
assert TR8(sin(pi*Rational(3, 7))**2*cos(pi*Rational(3, 7))**2/(16*sin(pi/7)**2)) == Rational(1, 64)
|
||
|
|
||
|
def test_TR9():
|
||
|
a = S.Half
|
||
|
b = 3*a
|
||
|
assert TR9(a) == a
|
||
|
assert TR9(cos(1) + cos(2)) == 2*cos(a)*cos(b)
|
||
|
assert TR9(cos(1) - cos(2)) == 2*sin(a)*sin(b)
|
||
|
assert TR9(sin(1) - sin(2)) == -2*sin(a)*cos(b)
|
||
|
assert TR9(sin(1) + sin(2)) == 2*sin(b)*cos(a)
|
||
|
assert TR9(cos(1) + 2*sin(1) + 2*sin(2)) == cos(1) + 4*sin(b)*cos(a)
|
||
|
assert TR9(cos(4) + cos(2) + 2*cos(1)*cos(3)) == 4*cos(1)*cos(3)
|
||
|
assert TR9((cos(4) + cos(2))/cos(3)/2 + cos(3)) == 2*cos(1)*cos(2)
|
||
|
assert TR9(cos(3) + cos(4) + cos(5) + cos(6)) == \
|
||
|
4*cos(S.Half)*cos(1)*cos(Rational(9, 2))
|
||
|
assert TR9(cos(3) + cos(3)*cos(2)) == cos(3) + cos(2)*cos(3)
|
||
|
assert TR9(-cos(y) + cos(x*y)) == -2*sin(x*y/2 - y/2)*sin(x*y/2 + y/2)
|
||
|
assert TR9(-sin(y) + sin(x*y)) == 2*sin(x*y/2 - y/2)*cos(x*y/2 + y/2)
|
||
|
c = cos(x)
|
||
|
s = sin(x)
|
||
|
for si in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
|
||
|
for a in ((c, s), (s, c), (cos(x), cos(x*y)), (sin(x), sin(x*y))):
|
||
|
args = zip(si, a)
|
||
|
ex = Add(*[Mul(*ai) for ai in args])
|
||
|
t = TR9(ex)
|
||
|
assert not (a[0].func == a[1].func and (
|
||
|
not verify_numerically(ex, t.expand(trig=True)) or t.is_Add)
|
||
|
or a[1].func != a[0].func and ex != t)
|
||
|
|
||
|
|
||
|
def test_TR10():
|
||
|
assert TR10(cos(a + b)) == -sin(a)*sin(b) + cos(a)*cos(b)
|
||
|
assert TR10(sin(a + b)) == sin(a)*cos(b) + sin(b)*cos(a)
|
||
|
assert TR10(sin(a + b + c)) == \
|
||
|
(-sin(a)*sin(b) + cos(a)*cos(b))*sin(c) + \
|
||
|
(sin(a)*cos(b) + sin(b)*cos(a))*cos(c)
|
||
|
assert TR10(cos(a + b + c)) == \
|
||
|
(-sin(a)*sin(b) + cos(a)*cos(b))*cos(c) - \
|
||
|
(sin(a)*cos(b) + sin(b)*cos(a))*sin(c)
|
||
|
|
||
|
|
||
|
def test_TR10i():
|
||
|
assert TR10i(cos(1)*cos(3) + sin(1)*sin(3)) == cos(2)
|
||
|
assert TR10i(cos(1)*cos(3) - sin(1)*sin(3)) == cos(4)
|
||
|
assert TR10i(cos(1)*sin(3) - sin(1)*cos(3)) == sin(2)
|
||
|
assert TR10i(cos(1)*sin(3) + sin(1)*cos(3)) == sin(4)
|
||
|
assert TR10i(cos(1)*sin(3) + sin(1)*cos(3) + 7) == sin(4) + 7
|
||
|
assert TR10i(cos(1)*sin(3) + sin(1)*cos(3) + cos(3)) == cos(3) + sin(4)
|
||
|
assert TR10i(2*cos(1)*sin(3) + 2*sin(1)*cos(3) + cos(3)) == \
|
||
|
2*sin(4) + cos(3)
|
||
|
assert TR10i(cos(2)*cos(3) + sin(2)*(cos(1)*sin(2) + cos(2)*sin(1))) == \
|
||
|
cos(1)
|
||
|
eq = (cos(2)*cos(3) + sin(2)*(
|
||
|
cos(1)*sin(2) + cos(2)*sin(1)))*cos(5) + sin(1)*sin(5)
|
||
|
assert TR10i(eq) == TR10i(eq.expand()) == cos(4)
|
||
|
assert TR10i(sqrt(2)*cos(x)*x + sqrt(6)*sin(x)*x) == \
|
||
|
2*sqrt(2)*x*sin(x + pi/6)
|
||
|
assert TR10i(cos(x)/sqrt(6) + sin(x)/sqrt(2) +
|
||
|
cos(x)/sqrt(6)/3 + sin(x)/sqrt(2)/3) == 4*sqrt(6)*sin(x + pi/6)/9
|
||
|
assert TR10i(cos(x)/sqrt(6) + sin(x)/sqrt(2) +
|
||
|
cos(y)/sqrt(6)/3 + sin(y)/sqrt(2)/3) == \
|
||
|
sqrt(6)*sin(x + pi/6)/3 + sqrt(6)*sin(y + pi/6)/9
|
||
|
assert TR10i(cos(x) + sqrt(3)*sin(x) + 2*sqrt(3)*cos(x + pi/6)) == 4*cos(x)
|
||
|
assert TR10i(cos(x) + sqrt(3)*sin(x) +
|
||
|
2*sqrt(3)*cos(x + pi/6) + 4*sin(x)) == 4*sqrt(2)*sin(x + pi/4)
|
||
|
assert TR10i(cos(2)*sin(3) + sin(2)*cos(4)) == \
|
||
|
sin(2)*cos(4) + sin(3)*cos(2)
|
||
|
|
||
|
A = Symbol('A', commutative=False)
|
||
|
assert TR10i(sqrt(2)*cos(x)*A + sqrt(6)*sin(x)*A) == \
|
||
|
2*sqrt(2)*sin(x + pi/6)*A
|
||
|
|
||
|
|
||
|
c = cos(x)
|
||
|
s = sin(x)
|
||
|
h = sin(y)
|
||
|
r = cos(y)
|
||
|
for si in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
|
||
|
for argsi in ((c*r, s*h), (c*h, s*r)): # explicit 2-args
|
||
|
args = zip(si, argsi)
|
||
|
ex = Add(*[Mul(*ai) for ai in args])
|
||
|
t = TR10i(ex)
|
||
|
assert not (ex - t.expand(trig=True) or t.is_Add)
|
||
|
|
||
|
c = cos(x)
|
||
|
s = sin(x)
|
||
|
h = sin(pi/6)
|
||
|
r = cos(pi/6)
|
||
|
for si in ((1, 1), (1, -1), (-1, 1), (-1, -1)):
|
||
|
for argsi in ((c*r, s*h), (c*h, s*r)): # induced
|
||
|
args = zip(si, argsi)
|
||
|
ex = Add(*[Mul(*ai) for ai in args])
|
||
|
t = TR10i(ex)
|
||
|
assert not (ex - t.expand(trig=True) or t.is_Add)
|
||
|
|
||
|
|
||
|
def test_TR11():
|
||
|
|
||
|
assert TR11(sin(2*x)) == 2*sin(x)*cos(x)
|
||
|
assert TR11(sin(4*x)) == 4*((-sin(x)**2 + cos(x)**2)*sin(x)*cos(x))
|
||
|
assert TR11(sin(x*Rational(4, 3))) == \
|
||
|
4*((-sin(x/3)**2 + cos(x/3)**2)*sin(x/3)*cos(x/3))
|
||
|
|
||
|
assert TR11(cos(2*x)) == -sin(x)**2 + cos(x)**2
|
||
|
assert TR11(cos(4*x)) == \
|
||
|
(-sin(x)**2 + cos(x)**2)**2 - 4*sin(x)**2*cos(x)**2
|
||
|
|
||
|
assert TR11(cos(2)) == cos(2)
|
||
|
|
||
|
assert TR11(cos(pi*Rational(3, 7)), pi*Rational(2, 7)) == -cos(pi*Rational(2, 7))**2 + sin(pi*Rational(2, 7))**2
|
||
|
assert TR11(cos(4), 2) == -sin(2)**2 + cos(2)**2
|
||
|
assert TR11(cos(6), 2) == cos(6)
|
||
|
assert TR11(sin(x)/cos(x/2), x/2) == 2*sin(x/2)
|
||
|
|
||
|
def test__TR11():
|
||
|
|
||
|
assert _TR11(sin(x/3)*sin(2*x)*sin(x/4)/(cos(x/6)*cos(x/8))) == \
|
||
|
4*sin(x/8)*sin(x/6)*sin(2*x),_TR11(sin(x/3)*sin(2*x)*sin(x/4)/(cos(x/6)*cos(x/8)))
|
||
|
assert _TR11(sin(x/3)/cos(x/6)) == 2*sin(x/6)
|
||
|
|
||
|
assert _TR11(cos(x/6)/sin(x/3)) == 1/(2*sin(x/6))
|
||
|
assert _TR11(sin(2*x)*cos(x/8)/sin(x/4)) == sin(2*x)/(2*sin(x/8)), _TR11(sin(2*x)*cos(x/8)/sin(x/4))
|
||
|
assert _TR11(sin(x)/sin(x/2)) == 2*cos(x/2)
|
||
|
|
||
|
|
||
|
def test_TR12():
|
||
|
assert TR12(tan(x + y)) == (tan(x) + tan(y))/(-tan(x)*tan(y) + 1)
|
||
|
assert TR12(tan(x + y + z)) ==\
|
||
|
(tan(z) + (tan(x) + tan(y))/(-tan(x)*tan(y) + 1))/(
|
||
|
1 - (tan(x) + tan(y))*tan(z)/(-tan(x)*tan(y) + 1))
|
||
|
assert TR12(tan(x*y)) == tan(x*y)
|
||
|
|
||
|
|
||
|
def test_TR13():
|
||
|
assert TR13(tan(3)*tan(2)) == -tan(2)/tan(5) - tan(3)/tan(5) + 1
|
||
|
assert TR13(cot(3)*cot(2)) == 1 + cot(3)*cot(5) + cot(2)*cot(5)
|
||
|
assert TR13(tan(1)*tan(2)*tan(3)) == \
|
||
|
(-tan(2)/tan(5) - tan(3)/tan(5) + 1)*tan(1)
|
||
|
assert TR13(tan(1)*tan(2)*cot(3)) == \
|
||
|
(-tan(2)/tan(3) + 1 - tan(1)/tan(3))*cot(3)
|
||
|
|
||
|
|
||
|
def test_L():
|
||
|
assert L(cos(x) + sin(x)) == 2
|
||
|
|
||
|
|
||
|
def test_fu():
|
||
|
|
||
|
assert fu(sin(50)**2 + cos(50)**2 + sin(pi/6)) == Rational(3, 2)
|
||
|
assert fu(sqrt(6)*cos(x) + sqrt(2)*sin(x)) == 2*sqrt(2)*sin(x + pi/3)
|
||
|
|
||
|
|
||
|
eq = sin(x)**4 - cos(y)**2 + sin(y)**2 + 2*cos(x)**2
|
||
|
assert fu(eq) == cos(x)**4 - 2*cos(y)**2 + 2
|
||
|
|
||
|
assert fu(S.Half - cos(2*x)/2) == sin(x)**2
|
||
|
|
||
|
assert fu(sin(a)*(cos(b) - sin(b)) + cos(a)*(sin(b) + cos(b))) == \
|
||
|
sqrt(2)*sin(a + b + pi/4)
|
||
|
|
||
|
assert fu(sqrt(3)*cos(x)/2 + sin(x)/2) == sin(x + pi/3)
|
||
|
|
||
|
assert fu(1 - sin(2*x)**2/4 - sin(y)**2 - cos(x)**4) == \
|
||
|
-cos(x)**2 + cos(y)**2
|
||
|
|
||
|
assert fu(cos(pi*Rational(4, 9))) == sin(pi/18)
|
||
|
assert fu(cos(pi/9)*cos(pi*Rational(2, 9))*cos(pi*Rational(3, 9))*cos(pi*Rational(4, 9))) == Rational(1, 16)
|
||
|
|
||
|
assert fu(
|
||
|
tan(pi*Rational(7, 18)) + tan(pi*Rational(5, 18)) - sqrt(3)*tan(pi*Rational(5, 18))*tan(pi*Rational(7, 18))) == \
|
||
|
-sqrt(3)
|
||
|
|
||
|
assert fu(tan(1)*tan(2)) == tan(1)*tan(2)
|
||
|
|
||
|
expr = Mul(*[cos(2**i) for i in range(10)])
|
||
|
assert fu(expr) == sin(1024)/(1024*sin(1))
|
||
|
|
||
|
# issue #18059:
|
||
|
assert fu(cos(x) + sqrt(sin(x)**2)) == cos(x) + sqrt(sin(x)**2)
|
||
|
|
||
|
assert fu((-14*sin(x)**3 + 35*sin(x) + 6*sqrt(3)*cos(x)**3 + 9*sqrt(3)*cos(x))/((cos(2*x) + 4))) == \
|
||
|
7*sin(x) + 3*sqrt(3)*cos(x)
|
||
|
|
||
|
|
||
|
def test_objective():
|
||
|
assert fu(sin(x)/cos(x), measure=lambda x: x.count_ops()) == \
|
||
|
tan(x)
|
||
|
assert fu(sin(x)/cos(x), measure=lambda x: -x.count_ops()) == \
|
||
|
sin(x)/cos(x)
|
||
|
|
||
|
|
||
|
def test_process_common_addends():
|
||
|
# this tests that the args are not evaluated as they are given to do
|
||
|
# and that key2 works when key1 is False
|
||
|
do = lambda x: Add(*[i**(i%2) for i in x.args])
|
||
|
assert process_common_addends(Add(*[1, 2, 3, 4], evaluate=False), do,
|
||
|
key2=lambda x: x%2, key1=False) == 1**1 + 3**1 + 2**0 + 4**0
|
||
|
|
||
|
|
||
|
def test_trig_split():
|
||
|
assert trig_split(cos(x), cos(y)) == (1, 1, 1, x, y, True)
|
||
|
assert trig_split(2*cos(x), -2*cos(y)) == (2, 1, -1, x, y, True)
|
||
|
assert trig_split(cos(x)*sin(y), cos(y)*sin(y)) == \
|
||
|
(sin(y), 1, 1, x, y, True)
|
||
|
|
||
|
assert trig_split(cos(x), -sqrt(3)*sin(x), two=True) == \
|
||
|
(2, 1, -1, x, pi/6, False)
|
||
|
assert trig_split(cos(x), sin(x), two=True) == \
|
||
|
(sqrt(2), 1, 1, x, pi/4, False)
|
||
|
assert trig_split(cos(x), -sin(x), two=True) == \
|
||
|
(sqrt(2), 1, -1, x, pi/4, False)
|
||
|
assert trig_split(sqrt(2)*cos(x), -sqrt(6)*sin(x), two=True) == \
|
||
|
(2*sqrt(2), 1, -1, x, pi/6, False)
|
||
|
assert trig_split(-sqrt(6)*cos(x), -sqrt(2)*sin(x), two=True) == \
|
||
|
(-2*sqrt(2), 1, 1, x, pi/3, False)
|
||
|
assert trig_split(cos(x)/sqrt(6), sin(x)/sqrt(2), two=True) == \
|
||
|
(sqrt(6)/3, 1, 1, x, pi/6, False)
|
||
|
assert trig_split(-sqrt(6)*cos(x)*sin(y),
|
||
|
-sqrt(2)*sin(x)*sin(y), two=True) == \
|
||
|
(-2*sqrt(2)*sin(y), 1, 1, x, pi/3, False)
|
||
|
|
||
|
assert trig_split(cos(x), sin(x)) is None
|
||
|
assert trig_split(cos(x), sin(z)) is None
|
||
|
assert trig_split(2*cos(x), -sin(x)) is None
|
||
|
assert trig_split(cos(x), -sqrt(3)*sin(x)) is None
|
||
|
assert trig_split(cos(x)*cos(y), sin(x)*sin(z)) is None
|
||
|
assert trig_split(cos(x)*cos(y), sin(x)*sin(y)) is None
|
||
|
assert trig_split(-sqrt(6)*cos(x), sqrt(2)*sin(x)*sin(y), two=True) is \
|
||
|
None
|
||
|
|
||
|
assert trig_split(sqrt(3)*sqrt(x), cos(3), two=True) is None
|
||
|
assert trig_split(sqrt(3)*root(x, 3), sin(3)*cos(2), two=True) is None
|
||
|
assert trig_split(cos(5)*cos(6), cos(7)*sin(5), two=True) is None
|
||
|
|
||
|
|
||
|
def test_TRmorrie():
|
||
|
assert TRmorrie(7*Mul(*[cos(i) for i in range(10)])) == \
|
||
|
7*sin(12)*sin(16)*cos(5)*cos(7)*cos(9)/(64*sin(1)*sin(3))
|
||
|
assert TRmorrie(x) == x
|
||
|
assert TRmorrie(2*x) == 2*x
|
||
|
e = cos(pi/7)*cos(pi*Rational(2, 7))*cos(pi*Rational(4, 7))
|
||
|
assert TR8(TRmorrie(e)) == Rational(-1, 8)
|
||
|
e = Mul(*[cos(2**i*pi/17) for i in range(1, 17)])
|
||
|
assert TR8(TR3(TRmorrie(e))) == Rational(1, 65536)
|
||
|
# issue 17063
|
||
|
eq = cos(x)/cos(x/2)
|
||
|
assert TRmorrie(eq) == eq
|
||
|
# issue #20430
|
||
|
eq = cos(x/2)*sin(x/2)*cos(x)**3
|
||
|
assert TRmorrie(eq) == sin(2*x)*cos(x)**2/4
|
||
|
|
||
|
|
||
|
def test_TRpower():
|
||
|
assert TRpower(1/sin(x)**2) == 1/sin(x)**2
|
||
|
assert TRpower(cos(x)**3*sin(x/2)**4) == \
|
||
|
(3*cos(x)/4 + cos(3*x)/4)*(-cos(x)/2 + cos(2*x)/8 + Rational(3, 8))
|
||
|
for k in range(2, 8):
|
||
|
assert verify_numerically(sin(x)**k, TRpower(sin(x)**k))
|
||
|
assert verify_numerically(cos(x)**k, TRpower(cos(x)**k))
|
||
|
|
||
|
|
||
|
def test_hyper_as_trig():
|
||
|
from sympy.simplify.fu import _osborne, _osbornei
|
||
|
|
||
|
eq = sinh(x)**2 + cosh(x)**2
|
||
|
t, f = hyper_as_trig(eq)
|
||
|
assert f(fu(t)) == cosh(2*x)
|
||
|
e, f = hyper_as_trig(tanh(x + y))
|
||
|
assert f(TR12(e)) == (tanh(x) + tanh(y))/(tanh(x)*tanh(y) + 1)
|
||
|
|
||
|
d = Dummy()
|
||
|
assert _osborne(sinh(x), d) == I*sin(x*d)
|
||
|
assert _osborne(tanh(x), d) == I*tan(x*d)
|
||
|
assert _osborne(coth(x), d) == cot(x*d)/I
|
||
|
assert _osborne(cosh(x), d) == cos(x*d)
|
||
|
assert _osborne(sech(x), d) == sec(x*d)
|
||
|
assert _osborne(csch(x), d) == csc(x*d)/I
|
||
|
for func in (sinh, cosh, tanh, coth, sech, csch):
|
||
|
h = func(pi)
|
||
|
assert _osbornei(_osborne(h, d), d) == h
|
||
|
# /!\ the _osborne functions are not meant to work
|
||
|
# in the o(i(trig, d), d) direction so we just check
|
||
|
# that they work as they are supposed to work
|
||
|
assert _osbornei(cos(x*y + z), y) == cosh(x + z*I)
|
||
|
assert _osbornei(sin(x*y + z), y) == sinh(x + z*I)/I
|
||
|
assert _osbornei(tan(x*y + z), y) == tanh(x + z*I)/I
|
||
|
assert _osbornei(cot(x*y + z), y) == coth(x + z*I)*I
|
||
|
assert _osbornei(sec(x*y + z), y) == sech(x + z*I)
|
||
|
assert _osbornei(csc(x*y + z), y) == csch(x + z*I)*I
|
||
|
|
||
|
|
||
|
def test_TR12i():
|
||
|
ta, tb, tc = [tan(i) for i in (a, b, c)]
|
||
|
assert TR12i((ta + tb)/(-ta*tb + 1)) == tan(a + b)
|
||
|
assert TR12i((ta + tb)/(ta*tb - 1)) == -tan(a + b)
|
||
|
assert TR12i((-ta - tb)/(ta*tb - 1)) == tan(a + b)
|
||
|
eq = (ta + tb)/(-ta*tb + 1)**2*(-3*ta - 3*tc)/(2*(ta*tc - 1))
|
||
|
assert TR12i(eq.expand()) == \
|
||
|
-3*tan(a + b)*tan(a + c)/(tan(a) + tan(b) - 1)/2
|
||
|
assert TR12i(tan(x)/sin(x)) == tan(x)/sin(x)
|
||
|
eq = (ta + cos(2))/(-ta*tb + 1)
|
||
|
assert TR12i(eq) == eq
|
||
|
eq = (ta + tb + 2)**2/(-ta*tb + 1)
|
||
|
assert TR12i(eq) == eq
|
||
|
eq = ta/(-ta*tb + 1)
|
||
|
assert TR12i(eq) == eq
|
||
|
eq = (((ta + tb)*(a + 1)).expand())**2/(ta*tb - 1)
|
||
|
assert TR12i(eq) == -(a + 1)**2*tan(a + b)
|
||
|
|
||
|
|
||
|
def test_TR14():
|
||
|
eq = (cos(x) - 1)*(cos(x) + 1)
|
||
|
ans = -sin(x)**2
|
||
|
assert TR14(eq) == ans
|
||
|
assert TR14(1/eq) == 1/ans
|
||
|
assert TR14((cos(x) - 1)**2*(cos(x) + 1)**2) == ans**2
|
||
|
assert TR14((cos(x) - 1)**2*(cos(x) + 1)**3) == ans**2*(cos(x) + 1)
|
||
|
assert TR14((cos(x) - 1)**3*(cos(x) + 1)**2) == ans**2*(cos(x) - 1)
|
||
|
eq = (cos(x) - 1)**y*(cos(x) + 1)**y
|
||
|
assert TR14(eq) == eq
|
||
|
eq = (cos(x) - 2)**y*(cos(x) + 1)
|
||
|
assert TR14(eq) == eq
|
||
|
eq = (tan(x) - 2)**2*(cos(x) + 1)
|
||
|
assert TR14(eq) == eq
|
||
|
i = symbols('i', integer=True)
|
||
|
assert TR14((cos(x) - 1)**i*(cos(x) + 1)**i) == ans**i
|
||
|
assert TR14((sin(x) - 1)**i*(sin(x) + 1)**i) == (-cos(x)**2)**i
|
||
|
# could use extraction in this case
|
||
|
eq = (cos(x) - 1)**(i + 1)*(cos(x) + 1)**i
|
||
|
assert TR14(eq) in [(cos(x) - 1)*ans**i, eq]
|
||
|
|
||
|
assert TR14((sin(x) - 1)*(sin(x) + 1)) == -cos(x)**2
|
||
|
p1 = (cos(x) + 1)*(cos(x) - 1)
|
||
|
p2 = (cos(y) - 1)*2*(cos(y) + 1)
|
||
|
p3 = (3*(cos(y) - 1))*(3*(cos(y) + 1))
|
||
|
assert TR14(p1*p2*p3*(x - 1)) == -18*((x - 1)*sin(x)**2*sin(y)**4)
|
||
|
|
||
|
|
||
|
def test_TR15_16_17():
|
||
|
assert TR15(1 - 1/sin(x)**2) == -cot(x)**2
|
||
|
assert TR16(1 - 1/cos(x)**2) == -tan(x)**2
|
||
|
assert TR111(1 - 1/tan(x)**2) == 1 - cot(x)**2
|
||
|
|
||
|
|
||
|
def test_as_f_sign_1():
|
||
|
assert as_f_sign_1(x + 1) == (1, x, 1)
|
||
|
assert as_f_sign_1(x - 1) == (1, x, -1)
|
||
|
assert as_f_sign_1(-x + 1) == (-1, x, -1)
|
||
|
assert as_f_sign_1(-x - 1) == (-1, x, 1)
|
||
|
assert as_f_sign_1(2*x + 2) == (2, x, 1)
|
||
|
assert as_f_sign_1(x*y - y) == (y, x, -1)
|
||
|
assert as_f_sign_1(-x*y + y) == (-y, x, -1)
|