You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
4864 lines
161 KiB
4864 lines
161 KiB
5 months ago
|
"""
|
||
|
This module defines tensors with abstract index notation.
|
||
|
|
||
|
The abstract index notation has been first formalized by Penrose.
|
||
|
|
||
|
Tensor indices are formal objects, with a tensor type; there is no
|
||
|
notion of index range, it is only possible to assign the dimension,
|
||
|
used to trace the Kronecker delta; the dimension can be a Symbol.
|
||
|
|
||
|
The Einstein summation convention is used.
|
||
|
The covariant indices are indicated with a minus sign in front of the index.
|
||
|
|
||
|
For instance the tensor ``t = p(a)*A(b,c)*q(-c)`` has the index ``c``
|
||
|
contracted.
|
||
|
|
||
|
A tensor expression ``t`` can be called; called with its
|
||
|
indices in sorted order it is equal to itself:
|
||
|
in the above example ``t(a, b) == t``;
|
||
|
one can call ``t`` with different indices; ``t(c, d) == p(c)*A(d,a)*q(-a)``.
|
||
|
|
||
|
The contracted indices are dummy indices, internally they have no name,
|
||
|
the indices being represented by a graph-like structure.
|
||
|
|
||
|
Tensors are put in canonical form using ``canon_bp``, which uses
|
||
|
the Butler-Portugal algorithm for canonicalization using the monoterm
|
||
|
symmetries of the tensors.
|
||
|
|
||
|
If there is a (anti)symmetric metric, the indices can be raised and
|
||
|
lowered when the tensor is put in canonical form.
|
||
|
"""
|
||
|
|
||
|
from __future__ import annotations
|
||
|
from typing import Any
|
||
|
from functools import reduce
|
||
|
from math import prod
|
||
|
|
||
|
from abc import abstractmethod, ABC
|
||
|
from collections import defaultdict
|
||
|
import operator
|
||
|
import itertools
|
||
|
from sympy.core.numbers import (Integer, Rational)
|
||
|
from sympy.combinatorics import Permutation
|
||
|
from sympy.combinatorics.tensor_can import get_symmetric_group_sgs, \
|
||
|
bsgs_direct_product, canonicalize, riemann_bsgs
|
||
|
from sympy.core import Basic, Expr, sympify, Add, Mul, S
|
||
|
from sympy.core.containers import Tuple, Dict
|
||
|
from sympy.core.sorting import default_sort_key
|
||
|
from sympy.core.symbol import Symbol, symbols
|
||
|
from sympy.core.sympify import CantSympify, _sympify
|
||
|
from sympy.core.operations import AssocOp
|
||
|
from sympy.external.gmpy import SYMPY_INTS
|
||
|
from sympy.matrices import eye
|
||
|
from sympy.utilities.exceptions import (sympy_deprecation_warning,
|
||
|
SymPyDeprecationWarning,
|
||
|
ignore_warnings)
|
||
|
from sympy.utilities.decorator import memoize_property, deprecated
|
||
|
from sympy.utilities.iterables import sift
|
||
|
|
||
|
|
||
|
def deprecate_data():
|
||
|
sympy_deprecation_warning(
|
||
|
"""
|
||
|
The data attribute of TensorIndexType is deprecated. Use The
|
||
|
replace_with_arrays() method instead.
|
||
|
""",
|
||
|
deprecated_since_version="1.4",
|
||
|
active_deprecations_target="deprecated-tensorindextype-attrs",
|
||
|
stacklevel=4,
|
||
|
)
|
||
|
|
||
|
def deprecate_fun_eval():
|
||
|
sympy_deprecation_warning(
|
||
|
"""
|
||
|
The Tensor.fun_eval() method is deprecated. Use
|
||
|
Tensor.substitute_indices() instead.
|
||
|
""",
|
||
|
deprecated_since_version="1.5",
|
||
|
active_deprecations_target="deprecated-tensor-fun-eval",
|
||
|
stacklevel=4,
|
||
|
)
|
||
|
|
||
|
|
||
|
def deprecate_call():
|
||
|
sympy_deprecation_warning(
|
||
|
"""
|
||
|
Calling a tensor like Tensor(*indices) is deprecated. Use
|
||
|
Tensor.substitute_indices() instead.
|
||
|
""",
|
||
|
deprecated_since_version="1.5",
|
||
|
active_deprecations_target="deprecated-tensor-fun-eval",
|
||
|
stacklevel=4,
|
||
|
)
|
||
|
|
||
|
|
||
|
class _IndexStructure(CantSympify):
|
||
|
"""
|
||
|
This class handles the indices (free and dummy ones). It contains the
|
||
|
algorithms to manage the dummy indices replacements and contractions of
|
||
|
free indices under multiplications of tensor expressions, as well as stuff
|
||
|
related to canonicalization sorting, getting the permutation of the
|
||
|
expression and so on. It also includes tools to get the ``TensorIndex``
|
||
|
objects corresponding to the given index structure.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, free, dum, index_types, indices, canon_bp=False):
|
||
|
self.free = free
|
||
|
self.dum = dum
|
||
|
self.index_types = index_types
|
||
|
self.indices = indices
|
||
|
self._ext_rank = len(self.free) + 2*len(self.dum)
|
||
|
self.dum.sort(key=lambda x: x[0])
|
||
|
|
||
|
@staticmethod
|
||
|
def from_indices(*indices):
|
||
|
"""
|
||
|
Create a new ``_IndexStructure`` object from a list of ``indices``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
``indices`` ``TensorIndex`` objects, the indices. Contractions are
|
||
|
detected upon construction.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, _IndexStructure
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
|
||
|
>>> _IndexStructure.from_indices(m0, m1, -m1, m3)
|
||
|
_IndexStructure([(m0, 0), (m3, 3)], [(1, 2)], [Lorentz, Lorentz, Lorentz, Lorentz])
|
||
|
"""
|
||
|
|
||
|
free, dum = _IndexStructure._free_dum_from_indices(*indices)
|
||
|
index_types = [i.tensor_index_type for i in indices]
|
||
|
indices = _IndexStructure._replace_dummy_names(indices, free, dum)
|
||
|
return _IndexStructure(free, dum, index_types, indices)
|
||
|
|
||
|
@staticmethod
|
||
|
def from_components_free_dum(components, free, dum):
|
||
|
index_types = []
|
||
|
for component in components:
|
||
|
index_types.extend(component.index_types)
|
||
|
indices = _IndexStructure.generate_indices_from_free_dum_index_types(free, dum, index_types)
|
||
|
return _IndexStructure(free, dum, index_types, indices)
|
||
|
|
||
|
@staticmethod
|
||
|
def _free_dum_from_indices(*indices):
|
||
|
"""
|
||
|
Convert ``indices`` into ``free``, ``dum`` for single component tensor.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
``free`` list of tuples ``(index, pos, 0)``,
|
||
|
where ``pos`` is the position of index in
|
||
|
the list of indices formed by the component tensors
|
||
|
|
||
|
``dum`` list of tuples ``(pos_contr, pos_cov, 0, 0)``
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, \
|
||
|
_IndexStructure
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> m0, m1, m2, m3 = tensor_indices('m0,m1,m2,m3', Lorentz)
|
||
|
>>> _IndexStructure._free_dum_from_indices(m0, m1, -m1, m3)
|
||
|
([(m0, 0), (m3, 3)], [(1, 2)])
|
||
|
"""
|
||
|
n = len(indices)
|
||
|
if n == 1:
|
||
|
return [(indices[0], 0)], []
|
||
|
|
||
|
# find the positions of the free indices and of the dummy indices
|
||
|
free = [True]*len(indices)
|
||
|
index_dict = {}
|
||
|
dum = []
|
||
|
for i, index in enumerate(indices):
|
||
|
name = index.name
|
||
|
typ = index.tensor_index_type
|
||
|
contr = index.is_up
|
||
|
if (name, typ) in index_dict:
|
||
|
# found a pair of dummy indices
|
||
|
is_contr, pos = index_dict[(name, typ)]
|
||
|
# check consistency and update free
|
||
|
if is_contr:
|
||
|
if contr:
|
||
|
raise ValueError('two equal contravariant indices in slots %d and %d' %(pos, i))
|
||
|
else:
|
||
|
free[pos] = False
|
||
|
free[i] = False
|
||
|
else:
|
||
|
if contr:
|
||
|
free[pos] = False
|
||
|
free[i] = False
|
||
|
else:
|
||
|
raise ValueError('two equal covariant indices in slots %d and %d' %(pos, i))
|
||
|
if contr:
|
||
|
dum.append((i, pos))
|
||
|
else:
|
||
|
dum.append((pos, i))
|
||
|
else:
|
||
|
index_dict[(name, typ)] = index.is_up, i
|
||
|
|
||
|
free = [(index, i) for i, index in enumerate(indices) if free[i]]
|
||
|
free.sort()
|
||
|
return free, dum
|
||
|
|
||
|
def get_indices(self):
|
||
|
"""
|
||
|
Get a list of indices, creating new tensor indices to complete dummy indices.
|
||
|
"""
|
||
|
return self.indices[:]
|
||
|
|
||
|
@staticmethod
|
||
|
def generate_indices_from_free_dum_index_types(free, dum, index_types):
|
||
|
indices = [None]*(len(free)+2*len(dum))
|
||
|
for idx, pos in free:
|
||
|
indices[pos] = idx
|
||
|
|
||
|
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
|
||
|
for pos1, pos2 in dum:
|
||
|
typ1 = index_types[pos1]
|
||
|
indname = generate_dummy_name(typ1)
|
||
|
indices[pos1] = TensorIndex(indname, typ1, True)
|
||
|
indices[pos2] = TensorIndex(indname, typ1, False)
|
||
|
|
||
|
return _IndexStructure._replace_dummy_names(indices, free, dum)
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_generator_for_dummy_indices(free):
|
||
|
cdt = defaultdict(int)
|
||
|
# if the free indices have names with dummy_name, start with an
|
||
|
# index higher than those for the dummy indices
|
||
|
# to avoid name collisions
|
||
|
for indx, ipos in free:
|
||
|
if indx.name.split('_')[0] == indx.tensor_index_type.dummy_name:
|
||
|
cdt[indx.tensor_index_type] = max(cdt[indx.tensor_index_type], int(indx.name.split('_')[1]) + 1)
|
||
|
|
||
|
def dummy_name_gen(tensor_index_type):
|
||
|
nd = str(cdt[tensor_index_type])
|
||
|
cdt[tensor_index_type] += 1
|
||
|
return tensor_index_type.dummy_name + '_' + nd
|
||
|
|
||
|
return dummy_name_gen
|
||
|
|
||
|
@staticmethod
|
||
|
def _replace_dummy_names(indices, free, dum):
|
||
|
dum.sort(key=lambda x: x[0])
|
||
|
new_indices = list(indices)
|
||
|
assert len(indices) == len(free) + 2*len(dum)
|
||
|
generate_dummy_name = _IndexStructure._get_generator_for_dummy_indices(free)
|
||
|
for ipos1, ipos2 in dum:
|
||
|
typ1 = new_indices[ipos1].tensor_index_type
|
||
|
indname = generate_dummy_name(typ1)
|
||
|
new_indices[ipos1] = TensorIndex(indname, typ1, True)
|
||
|
new_indices[ipos2] = TensorIndex(indname, typ1, False)
|
||
|
return new_indices
|
||
|
|
||
|
def get_free_indices(self) -> list[TensorIndex]:
|
||
|
"""
|
||
|
Get a list of free indices.
|
||
|
"""
|
||
|
# get sorted indices according to their position:
|
||
|
free = sorted(self.free, key=lambda x: x[1])
|
||
|
return [i[0] for i in free]
|
||
|
|
||
|
def __str__(self):
|
||
|
return "_IndexStructure({}, {}, {})".format(self.free, self.dum, self.index_types)
|
||
|
|
||
|
def __repr__(self):
|
||
|
return self.__str__()
|
||
|
|
||
|
def _get_sorted_free_indices_for_canon(self):
|
||
|
sorted_free = self.free[:]
|
||
|
sorted_free.sort(key=lambda x: x[0])
|
||
|
return sorted_free
|
||
|
|
||
|
def _get_sorted_dum_indices_for_canon(self):
|
||
|
return sorted(self.dum, key=lambda x: x[0])
|
||
|
|
||
|
def _get_lexicographically_sorted_index_types(self):
|
||
|
permutation = self.indices_canon_args()[0]
|
||
|
index_types = [None]*self._ext_rank
|
||
|
for i, it in enumerate(self.index_types):
|
||
|
index_types[permutation(i)] = it
|
||
|
return index_types
|
||
|
|
||
|
def _get_lexicographically_sorted_indices(self):
|
||
|
permutation = self.indices_canon_args()[0]
|
||
|
indices = [None]*self._ext_rank
|
||
|
for i, it in enumerate(self.indices):
|
||
|
indices[permutation(i)] = it
|
||
|
return indices
|
||
|
|
||
|
def perm2tensor(self, g, is_canon_bp=False):
|
||
|
"""
|
||
|
Returns a ``_IndexStructure`` instance corresponding to the permutation ``g``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
``g`` permutation corresponding to the tensor in the representation
|
||
|
used in canonicalization
|
||
|
|
||
|
``is_canon_bp`` if True, then ``g`` is the permutation
|
||
|
corresponding to the canonical form of the tensor
|
||
|
"""
|
||
|
sorted_free = [i[0] for i in self._get_sorted_free_indices_for_canon()]
|
||
|
lex_index_types = self._get_lexicographically_sorted_index_types()
|
||
|
lex_indices = self._get_lexicographically_sorted_indices()
|
||
|
nfree = len(sorted_free)
|
||
|
rank = self._ext_rank
|
||
|
dum = [[None]*2 for i in range((rank - nfree)//2)]
|
||
|
free = []
|
||
|
|
||
|
index_types = [None]*rank
|
||
|
indices = [None]*rank
|
||
|
for i in range(rank):
|
||
|
gi = g[i]
|
||
|
index_types[i] = lex_index_types[gi]
|
||
|
indices[i] = lex_indices[gi]
|
||
|
if gi < nfree:
|
||
|
ind = sorted_free[gi]
|
||
|
assert index_types[i] == sorted_free[gi].tensor_index_type
|
||
|
free.append((ind, i))
|
||
|
else:
|
||
|
j = gi - nfree
|
||
|
idum, cov = divmod(j, 2)
|
||
|
if cov:
|
||
|
dum[idum][1] = i
|
||
|
else:
|
||
|
dum[idum][0] = i
|
||
|
dum = [tuple(x) for x in dum]
|
||
|
|
||
|
return _IndexStructure(free, dum, index_types, indices)
|
||
|
|
||
|
def indices_canon_args(self):
|
||
|
"""
|
||
|
Returns ``(g, dummies, msym, v)``, the entries of ``canonicalize``
|
||
|
|
||
|
See ``canonicalize`` in ``tensor_can.py`` in combinatorics module.
|
||
|
"""
|
||
|
# to be called after sorted_components
|
||
|
from sympy.combinatorics.permutations import _af_new
|
||
|
n = self._ext_rank
|
||
|
g = [None]*n + [n, n+1]
|
||
|
|
||
|
# Converts the symmetry of the metric into msym from .canonicalize()
|
||
|
# method in the combinatorics module
|
||
|
def metric_symmetry_to_msym(metric):
|
||
|
if metric is None:
|
||
|
return None
|
||
|
sym = metric.symmetry
|
||
|
if sym == TensorSymmetry.fully_symmetric(2):
|
||
|
return 0
|
||
|
if sym == TensorSymmetry.fully_symmetric(-2):
|
||
|
return 1
|
||
|
return None
|
||
|
|
||
|
# ordered indices: first the free indices, ordered by types
|
||
|
# then the dummy indices, ordered by types and contravariant before
|
||
|
# covariant
|
||
|
# g[position in tensor] = position in ordered indices
|
||
|
for i, (indx, ipos) in enumerate(self._get_sorted_free_indices_for_canon()):
|
||
|
g[ipos] = i
|
||
|
pos = len(self.free)
|
||
|
j = len(self.free)
|
||
|
dummies = []
|
||
|
prev = None
|
||
|
a = []
|
||
|
msym = []
|
||
|
for ipos1, ipos2 in self._get_sorted_dum_indices_for_canon():
|
||
|
g[ipos1] = j
|
||
|
g[ipos2] = j + 1
|
||
|
j += 2
|
||
|
typ = self.index_types[ipos1]
|
||
|
if typ != prev:
|
||
|
if a:
|
||
|
dummies.append(a)
|
||
|
a = [pos, pos + 1]
|
||
|
prev = typ
|
||
|
msym.append(metric_symmetry_to_msym(typ.metric))
|
||
|
else:
|
||
|
a.extend([pos, pos + 1])
|
||
|
pos += 2
|
||
|
if a:
|
||
|
dummies.append(a)
|
||
|
|
||
|
return _af_new(g), dummies, msym
|
||
|
|
||
|
|
||
|
def components_canon_args(components):
|
||
|
numtyp = []
|
||
|
prev = None
|
||
|
for t in components:
|
||
|
if t == prev:
|
||
|
numtyp[-1][1] += 1
|
||
|
else:
|
||
|
prev = t
|
||
|
numtyp.append([prev, 1])
|
||
|
v = []
|
||
|
for h, n in numtyp:
|
||
|
if h.comm in (0, 1):
|
||
|
comm = h.comm
|
||
|
else:
|
||
|
comm = TensorManager.get_comm(h.comm, h.comm)
|
||
|
v.append((h.symmetry.base, h.symmetry.generators, n, comm))
|
||
|
return v
|
||
|
|
||
|
|
||
|
class _TensorDataLazyEvaluator(CantSympify):
|
||
|
"""
|
||
|
EXPERIMENTAL: do not rely on this class, it may change without deprecation
|
||
|
warnings in future versions of SymPy.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This object contains the logic to associate components data to a tensor
|
||
|
expression. Components data are set via the ``.data`` property of tensor
|
||
|
expressions, is stored inside this class as a mapping between the tensor
|
||
|
expression and the ``ndarray``.
|
||
|
|
||
|
Computations are executed lazily: whereas the tensor expressions can have
|
||
|
contractions, tensor products, and additions, components data are not
|
||
|
computed until they are accessed by reading the ``.data`` property
|
||
|
associated to the tensor expression.
|
||
|
"""
|
||
|
_substitutions_dict: dict[Any, Any] = {}
|
||
|
_substitutions_dict_tensmul: dict[Any, Any] = {}
|
||
|
|
||
|
def __getitem__(self, key):
|
||
|
dat = self._get(key)
|
||
|
if dat is None:
|
||
|
return None
|
||
|
|
||
|
from .array import NDimArray
|
||
|
if not isinstance(dat, NDimArray):
|
||
|
return dat
|
||
|
|
||
|
if dat.rank() == 0:
|
||
|
return dat[()]
|
||
|
elif dat.rank() == 1 and len(dat) == 1:
|
||
|
return dat[0]
|
||
|
return dat
|
||
|
|
||
|
def _get(self, key):
|
||
|
"""
|
||
|
Retrieve ``data`` associated with ``key``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This algorithm looks into ``self._substitutions_dict`` for all
|
||
|
``TensorHead`` in the ``TensExpr`` (or just ``TensorHead`` if key is a
|
||
|
TensorHead instance). It reconstructs the components data that the
|
||
|
tensor expression should have by performing on components data the
|
||
|
operations that correspond to the abstract tensor operations applied.
|
||
|
|
||
|
Metric tensor is handled in a different manner: it is pre-computed in
|
||
|
``self._substitutions_dict_tensmul``.
|
||
|
"""
|
||
|
if key in self._substitutions_dict:
|
||
|
return self._substitutions_dict[key]
|
||
|
|
||
|
if isinstance(key, TensorHead):
|
||
|
return None
|
||
|
|
||
|
if isinstance(key, Tensor):
|
||
|
# special case to handle metrics. Metric tensors cannot be
|
||
|
# constructed through contraction by the metric, their
|
||
|
# components show if they are a matrix or its inverse.
|
||
|
signature = tuple([i.is_up for i in key.get_indices()])
|
||
|
srch = (key.component,) + signature
|
||
|
if srch in self._substitutions_dict_tensmul:
|
||
|
return self._substitutions_dict_tensmul[srch]
|
||
|
array_list = [self.data_from_tensor(key)]
|
||
|
return self.data_contract_dum(array_list, key.dum, key.ext_rank)
|
||
|
|
||
|
if isinstance(key, TensMul):
|
||
|
tensmul_args = key.args
|
||
|
if len(tensmul_args) == 1 and len(tensmul_args[0].components) == 1:
|
||
|
# special case to handle metrics. Metric tensors cannot be
|
||
|
# constructed through contraction by the metric, their
|
||
|
# components show if they are a matrix or its inverse.
|
||
|
signature = tuple([i.is_up for i in tensmul_args[0].get_indices()])
|
||
|
srch = (tensmul_args[0].components[0],) + signature
|
||
|
if srch in self._substitutions_dict_tensmul:
|
||
|
return self._substitutions_dict_tensmul[srch]
|
||
|
#data_list = [self.data_from_tensor(i) for i in tensmul_args if isinstance(i, TensExpr)]
|
||
|
data_list = [self.data_from_tensor(i) if isinstance(i, Tensor) else i.data for i in tensmul_args if isinstance(i, TensExpr)]
|
||
|
coeff = prod([i for i in tensmul_args if not isinstance(i, TensExpr)])
|
||
|
if all(i is None for i in data_list):
|
||
|
return None
|
||
|
if any(i is None for i in data_list):
|
||
|
raise ValueError("Mixing tensors with associated components "\
|
||
|
"data with tensors without components data")
|
||
|
data_result = self.data_contract_dum(data_list, key.dum, key.ext_rank)
|
||
|
return coeff*data_result
|
||
|
|
||
|
if isinstance(key, TensAdd):
|
||
|
data_list = []
|
||
|
free_args_list = []
|
||
|
for arg in key.args:
|
||
|
if isinstance(arg, TensExpr):
|
||
|
data_list.append(arg.data)
|
||
|
free_args_list.append([x[0] for x in arg.free])
|
||
|
else:
|
||
|
data_list.append(arg)
|
||
|
free_args_list.append([])
|
||
|
if all(i is None for i in data_list):
|
||
|
return None
|
||
|
if any(i is None for i in data_list):
|
||
|
raise ValueError("Mixing tensors with associated components "\
|
||
|
"data with tensors without components data")
|
||
|
|
||
|
sum_list = []
|
||
|
from .array import permutedims
|
||
|
for data, free_args in zip(data_list, free_args_list):
|
||
|
if len(free_args) < 2:
|
||
|
sum_list.append(data)
|
||
|
else:
|
||
|
free_args_pos = {y: x for x, y in enumerate(free_args)}
|
||
|
axes = [free_args_pos[arg] for arg in key.free_args]
|
||
|
sum_list.append(permutedims(data, axes))
|
||
|
return reduce(lambda x, y: x+y, sum_list)
|
||
|
|
||
|
return None
|
||
|
|
||
|
@staticmethod
|
||
|
def data_contract_dum(ndarray_list, dum, ext_rank):
|
||
|
from .array import tensorproduct, tensorcontraction, MutableDenseNDimArray
|
||
|
arrays = list(map(MutableDenseNDimArray, ndarray_list))
|
||
|
prodarr = tensorproduct(*arrays)
|
||
|
return tensorcontraction(prodarr, *dum)
|
||
|
|
||
|
def data_tensorhead_from_tensmul(self, data, tensmul, tensorhead):
|
||
|
"""
|
||
|
This method is used when assigning components data to a ``TensMul``
|
||
|
object, it converts components data to a fully contravariant ndarray,
|
||
|
which is then stored according to the ``TensorHead`` key.
|
||
|
"""
|
||
|
if data is None:
|
||
|
return None
|
||
|
|
||
|
return self._correct_signature_from_indices(
|
||
|
data,
|
||
|
tensmul.get_indices(),
|
||
|
tensmul.free,
|
||
|
tensmul.dum,
|
||
|
True)
|
||
|
|
||
|
def data_from_tensor(self, tensor):
|
||
|
"""
|
||
|
This method corrects the components data to the right signature
|
||
|
(covariant/contravariant) using the metric associated with each
|
||
|
``TensorIndexType``.
|
||
|
"""
|
||
|
tensorhead = tensor.component
|
||
|
|
||
|
if tensorhead.data is None:
|
||
|
return None
|
||
|
|
||
|
return self._correct_signature_from_indices(
|
||
|
tensorhead.data,
|
||
|
tensor.get_indices(),
|
||
|
tensor.free,
|
||
|
tensor.dum)
|
||
|
|
||
|
def _assign_data_to_tensor_expr(self, key, data):
|
||
|
if isinstance(key, TensAdd):
|
||
|
raise ValueError('cannot assign data to TensAdd')
|
||
|
# here it is assumed that `key` is a `TensMul` instance.
|
||
|
if len(key.components) != 1:
|
||
|
raise ValueError('cannot assign data to TensMul with multiple components')
|
||
|
tensorhead = key.components[0]
|
||
|
newdata = self.data_tensorhead_from_tensmul(data, key, tensorhead)
|
||
|
return tensorhead, newdata
|
||
|
|
||
|
def _check_permutations_on_data(self, tens, data):
|
||
|
from .array import permutedims
|
||
|
from .array.arrayop import Flatten
|
||
|
|
||
|
if isinstance(tens, TensorHead):
|
||
|
rank = tens.rank
|
||
|
generators = tens.symmetry.generators
|
||
|
elif isinstance(tens, Tensor):
|
||
|
rank = tens.rank
|
||
|
generators = tens.components[0].symmetry.generators
|
||
|
elif isinstance(tens, TensorIndexType):
|
||
|
rank = tens.metric.rank
|
||
|
generators = tens.metric.symmetry.generators
|
||
|
|
||
|
# Every generator is a permutation, check that by permuting the array
|
||
|
# by that permutation, the array will be the same, except for a
|
||
|
# possible sign change if the permutation admits it.
|
||
|
for gener in generators:
|
||
|
sign_change = +1 if (gener(rank) == rank) else -1
|
||
|
data_swapped = data
|
||
|
last_data = data
|
||
|
permute_axes = list(map(gener, range(rank)))
|
||
|
# the order of a permutation is the number of times to get the
|
||
|
# identity by applying that permutation.
|
||
|
for i in range(gener.order()-1):
|
||
|
data_swapped = permutedims(data_swapped, permute_axes)
|
||
|
# if any value in the difference array is non-zero, raise an error:
|
||
|
if any(Flatten(last_data - sign_change*data_swapped)):
|
||
|
raise ValueError("Component data symmetry structure error")
|
||
|
last_data = data_swapped
|
||
|
|
||
|
def __setitem__(self, key, value):
|
||
|
"""
|
||
|
Set the components data of a tensor object/expression.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Components data are transformed to the all-contravariant form and stored
|
||
|
with the corresponding ``TensorHead`` object. If a ``TensorHead`` object
|
||
|
cannot be uniquely identified, it will raise an error.
|
||
|
"""
|
||
|
data = _TensorDataLazyEvaluator.parse_data(value)
|
||
|
self._check_permutations_on_data(key, data)
|
||
|
|
||
|
# TensorHead and TensorIndexType can be assigned data directly, while
|
||
|
# TensMul must first convert data to a fully contravariant form, and
|
||
|
# assign it to its corresponding TensorHead single component.
|
||
|
if not isinstance(key, (TensorHead, TensorIndexType)):
|
||
|
key, data = self._assign_data_to_tensor_expr(key, data)
|
||
|
|
||
|
if isinstance(key, TensorHead):
|
||
|
for dim, indextype in zip(data.shape, key.index_types):
|
||
|
if indextype.data is None:
|
||
|
raise ValueError("index type {} has no components data"\
|
||
|
" associated (needed to raise/lower index)".format(indextype))
|
||
|
if not indextype.dim.is_number:
|
||
|
continue
|
||
|
if dim != indextype.dim:
|
||
|
raise ValueError("wrong dimension of ndarray")
|
||
|
self._substitutions_dict[key] = data
|
||
|
|
||
|
def __delitem__(self, key):
|
||
|
del self._substitutions_dict[key]
|
||
|
|
||
|
def __contains__(self, key):
|
||
|
return key in self._substitutions_dict
|
||
|
|
||
|
def add_metric_data(self, metric, data):
|
||
|
"""
|
||
|
Assign data to the ``metric`` tensor. The metric tensor behaves in an
|
||
|
anomalous way when raising and lowering indices.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
A fully covariant metric is the inverse transpose of the fully
|
||
|
contravariant metric (it is meant matrix inverse). If the metric is
|
||
|
symmetric, the transpose is not necessary and mixed
|
||
|
covariant/contravariant metrics are Kronecker deltas.
|
||
|
"""
|
||
|
# hard assignment, data should not be added to `TensorHead` for metric:
|
||
|
# the problem with `TensorHead` is that the metric is anomalous, i.e.
|
||
|
# raising and lowering the index means considering the metric or its
|
||
|
# inverse, this is not the case for other tensors.
|
||
|
self._substitutions_dict_tensmul[metric, True, True] = data
|
||
|
inverse_transpose = self.inverse_transpose_matrix(data)
|
||
|
# in symmetric spaces, the transpose is the same as the original matrix,
|
||
|
# the full covariant metric tensor is the inverse transpose, so this
|
||
|
# code will be able to handle non-symmetric metrics.
|
||
|
self._substitutions_dict_tensmul[metric, False, False] = inverse_transpose
|
||
|
# now mixed cases, these are identical to the unit matrix if the metric
|
||
|
# is symmetric.
|
||
|
m = data.tomatrix()
|
||
|
invt = inverse_transpose.tomatrix()
|
||
|
self._substitutions_dict_tensmul[metric, True, False] = m * invt
|
||
|
self._substitutions_dict_tensmul[metric, False, True] = invt * m
|
||
|
|
||
|
@staticmethod
|
||
|
def _flip_index_by_metric(data, metric, pos):
|
||
|
from .array import tensorproduct, tensorcontraction
|
||
|
|
||
|
mdim = metric.rank()
|
||
|
ddim = data.rank()
|
||
|
|
||
|
if pos == 0:
|
||
|
data = tensorcontraction(
|
||
|
tensorproduct(
|
||
|
metric,
|
||
|
data
|
||
|
),
|
||
|
(1, mdim+pos)
|
||
|
)
|
||
|
else:
|
||
|
data = tensorcontraction(
|
||
|
tensorproduct(
|
||
|
data,
|
||
|
metric
|
||
|
),
|
||
|
(pos, ddim)
|
||
|
)
|
||
|
return data
|
||
|
|
||
|
@staticmethod
|
||
|
def inverse_matrix(ndarray):
|
||
|
m = ndarray.tomatrix().inv()
|
||
|
return _TensorDataLazyEvaluator.parse_data(m)
|
||
|
|
||
|
@staticmethod
|
||
|
def inverse_transpose_matrix(ndarray):
|
||
|
m = ndarray.tomatrix().inv().T
|
||
|
return _TensorDataLazyEvaluator.parse_data(m)
|
||
|
|
||
|
@staticmethod
|
||
|
def _correct_signature_from_indices(data, indices, free, dum, inverse=False):
|
||
|
"""
|
||
|
Utility function to correct the values inside the components data
|
||
|
ndarray according to whether indices are covariant or contravariant.
|
||
|
|
||
|
It uses the metric matrix to lower values of covariant indices.
|
||
|
"""
|
||
|
# change the ndarray values according covariantness/contravariantness of the indices
|
||
|
# use the metric
|
||
|
for i, indx in enumerate(indices):
|
||
|
if not indx.is_up and not inverse:
|
||
|
data = _TensorDataLazyEvaluator._flip_index_by_metric(data, indx.tensor_index_type.data, i)
|
||
|
elif not indx.is_up and inverse:
|
||
|
data = _TensorDataLazyEvaluator._flip_index_by_metric(
|
||
|
data,
|
||
|
_TensorDataLazyEvaluator.inverse_matrix(indx.tensor_index_type.data),
|
||
|
i
|
||
|
)
|
||
|
return data
|
||
|
|
||
|
@staticmethod
|
||
|
def _sort_data_axes(old, new):
|
||
|
from .array import permutedims
|
||
|
|
||
|
new_data = old.data.copy()
|
||
|
|
||
|
old_free = [i[0] for i in old.free]
|
||
|
new_free = [i[0] for i in new.free]
|
||
|
|
||
|
for i in range(len(new_free)):
|
||
|
for j in range(i, len(old_free)):
|
||
|
if old_free[j] == new_free[i]:
|
||
|
old_free[i], old_free[j] = old_free[j], old_free[i]
|
||
|
new_data = permutedims(new_data, (i, j))
|
||
|
break
|
||
|
return new_data
|
||
|
|
||
|
@staticmethod
|
||
|
def add_rearrange_tensmul_parts(new_tensmul, old_tensmul):
|
||
|
def sorted_compo():
|
||
|
return _TensorDataLazyEvaluator._sort_data_axes(old_tensmul, new_tensmul)
|
||
|
|
||
|
_TensorDataLazyEvaluator._substitutions_dict[new_tensmul] = sorted_compo()
|
||
|
|
||
|
@staticmethod
|
||
|
def parse_data(data):
|
||
|
"""
|
||
|
Transform ``data`` to array. The parameter ``data`` may
|
||
|
contain data in various formats, e.g. nested lists, SymPy ``Matrix``,
|
||
|
and so on.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import _TensorDataLazyEvaluator
|
||
|
>>> _TensorDataLazyEvaluator.parse_data([1, 3, -6, 12])
|
||
|
[1, 3, -6, 12]
|
||
|
|
||
|
>>> _TensorDataLazyEvaluator.parse_data([[1, 2], [4, 7]])
|
||
|
[[1, 2], [4, 7]]
|
||
|
"""
|
||
|
from .array import MutableDenseNDimArray
|
||
|
|
||
|
if not isinstance(data, MutableDenseNDimArray):
|
||
|
if len(data) == 2 and hasattr(data[0], '__call__'):
|
||
|
data = MutableDenseNDimArray(data[0], data[1])
|
||
|
else:
|
||
|
data = MutableDenseNDimArray(data)
|
||
|
return data
|
||
|
|
||
|
_tensor_data_substitution_dict = _TensorDataLazyEvaluator()
|
||
|
|
||
|
|
||
|
class _TensorManager:
|
||
|
"""
|
||
|
Class to manage tensor properties.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Tensors belong to tensor commutation groups; each group has a label
|
||
|
``comm``; there are predefined labels:
|
||
|
|
||
|
``0`` tensors commuting with any other tensor
|
||
|
|
||
|
``1`` tensors anticommuting among themselves
|
||
|
|
||
|
``2`` tensors not commuting, apart with those with ``comm=0``
|
||
|
|
||
|
Other groups can be defined using ``set_comm``; tensors in those
|
||
|
groups commute with those with ``comm=0``; by default they
|
||
|
do not commute with any other group.
|
||
|
"""
|
||
|
def __init__(self):
|
||
|
self._comm_init()
|
||
|
|
||
|
def _comm_init(self):
|
||
|
self._comm = [{} for i in range(3)]
|
||
|
for i in range(3):
|
||
|
self._comm[0][i] = 0
|
||
|
self._comm[i][0] = 0
|
||
|
self._comm[1][1] = 1
|
||
|
self._comm[2][1] = None
|
||
|
self._comm[1][2] = None
|
||
|
self._comm_symbols2i = {0:0, 1:1, 2:2}
|
||
|
self._comm_i2symbol = {0:0, 1:1, 2:2}
|
||
|
|
||
|
@property
|
||
|
def comm(self):
|
||
|
return self._comm
|
||
|
|
||
|
def comm_symbols2i(self, i):
|
||
|
"""
|
||
|
Get the commutation group number corresponding to ``i``.
|
||
|
|
||
|
``i`` can be a symbol or a number or a string.
|
||
|
|
||
|
If ``i`` is not already defined its commutation group number
|
||
|
is set.
|
||
|
"""
|
||
|
if i not in self._comm_symbols2i:
|
||
|
n = len(self._comm)
|
||
|
self._comm.append({})
|
||
|
self._comm[n][0] = 0
|
||
|
self._comm[0][n] = 0
|
||
|
self._comm_symbols2i[i] = n
|
||
|
self._comm_i2symbol[n] = i
|
||
|
return n
|
||
|
return self._comm_symbols2i[i]
|
||
|
|
||
|
def comm_i2symbol(self, i):
|
||
|
"""
|
||
|
Returns the symbol corresponding to the commutation group number.
|
||
|
"""
|
||
|
return self._comm_i2symbol[i]
|
||
|
|
||
|
def set_comm(self, i, j, c):
|
||
|
"""
|
||
|
Set the commutation parameter ``c`` for commutation groups ``i, j``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
i, j : symbols representing commutation groups
|
||
|
|
||
|
c : group commutation number
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
``i, j`` can be symbols, strings or numbers,
|
||
|
apart from ``0, 1`` and ``2`` which are reserved respectively
|
||
|
for commuting, anticommuting tensors and tensors not commuting
|
||
|
with any other group apart with the commuting tensors.
|
||
|
For the remaining cases, use this method to set the commutation rules;
|
||
|
by default ``c=None``.
|
||
|
|
||
|
The group commutation number ``c`` is assigned in correspondence
|
||
|
to the group commutation symbols; it can be
|
||
|
|
||
|
0 commuting
|
||
|
|
||
|
1 anticommuting
|
||
|
|
||
|
None no commutation property
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
``G`` and ``GH`` do not commute with themselves and commute with
|
||
|
each other; A is commuting.
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorManager, TensorSymmetry
|
||
|
>>> Lorentz = TensorIndexType('Lorentz')
|
||
|
>>> i0,i1,i2,i3,i4 = tensor_indices('i0:5', Lorentz)
|
||
|
>>> A = TensorHead('A', [Lorentz])
|
||
|
>>> G = TensorHead('G', [Lorentz], TensorSymmetry.no_symmetry(1), 'Gcomm')
|
||
|
>>> GH = TensorHead('GH', [Lorentz], TensorSymmetry.no_symmetry(1), 'GHcomm')
|
||
|
>>> TensorManager.set_comm('Gcomm', 'GHcomm', 0)
|
||
|
>>> (GH(i1)*G(i0)).canon_bp()
|
||
|
G(i0)*GH(i1)
|
||
|
>>> (G(i1)*G(i0)).canon_bp()
|
||
|
G(i1)*G(i0)
|
||
|
>>> (G(i1)*A(i0)).canon_bp()
|
||
|
A(i0)*G(i1)
|
||
|
"""
|
||
|
if c not in (0, 1, None):
|
||
|
raise ValueError('`c` can assume only the values 0, 1 or None')
|
||
|
|
||
|
if i not in self._comm_symbols2i:
|
||
|
n = len(self._comm)
|
||
|
self._comm.append({})
|
||
|
self._comm[n][0] = 0
|
||
|
self._comm[0][n] = 0
|
||
|
self._comm_symbols2i[i] = n
|
||
|
self._comm_i2symbol[n] = i
|
||
|
if j not in self._comm_symbols2i:
|
||
|
n = len(self._comm)
|
||
|
self._comm.append({})
|
||
|
self._comm[0][n] = 0
|
||
|
self._comm[n][0] = 0
|
||
|
self._comm_symbols2i[j] = n
|
||
|
self._comm_i2symbol[n] = j
|
||
|
ni = self._comm_symbols2i[i]
|
||
|
nj = self._comm_symbols2i[j]
|
||
|
self._comm[ni][nj] = c
|
||
|
self._comm[nj][ni] = c
|
||
|
|
||
|
def set_comms(self, *args):
|
||
|
"""
|
||
|
Set the commutation group numbers ``c`` for symbols ``i, j``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
args : sequence of ``(i, j, c)``
|
||
|
"""
|
||
|
for i, j, c in args:
|
||
|
self.set_comm(i, j, c)
|
||
|
|
||
|
def get_comm(self, i, j):
|
||
|
"""
|
||
|
Return the commutation parameter for commutation group numbers ``i, j``
|
||
|
|
||
|
see ``_TensorManager.set_comm``
|
||
|
"""
|
||
|
return self._comm[i].get(j, 0 if i == 0 or j == 0 else None)
|
||
|
|
||
|
def clear(self):
|
||
|
"""
|
||
|
Clear the TensorManager.
|
||
|
"""
|
||
|
self._comm_init()
|
||
|
|
||
|
|
||
|
TensorManager = _TensorManager()
|
||
|
|
||
|
|
||
|
class TensorIndexType(Basic):
|
||
|
"""
|
||
|
A TensorIndexType is characterized by its name and its metric.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : name of the tensor type
|
||
|
dummy_name : name of the head of dummy indices
|
||
|
dim : dimension, it can be a symbol or an integer or ``None``
|
||
|
eps_dim : dimension of the epsilon tensor
|
||
|
metric_symmetry : integer that denotes metric symmetry or ``None`` for no metric
|
||
|
metric_name : string with the name of the metric tensor
|
||
|
|
||
|
Attributes
|
||
|
==========
|
||
|
|
||
|
``metric`` : the metric tensor
|
||
|
``delta`` : ``Kronecker delta``
|
||
|
``epsilon`` : the ``Levi-Civita epsilon`` tensor
|
||
|
``data`` : (deprecated) a property to add ``ndarray`` values, to work in a specified basis.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
The possible values of the ``metric_symmetry`` parameter are:
|
||
|
|
||
|
``1`` : metric tensor is fully symmetric
|
||
|
``0`` : metric tensor possesses no index symmetry
|
||
|
``-1`` : metric tensor is fully antisymmetric
|
||
|
``None``: there is no metric tensor (metric equals to ``None``)
|
||
|
|
||
|
The metric is assumed to be symmetric by default. It can also be set
|
||
|
to a custom tensor by the ``.set_metric()`` method.
|
||
|
|
||
|
If there is a metric the metric is used to raise and lower indices.
|
||
|
|
||
|
In the case of non-symmetric metric, the following raising and
|
||
|
lowering conventions will be adopted:
|
||
|
|
||
|
``psi(a) = g(a, b)*psi(-b); chi(-a) = chi(b)*g(-b, -a)``
|
||
|
|
||
|
From these it is easy to find:
|
||
|
|
||
|
``g(-a, b) = delta(-a, b)``
|
||
|
|
||
|
where ``delta(-a, b) = delta(b, -a)`` is the ``Kronecker delta``
|
||
|
(see ``TensorIndex`` for the conventions on indices).
|
||
|
For antisymmetric metrics there is also the following equality:
|
||
|
|
||
|
``g(a, -b) = -delta(a, -b)``
|
||
|
|
||
|
If there is no metric it is not possible to raise or lower indices;
|
||
|
e.g. the index of the defining representation of ``SU(N)``
|
||
|
is 'covariant' and the conjugate representation is
|
||
|
'contravariant'; for ``N > 2`` they are linearly independent.
|
||
|
|
||
|
``eps_dim`` is by default equal to ``dim``, if the latter is an integer;
|
||
|
else it can be assigned (for use in naive dimensional regularization);
|
||
|
if ``eps_dim`` is not an integer ``epsilon`` is ``None``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> Lorentz.metric
|
||
|
metric(Lorentz,Lorentz)
|
||
|
"""
|
||
|
|
||
|
def __new__(cls, name, dummy_name=None, dim=None, eps_dim=None,
|
||
|
metric_symmetry=1, metric_name='metric', **kwargs):
|
||
|
if 'dummy_fmt' in kwargs:
|
||
|
dummy_fmt = kwargs['dummy_fmt']
|
||
|
sympy_deprecation_warning(
|
||
|
f"""
|
||
|
The dummy_fmt keyword to TensorIndexType is deprecated. Use
|
||
|
dummy_name={dummy_fmt} instead.
|
||
|
""",
|
||
|
deprecated_since_version="1.5",
|
||
|
active_deprecations_target="deprecated-tensorindextype-dummy-fmt",
|
||
|
)
|
||
|
dummy_name = dummy_fmt
|
||
|
|
||
|
if isinstance(name, str):
|
||
|
name = Symbol(name)
|
||
|
|
||
|
if dummy_name is None:
|
||
|
dummy_name = str(name)[0]
|
||
|
if isinstance(dummy_name, str):
|
||
|
dummy_name = Symbol(dummy_name)
|
||
|
|
||
|
if dim is None:
|
||
|
dim = Symbol("dim_" + dummy_name.name)
|
||
|
else:
|
||
|
dim = sympify(dim)
|
||
|
|
||
|
if eps_dim is None:
|
||
|
eps_dim = dim
|
||
|
else:
|
||
|
eps_dim = sympify(eps_dim)
|
||
|
|
||
|
metric_symmetry = sympify(metric_symmetry)
|
||
|
|
||
|
if isinstance(metric_name, str):
|
||
|
metric_name = Symbol(metric_name)
|
||
|
|
||
|
if 'metric' in kwargs:
|
||
|
SymPyDeprecationWarning(
|
||
|
"""
|
||
|
The 'metric' keyword argument to TensorIndexType is
|
||
|
deprecated. Use the 'metric_symmetry' keyword argument or the
|
||
|
TensorIndexType.set_metric() method instead.
|
||
|
""",
|
||
|
deprecated_since_version="1.5",
|
||
|
active_deprecations_target="deprecated-tensorindextype-metric",
|
||
|
)
|
||
|
metric = kwargs.get('metric')
|
||
|
if metric is not None:
|
||
|
if metric in (True, False, 0, 1):
|
||
|
metric_name = 'metric'
|
||
|
#metric_antisym = metric
|
||
|
else:
|
||
|
metric_name = metric.name
|
||
|
#metric_antisym = metric.antisym
|
||
|
|
||
|
if metric:
|
||
|
metric_symmetry = -1
|
||
|
else:
|
||
|
metric_symmetry = 1
|
||
|
|
||
|
obj = Basic.__new__(cls, name, dummy_name, dim, eps_dim,
|
||
|
metric_symmetry, metric_name)
|
||
|
|
||
|
obj._autogenerated = []
|
||
|
return obj
|
||
|
|
||
|
@property
|
||
|
def name(self):
|
||
|
return self.args[0].name
|
||
|
|
||
|
@property
|
||
|
def dummy_name(self):
|
||
|
return self.args[1].name
|
||
|
|
||
|
@property
|
||
|
def dim(self):
|
||
|
return self.args[2]
|
||
|
|
||
|
@property
|
||
|
def eps_dim(self):
|
||
|
return self.args[3]
|
||
|
|
||
|
@memoize_property
|
||
|
def metric(self):
|
||
|
metric_symmetry = self.args[4]
|
||
|
metric_name = self.args[5]
|
||
|
if metric_symmetry is None:
|
||
|
return None
|
||
|
|
||
|
if metric_symmetry == 0:
|
||
|
symmetry = TensorSymmetry.no_symmetry(2)
|
||
|
elif metric_symmetry == 1:
|
||
|
symmetry = TensorSymmetry.fully_symmetric(2)
|
||
|
elif metric_symmetry == -1:
|
||
|
symmetry = TensorSymmetry.fully_symmetric(-2)
|
||
|
|
||
|
return TensorHead(metric_name, [self]*2, symmetry)
|
||
|
|
||
|
@memoize_property
|
||
|
def delta(self):
|
||
|
return TensorHead('KD', [self]*2, TensorSymmetry.fully_symmetric(2))
|
||
|
|
||
|
@memoize_property
|
||
|
def epsilon(self):
|
||
|
if not isinstance(self.eps_dim, (SYMPY_INTS, Integer)):
|
||
|
return None
|
||
|
symmetry = TensorSymmetry.fully_symmetric(-self.eps_dim)
|
||
|
return TensorHead('Eps', [self]*self.eps_dim, symmetry)
|
||
|
|
||
|
def set_metric(self, tensor):
|
||
|
self._metric = tensor
|
||
|
|
||
|
def __lt__(self, other):
|
||
|
return self.name < other.name
|
||
|
|
||
|
def __str__(self):
|
||
|
return self.name
|
||
|
|
||
|
__repr__ = __str__
|
||
|
|
||
|
# Everything below this line is deprecated
|
||
|
|
||
|
@property
|
||
|
def data(self):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
return _tensor_data_substitution_dict[self]
|
||
|
|
||
|
@data.setter
|
||
|
def data(self, data):
|
||
|
deprecate_data()
|
||
|
# This assignment is a bit controversial, should metric components be assigned
|
||
|
# to the metric only or also to the TensorIndexType object? The advantage here
|
||
|
# is the ability to assign a 1D array and transform it to a 2D diagonal array.
|
||
|
from .array import MutableDenseNDimArray
|
||
|
|
||
|
data = _TensorDataLazyEvaluator.parse_data(data)
|
||
|
if data.rank() > 2:
|
||
|
raise ValueError("data have to be of rank 1 (diagonal metric) or 2.")
|
||
|
if data.rank() == 1:
|
||
|
if self.dim.is_number:
|
||
|
nda_dim = data.shape[0]
|
||
|
if nda_dim != self.dim:
|
||
|
raise ValueError("Dimension mismatch")
|
||
|
|
||
|
dim = data.shape[0]
|
||
|
newndarray = MutableDenseNDimArray.zeros(dim, dim)
|
||
|
for i, val in enumerate(data):
|
||
|
newndarray[i, i] = val
|
||
|
data = newndarray
|
||
|
dim1, dim2 = data.shape
|
||
|
if dim1 != dim2:
|
||
|
raise ValueError("Non-square matrix tensor.")
|
||
|
if self.dim.is_number:
|
||
|
if self.dim != dim1:
|
||
|
raise ValueError("Dimension mismatch")
|
||
|
_tensor_data_substitution_dict[self] = data
|
||
|
_tensor_data_substitution_dict.add_metric_data(self.metric, data)
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
delta = self.get_kronecker_delta()
|
||
|
i1 = TensorIndex('i1', self)
|
||
|
i2 = TensorIndex('i2', self)
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
delta(i1, -i2).data = _TensorDataLazyEvaluator.parse_data(eye(dim1))
|
||
|
|
||
|
@data.deleter
|
||
|
def data(self):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
if self in _tensor_data_substitution_dict:
|
||
|
del _tensor_data_substitution_dict[self]
|
||
|
if self.metric in _tensor_data_substitution_dict:
|
||
|
del _tensor_data_substitution_dict[self.metric]
|
||
|
|
||
|
@deprecated(
|
||
|
"""
|
||
|
The TensorIndexType.get_kronecker_delta() method is deprecated. Use
|
||
|
the TensorIndexType.delta attribute instead.
|
||
|
""",
|
||
|
deprecated_since_version="1.5",
|
||
|
active_deprecations_target="deprecated-tensorindextype-methods",
|
||
|
)
|
||
|
def get_kronecker_delta(self):
|
||
|
sym2 = TensorSymmetry(get_symmetric_group_sgs(2))
|
||
|
delta = TensorHead('KD', [self]*2, sym2)
|
||
|
return delta
|
||
|
|
||
|
@deprecated(
|
||
|
"""
|
||
|
The TensorIndexType.get_epsilon() method is deprecated. Use
|
||
|
the TensorIndexType.epsilon attribute instead.
|
||
|
""",
|
||
|
deprecated_since_version="1.5",
|
||
|
active_deprecations_target="deprecated-tensorindextype-methods",
|
||
|
)
|
||
|
def get_epsilon(self):
|
||
|
if not isinstance(self._eps_dim, (SYMPY_INTS, Integer)):
|
||
|
return None
|
||
|
sym = TensorSymmetry(get_symmetric_group_sgs(self._eps_dim, 1))
|
||
|
epsilon = TensorHead('Eps', [self]*self._eps_dim, sym)
|
||
|
return epsilon
|
||
|
|
||
|
def _components_data_full_destroy(self):
|
||
|
"""
|
||
|
EXPERIMENTAL: do not rely on this API method.
|
||
|
|
||
|
This destroys components data associated to the ``TensorIndexType``, if
|
||
|
any, specifically:
|
||
|
|
||
|
* metric tensor data
|
||
|
* Kronecker tensor data
|
||
|
"""
|
||
|
if self in _tensor_data_substitution_dict:
|
||
|
del _tensor_data_substitution_dict[self]
|
||
|
|
||
|
def delete_tensmul_data(key):
|
||
|
if key in _tensor_data_substitution_dict._substitutions_dict_tensmul:
|
||
|
del _tensor_data_substitution_dict._substitutions_dict_tensmul[key]
|
||
|
|
||
|
# delete metric data:
|
||
|
delete_tensmul_data((self.metric, True, True))
|
||
|
delete_tensmul_data((self.metric, True, False))
|
||
|
delete_tensmul_data((self.metric, False, True))
|
||
|
delete_tensmul_data((self.metric, False, False))
|
||
|
|
||
|
# delete delta tensor data:
|
||
|
delta = self.get_kronecker_delta()
|
||
|
if delta in _tensor_data_substitution_dict:
|
||
|
del _tensor_data_substitution_dict[delta]
|
||
|
|
||
|
|
||
|
class TensorIndex(Basic):
|
||
|
"""
|
||
|
Represents a tensor index
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : name of the index, or ``True`` if you want it to be automatically assigned
|
||
|
tensor_index_type : ``TensorIndexType`` of the index
|
||
|
is_up : flag for contravariant index (is_up=True by default)
|
||
|
|
||
|
Attributes
|
||
|
==========
|
||
|
|
||
|
``name``
|
||
|
``tensor_index_type``
|
||
|
``is_up``
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Tensor indices are contracted with the Einstein summation convention.
|
||
|
|
||
|
An index can be in contravariant or in covariant form; in the latter
|
||
|
case it is represented prepending a ``-`` to the index name. Adding
|
||
|
``-`` to a covariant (is_up=False) index makes it contravariant.
|
||
|
|
||
|
Dummy indices have a name with head given by
|
||
|
``tensor_inde_type.dummy_name`` with underscore and a number.
|
||
|
|
||
|
Similar to ``symbols`` multiple contravariant indices can be created
|
||
|
at once using ``tensor_indices(s, typ)``, where ``s`` is a string
|
||
|
of names.
|
||
|
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, TensorIndex, TensorHead, tensor_indices
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> mu = TensorIndex('mu', Lorentz, is_up=False)
|
||
|
>>> nu, rho = tensor_indices('nu, rho', Lorentz)
|
||
|
>>> A = TensorHead('A', [Lorentz, Lorentz])
|
||
|
>>> A(mu, nu)
|
||
|
A(-mu, nu)
|
||
|
>>> A(-mu, -rho)
|
||
|
A(mu, -rho)
|
||
|
>>> A(mu, -mu)
|
||
|
A(-L_0, L_0)
|
||
|
"""
|
||
|
def __new__(cls, name, tensor_index_type, is_up=True):
|
||
|
if isinstance(name, str):
|
||
|
name_symbol = Symbol(name)
|
||
|
elif isinstance(name, Symbol):
|
||
|
name_symbol = name
|
||
|
elif name is True:
|
||
|
name = "_i{}".format(len(tensor_index_type._autogenerated))
|
||
|
name_symbol = Symbol(name)
|
||
|
tensor_index_type._autogenerated.append(name_symbol)
|
||
|
else:
|
||
|
raise ValueError("invalid name")
|
||
|
|
||
|
is_up = sympify(is_up)
|
||
|
return Basic.__new__(cls, name_symbol, tensor_index_type, is_up)
|
||
|
|
||
|
@property
|
||
|
def name(self):
|
||
|
return self.args[0].name
|
||
|
|
||
|
@property
|
||
|
def tensor_index_type(self):
|
||
|
return self.args[1]
|
||
|
|
||
|
@property
|
||
|
def is_up(self):
|
||
|
return self.args[2]
|
||
|
|
||
|
def _print(self):
|
||
|
s = self.name
|
||
|
if not self.is_up:
|
||
|
s = '-%s' % s
|
||
|
return s
|
||
|
|
||
|
def __lt__(self, other):
|
||
|
return ((self.tensor_index_type, self.name) <
|
||
|
(other.tensor_index_type, other.name))
|
||
|
|
||
|
def __neg__(self):
|
||
|
t1 = TensorIndex(self.name, self.tensor_index_type,
|
||
|
(not self.is_up))
|
||
|
return t1
|
||
|
|
||
|
|
||
|
def tensor_indices(s, typ):
|
||
|
"""
|
||
|
Returns list of tensor indices given their names and their types.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
s : string of comma separated names of indices
|
||
|
|
||
|
typ : ``TensorIndexType`` of the indices
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
|
||
|
"""
|
||
|
if isinstance(s, str):
|
||
|
a = [x.name for x in symbols(s, seq=True)]
|
||
|
else:
|
||
|
raise ValueError('expecting a string')
|
||
|
|
||
|
tilist = [TensorIndex(i, typ) for i in a]
|
||
|
if len(tilist) == 1:
|
||
|
return tilist[0]
|
||
|
return tilist
|
||
|
|
||
|
|
||
|
class TensorSymmetry(Basic):
|
||
|
"""
|
||
|
Monoterm symmetry of a tensor (i.e. any symmetric or anti-symmetric
|
||
|
index permutation). For the relevant terminology see ``tensor_can.py``
|
||
|
section of the combinatorics module.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
bsgs : tuple ``(base, sgs)`` BSGS of the symmetry of the tensor
|
||
|
|
||
|
Attributes
|
||
|
==========
|
||
|
|
||
|
``base`` : base of the BSGS
|
||
|
``generators`` : generators of the BSGS
|
||
|
``rank`` : rank of the tensor
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
A tensor can have an arbitrary monoterm symmetry provided by its BSGS.
|
||
|
Multiterm symmetries, like the cyclic symmetry of the Riemann tensor
|
||
|
(i.e., Bianchi identity), are not covered. See combinatorics module for
|
||
|
information on how to generate BSGS for a general index permutation group.
|
||
|
Simple symmetries can be generated using built-in methods.
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
|
||
|
sympy.combinatorics.tensor_can.get_symmetric_group_sgs
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
Define a symmetric tensor of rank 2
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, TensorSymmetry, get_symmetric_group_sgs, TensorHead
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> sym = TensorSymmetry(get_symmetric_group_sgs(2))
|
||
|
>>> T = TensorHead('T', [Lorentz]*2, sym)
|
||
|
|
||
|
Note, that the same can also be done using built-in TensorSymmetry methods
|
||
|
|
||
|
>>> sym2 = TensorSymmetry.fully_symmetric(2)
|
||
|
>>> sym == sym2
|
||
|
True
|
||
|
"""
|
||
|
def __new__(cls, *args, **kw_args):
|
||
|
if len(args) == 1:
|
||
|
base, generators = args[0]
|
||
|
elif len(args) == 2:
|
||
|
base, generators = args
|
||
|
else:
|
||
|
raise TypeError("bsgs required, either two separate parameters or one tuple")
|
||
|
|
||
|
if not isinstance(base, Tuple):
|
||
|
base = Tuple(*base)
|
||
|
if not isinstance(generators, Tuple):
|
||
|
generators = Tuple(*generators)
|
||
|
|
||
|
return Basic.__new__(cls, base, generators, **kw_args)
|
||
|
|
||
|
@property
|
||
|
def base(self):
|
||
|
return self.args[0]
|
||
|
|
||
|
@property
|
||
|
def generators(self):
|
||
|
return self.args[1]
|
||
|
|
||
|
@property
|
||
|
def rank(self):
|
||
|
return self.generators[0].size - 2
|
||
|
|
||
|
@classmethod
|
||
|
def fully_symmetric(cls, rank):
|
||
|
"""
|
||
|
Returns a fully symmetric (antisymmetric if ``rank``<0)
|
||
|
TensorSymmetry object for ``abs(rank)`` indices.
|
||
|
"""
|
||
|
if rank > 0:
|
||
|
bsgs = get_symmetric_group_sgs(rank, False)
|
||
|
elif rank < 0:
|
||
|
bsgs = get_symmetric_group_sgs(-rank, True)
|
||
|
elif rank == 0:
|
||
|
bsgs = ([], [Permutation(1)])
|
||
|
return TensorSymmetry(bsgs)
|
||
|
|
||
|
@classmethod
|
||
|
def direct_product(cls, *args):
|
||
|
"""
|
||
|
Returns a TensorSymmetry object that is being a direct product of
|
||
|
fully (anti-)symmetric index permutation groups.
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Some examples for different values of ``(*args)``:
|
||
|
``(1)`` vector, equivalent to ``TensorSymmetry.fully_symmetric(1)``
|
||
|
``(2)`` tensor with 2 symmetric indices, equivalent to ``.fully_symmetric(2)``
|
||
|
``(-2)`` tensor with 2 antisymmetric indices, equivalent to ``.fully_symmetric(-2)``
|
||
|
``(2, -2)`` tensor with the first 2 indices commuting and the last 2 anticommuting
|
||
|
``(1, 1, 1)`` tensor with 3 indices without any symmetry
|
||
|
"""
|
||
|
base, sgs = [], [Permutation(1)]
|
||
|
for arg in args:
|
||
|
if arg > 0:
|
||
|
bsgs2 = get_symmetric_group_sgs(arg, False)
|
||
|
elif arg < 0:
|
||
|
bsgs2 = get_symmetric_group_sgs(-arg, True)
|
||
|
else:
|
||
|
continue
|
||
|
base, sgs = bsgs_direct_product(base, sgs, *bsgs2)
|
||
|
|
||
|
return TensorSymmetry(base, sgs)
|
||
|
|
||
|
@classmethod
|
||
|
def riemann(cls):
|
||
|
"""
|
||
|
Returns a monotorem symmetry of the Riemann tensor
|
||
|
"""
|
||
|
return TensorSymmetry(riemann_bsgs)
|
||
|
|
||
|
@classmethod
|
||
|
def no_symmetry(cls, rank):
|
||
|
"""
|
||
|
TensorSymmetry object for ``rank`` indices with no symmetry
|
||
|
"""
|
||
|
return TensorSymmetry([], [Permutation(rank+1)])
|
||
|
|
||
|
|
||
|
@deprecated(
|
||
|
"""
|
||
|
The tensorsymmetry() function is deprecated. Use the TensorSymmetry
|
||
|
constructor instead.
|
||
|
""",
|
||
|
deprecated_since_version="1.5",
|
||
|
active_deprecations_target="deprecated-tensorsymmetry",
|
||
|
)
|
||
|
def tensorsymmetry(*args):
|
||
|
"""
|
||
|
Returns a ``TensorSymmetry`` object. This method is deprecated, use
|
||
|
``TensorSymmetry.direct_product()`` or ``.riemann()`` instead.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
One can represent a tensor with any monoterm slot symmetry group
|
||
|
using a BSGS.
|
||
|
|
||
|
``args`` can be a BSGS
|
||
|
``args[0]`` base
|
||
|
``args[1]`` sgs
|
||
|
|
||
|
Usually tensors are in (direct products of) representations
|
||
|
of the symmetric group;
|
||
|
``args`` can be a list of lists representing the shapes of Young tableaux
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
For instance:
|
||
|
``[[1]]`` vector
|
||
|
``[[1]*n]`` symmetric tensor of rank ``n``
|
||
|
``[[n]]`` antisymmetric tensor of rank ``n``
|
||
|
``[[2, 2]]`` monoterm slot symmetry of the Riemann tensor
|
||
|
``[[1],[1]]`` vector*vector
|
||
|
``[[2],[1],[1]`` (antisymmetric tensor)*vector*vector
|
||
|
|
||
|
Notice that with the shape ``[2, 2]`` we associate only the monoterm
|
||
|
symmetries of the Riemann tensor; this is an abuse of notation,
|
||
|
since the shape ``[2, 2]`` corresponds usually to the irreducible
|
||
|
representation characterized by the monoterm symmetries and by the
|
||
|
cyclic symmetry.
|
||
|
"""
|
||
|
from sympy.combinatorics import Permutation
|
||
|
|
||
|
def tableau2bsgs(a):
|
||
|
if len(a) == 1:
|
||
|
# antisymmetric vector
|
||
|
n = a[0]
|
||
|
bsgs = get_symmetric_group_sgs(n, 1)
|
||
|
else:
|
||
|
if all(x == 1 for x in a):
|
||
|
# symmetric vector
|
||
|
n = len(a)
|
||
|
bsgs = get_symmetric_group_sgs(n)
|
||
|
elif a == [2, 2]:
|
||
|
bsgs = riemann_bsgs
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
return bsgs
|
||
|
|
||
|
if not args:
|
||
|
return TensorSymmetry(Tuple(), Tuple(Permutation(1)))
|
||
|
|
||
|
if len(args) == 2 and isinstance(args[1][0], Permutation):
|
||
|
return TensorSymmetry(args)
|
||
|
base, sgs = tableau2bsgs(args[0])
|
||
|
for a in args[1:]:
|
||
|
basex, sgsx = tableau2bsgs(a)
|
||
|
base, sgs = bsgs_direct_product(base, sgs, basex, sgsx)
|
||
|
return TensorSymmetry(Tuple(base, sgs))
|
||
|
|
||
|
@deprecated(
|
||
|
"TensorType is deprecated. Use tensor_heads() instead.",
|
||
|
deprecated_since_version="1.5",
|
||
|
active_deprecations_target="deprecated-tensortype",
|
||
|
)
|
||
|
class TensorType(Basic):
|
||
|
"""
|
||
|
Class of tensor types. Deprecated, use tensor_heads() instead.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
index_types : list of ``TensorIndexType`` of the tensor indices
|
||
|
symmetry : ``TensorSymmetry`` of the tensor
|
||
|
|
||
|
Attributes
|
||
|
==========
|
||
|
|
||
|
``index_types``
|
||
|
``symmetry``
|
||
|
``types`` : list of ``TensorIndexType`` without repetitions
|
||
|
"""
|
||
|
is_commutative = False
|
||
|
|
||
|
def __new__(cls, index_types, symmetry, **kw_args):
|
||
|
assert symmetry.rank == len(index_types)
|
||
|
obj = Basic.__new__(cls, Tuple(*index_types), symmetry, **kw_args)
|
||
|
return obj
|
||
|
|
||
|
@property
|
||
|
def index_types(self):
|
||
|
return self.args[0]
|
||
|
|
||
|
@property
|
||
|
def symmetry(self):
|
||
|
return self.args[1]
|
||
|
|
||
|
@property
|
||
|
def types(self):
|
||
|
return sorted(set(self.index_types), key=lambda x: x.name)
|
||
|
|
||
|
def __str__(self):
|
||
|
return 'TensorType(%s)' % ([str(x) for x in self.index_types])
|
||
|
|
||
|
def __call__(self, s, comm=0):
|
||
|
"""
|
||
|
Return a TensorHead object or a list of TensorHead objects.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
s : name or string of names.
|
||
|
|
||
|
comm : Commutation group.
|
||
|
|
||
|
see ``_TensorManager.set_comm``
|
||
|
"""
|
||
|
if isinstance(s, str):
|
||
|
names = [x.name for x in symbols(s, seq=True)]
|
||
|
else:
|
||
|
raise ValueError('expecting a string')
|
||
|
if len(names) == 1:
|
||
|
return TensorHead(names[0], self.index_types, self.symmetry, comm)
|
||
|
else:
|
||
|
return [TensorHead(name, self.index_types, self.symmetry, comm) for name in names]
|
||
|
|
||
|
|
||
|
@deprecated(
|
||
|
"""
|
||
|
The tensorhead() function is deprecated. Use tensor_heads() instead.
|
||
|
""",
|
||
|
deprecated_since_version="1.5",
|
||
|
active_deprecations_target="deprecated-tensorhead",
|
||
|
)
|
||
|
def tensorhead(name, typ, sym=None, comm=0):
|
||
|
"""
|
||
|
Function generating tensorhead(s). This method is deprecated,
|
||
|
use TensorHead constructor or tensor_heads() instead.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : name or sequence of names (as in ``symbols``)
|
||
|
|
||
|
typ : index types
|
||
|
|
||
|
sym : same as ``*args`` in ``tensorsymmetry``
|
||
|
|
||
|
comm : commutation group number
|
||
|
see ``_TensorManager.set_comm``
|
||
|
"""
|
||
|
if sym is None:
|
||
|
sym = [[1] for i in range(len(typ))]
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
sym = tensorsymmetry(*sym)
|
||
|
return TensorHead(name, typ, sym, comm)
|
||
|
|
||
|
|
||
|
class TensorHead(Basic):
|
||
|
"""
|
||
|
Tensor head of the tensor.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
name : name of the tensor
|
||
|
index_types : list of TensorIndexType
|
||
|
symmetry : TensorSymmetry of the tensor
|
||
|
comm : commutation group number
|
||
|
|
||
|
Attributes
|
||
|
==========
|
||
|
|
||
|
``name``
|
||
|
``index_types``
|
||
|
``rank`` : total number of indices
|
||
|
``symmetry``
|
||
|
``comm`` : commutation group
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
Similar to ``symbols`` multiple TensorHeads can be created using
|
||
|
``tensorhead(s, typ, sym=None, comm=0)`` function, where ``s``
|
||
|
is the string of names and ``sym`` is the monoterm tensor symmetry
|
||
|
(see ``tensorsymmetry``).
|
||
|
|
||
|
A ``TensorHead`` belongs to a commutation group, defined by a
|
||
|
symbol on number ``comm`` (see ``_TensorManager.set_comm``);
|
||
|
tensors in a commutation group have the same commutation properties;
|
||
|
by default ``comm`` is ``0``, the group of the commuting tensors.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
Define a fully antisymmetric tensor of rank 2:
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> asym2 = TensorSymmetry.fully_symmetric(-2)
|
||
|
>>> A = TensorHead('A', [Lorentz, Lorentz], asym2)
|
||
|
|
||
|
Examples with ndarray values, the components data assigned to the
|
||
|
``TensorHead`` object are assumed to be in a fully-contravariant
|
||
|
representation. In case it is necessary to assign components data which
|
||
|
represents the values of a non-fully covariant tensor, see the other
|
||
|
examples.
|
||
|
|
||
|
>>> from sympy.tensor.tensor import tensor_indices
|
||
|
>>> from sympy import diag
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> i0, i1 = tensor_indices('i0:2', Lorentz)
|
||
|
|
||
|
Specify a replacement dictionary to keep track of the arrays to use for
|
||
|
replacements in the tensorial expression. The ``TensorIndexType`` is
|
||
|
associated to the metric used for contractions (in fully covariant form):
|
||
|
|
||
|
>>> repl = {Lorentz: diag(1, -1, -1, -1)}
|
||
|
|
||
|
Let's see some examples of working with components with the electromagnetic
|
||
|
tensor:
|
||
|
|
||
|
>>> from sympy import symbols
|
||
|
>>> Ex, Ey, Ez, Bx, By, Bz = symbols('E_x E_y E_z B_x B_y B_z')
|
||
|
>>> c = symbols('c', positive=True)
|
||
|
|
||
|
Let's define `F`, an antisymmetric tensor:
|
||
|
|
||
|
>>> F = TensorHead('F', [Lorentz, Lorentz], asym2)
|
||
|
|
||
|
Let's update the dictionary to contain the matrix to use in the
|
||
|
replacements:
|
||
|
|
||
|
>>> repl.update({F(-i0, -i1): [
|
||
|
... [0, Ex/c, Ey/c, Ez/c],
|
||
|
... [-Ex/c, 0, -Bz, By],
|
||
|
... [-Ey/c, Bz, 0, -Bx],
|
||
|
... [-Ez/c, -By, Bx, 0]]})
|
||
|
|
||
|
Now it is possible to retrieve the contravariant form of the Electromagnetic
|
||
|
tensor:
|
||
|
|
||
|
>>> F(i0, i1).replace_with_arrays(repl, [i0, i1])
|
||
|
[[0, -E_x/c, -E_y/c, -E_z/c], [E_x/c, 0, -B_z, B_y], [E_y/c, B_z, 0, -B_x], [E_z/c, -B_y, B_x, 0]]
|
||
|
|
||
|
and the mixed contravariant-covariant form:
|
||
|
|
||
|
>>> F(i0, -i1).replace_with_arrays(repl, [i0, -i1])
|
||
|
[[0, E_x/c, E_y/c, E_z/c], [E_x/c, 0, B_z, -B_y], [E_y/c, -B_z, 0, B_x], [E_z/c, B_y, -B_x, 0]]
|
||
|
|
||
|
Energy-momentum of a particle may be represented as:
|
||
|
|
||
|
>>> from sympy import symbols
|
||
|
>>> P = TensorHead('P', [Lorentz], TensorSymmetry.no_symmetry(1))
|
||
|
>>> E, px, py, pz = symbols('E p_x p_y p_z', positive=True)
|
||
|
>>> repl.update({P(i0): [E, px, py, pz]})
|
||
|
|
||
|
The contravariant and covariant components are, respectively:
|
||
|
|
||
|
>>> P(i0).replace_with_arrays(repl, [i0])
|
||
|
[E, p_x, p_y, p_z]
|
||
|
>>> P(-i0).replace_with_arrays(repl, [-i0])
|
||
|
[E, -p_x, -p_y, -p_z]
|
||
|
|
||
|
The contraction of a 1-index tensor by itself:
|
||
|
|
||
|
>>> expr = P(i0)*P(-i0)
|
||
|
>>> expr.replace_with_arrays(repl, [])
|
||
|
E**2 - p_x**2 - p_y**2 - p_z**2
|
||
|
"""
|
||
|
is_commutative = False
|
||
|
|
||
|
def __new__(cls, name, index_types, symmetry=None, comm=0):
|
||
|
if isinstance(name, str):
|
||
|
name_symbol = Symbol(name)
|
||
|
elif isinstance(name, Symbol):
|
||
|
name_symbol = name
|
||
|
else:
|
||
|
raise ValueError("invalid name")
|
||
|
|
||
|
if symmetry is None:
|
||
|
symmetry = TensorSymmetry.no_symmetry(len(index_types))
|
||
|
else:
|
||
|
assert symmetry.rank == len(index_types)
|
||
|
|
||
|
obj = Basic.__new__(cls, name_symbol, Tuple(*index_types), symmetry)
|
||
|
obj.comm = TensorManager.comm_symbols2i(comm)
|
||
|
return obj
|
||
|
|
||
|
@property
|
||
|
def name(self):
|
||
|
return self.args[0].name
|
||
|
|
||
|
@property
|
||
|
def index_types(self):
|
||
|
return list(self.args[1])
|
||
|
|
||
|
@property
|
||
|
def symmetry(self):
|
||
|
return self.args[2]
|
||
|
|
||
|
@property
|
||
|
def rank(self):
|
||
|
return len(self.index_types)
|
||
|
|
||
|
def __lt__(self, other):
|
||
|
return (self.name, self.index_types) < (other.name, other.index_types)
|
||
|
|
||
|
def commutes_with(self, other):
|
||
|
"""
|
||
|
Returns ``0`` if ``self`` and ``other`` commute, ``1`` if they anticommute.
|
||
|
|
||
|
Returns ``None`` if ``self`` and ``other`` neither commute nor anticommute.
|
||
|
"""
|
||
|
r = TensorManager.get_comm(self.comm, other.comm)
|
||
|
return r
|
||
|
|
||
|
def _print(self):
|
||
|
return '%s(%s)' %(self.name, ','.join([str(x) for x in self.index_types]))
|
||
|
|
||
|
def __call__(self, *indices, **kw_args):
|
||
|
"""
|
||
|
Returns a tensor with indices.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
There is a special behavior in case of indices denoted by ``True``,
|
||
|
they are considered auto-matrix indices, their slots are automatically
|
||
|
filled, and confer to the tensor the behavior of a matrix or vector
|
||
|
upon multiplication with another tensor containing auto-matrix indices
|
||
|
of the same ``TensorIndexType``. This means indices get summed over the
|
||
|
same way as in matrix multiplication. For matrix behavior, define two
|
||
|
auto-matrix indices, for vector behavior define just one.
|
||
|
|
||
|
Indices can also be strings, in which case the attribute
|
||
|
``index_types`` is used to convert them to proper ``TensorIndex``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorSymmetry, TensorHead
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> a, b = tensor_indices('a,b', Lorentz)
|
||
|
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.no_symmetry(2))
|
||
|
>>> t = A(a, -b)
|
||
|
>>> t
|
||
|
A(a, -b)
|
||
|
|
||
|
"""
|
||
|
|
||
|
updated_indices = []
|
||
|
for idx, typ in zip(indices, self.index_types):
|
||
|
if isinstance(idx, str):
|
||
|
idx = idx.strip().replace(" ", "")
|
||
|
if idx.startswith('-'):
|
||
|
updated_indices.append(TensorIndex(idx[1:], typ,
|
||
|
is_up=False))
|
||
|
else:
|
||
|
updated_indices.append(TensorIndex(idx, typ))
|
||
|
else:
|
||
|
updated_indices.append(idx)
|
||
|
|
||
|
updated_indices += indices[len(updated_indices):]
|
||
|
|
||
|
tensor = Tensor(self, updated_indices, **kw_args)
|
||
|
return tensor.doit()
|
||
|
|
||
|
# Everything below this line is deprecated
|
||
|
|
||
|
def __pow__(self, other):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
if self.data is None:
|
||
|
raise ValueError("No power on abstract tensors.")
|
||
|
from .array import tensorproduct, tensorcontraction
|
||
|
metrics = [_.data for _ in self.index_types]
|
||
|
|
||
|
marray = self.data
|
||
|
marraydim = marray.rank()
|
||
|
for metric in metrics:
|
||
|
marray = tensorproduct(marray, metric, marray)
|
||
|
marray = tensorcontraction(marray, (0, marraydim), (marraydim+1, marraydim+2))
|
||
|
|
||
|
return marray ** (other * S.Half)
|
||
|
|
||
|
@property
|
||
|
def data(self):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
return _tensor_data_substitution_dict[self]
|
||
|
|
||
|
@data.setter
|
||
|
def data(self, data):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
_tensor_data_substitution_dict[self] = data
|
||
|
|
||
|
@data.deleter
|
||
|
def data(self):
|
||
|
deprecate_data()
|
||
|
if self in _tensor_data_substitution_dict:
|
||
|
del _tensor_data_substitution_dict[self]
|
||
|
|
||
|
def __iter__(self):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
return self.data.__iter__()
|
||
|
|
||
|
def _components_data_full_destroy(self):
|
||
|
"""
|
||
|
EXPERIMENTAL: do not rely on this API method.
|
||
|
|
||
|
Destroy components data associated to the ``TensorHead`` object, this
|
||
|
checks for attached components data, and destroys components data too.
|
||
|
"""
|
||
|
# do not garbage collect Kronecker tensor (it should be done by
|
||
|
# ``TensorIndexType`` garbage collection)
|
||
|
deprecate_data()
|
||
|
if self.name == "KD":
|
||
|
return
|
||
|
|
||
|
# the data attached to a tensor must be deleted only by the TensorHead
|
||
|
# destructor. If the TensorHead is deleted, it means that there are no
|
||
|
# more instances of that tensor anywhere.
|
||
|
if self in _tensor_data_substitution_dict:
|
||
|
del _tensor_data_substitution_dict[self]
|
||
|
|
||
|
|
||
|
def tensor_heads(s, index_types, symmetry=None, comm=0):
|
||
|
"""
|
||
|
Returns a sequence of TensorHeads from a string `s`
|
||
|
"""
|
||
|
if isinstance(s, str):
|
||
|
names = [x.name for x in symbols(s, seq=True)]
|
||
|
else:
|
||
|
raise ValueError('expecting a string')
|
||
|
|
||
|
thlist = [TensorHead(name, index_types, symmetry, comm) for name in names]
|
||
|
if len(thlist) == 1:
|
||
|
return thlist[0]
|
||
|
return thlist
|
||
|
|
||
|
|
||
|
class TensExpr(Expr, ABC):
|
||
|
"""
|
||
|
Abstract base class for tensor expressions
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
A tensor expression is an expression formed by tensors;
|
||
|
currently the sums of tensors are distributed.
|
||
|
|
||
|
A ``TensExpr`` can be a ``TensAdd`` or a ``TensMul``.
|
||
|
|
||
|
``TensMul`` objects are formed by products of component tensors,
|
||
|
and include a coefficient, which is a SymPy expression.
|
||
|
|
||
|
|
||
|
In the internal representation contracted indices are represented
|
||
|
by ``(ipos1, ipos2, icomp1, icomp2)``, where ``icomp1`` is the position
|
||
|
of the component tensor with contravariant index, ``ipos1`` is the
|
||
|
slot which the index occupies in that component tensor.
|
||
|
|
||
|
Contracted indices are therefore nameless in the internal representation.
|
||
|
"""
|
||
|
|
||
|
_op_priority = 12.0
|
||
|
is_commutative = False
|
||
|
|
||
|
def __neg__(self):
|
||
|
return self*S.NegativeOne
|
||
|
|
||
|
def __abs__(self):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __add__(self, other):
|
||
|
return TensAdd(self, other).doit()
|
||
|
|
||
|
def __radd__(self, other):
|
||
|
return TensAdd(other, self).doit()
|
||
|
|
||
|
def __sub__(self, other):
|
||
|
return TensAdd(self, -other).doit()
|
||
|
|
||
|
def __rsub__(self, other):
|
||
|
return TensAdd(other, -self).doit()
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
"""
|
||
|
Multiply two tensors using Einstein summation convention.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
If the two tensors have an index in common, one contravariant
|
||
|
and the other covariant, in their product the indices are summed
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
|
||
|
>>> g = Lorentz.metric
|
||
|
>>> p, q = tensor_heads('p,q', [Lorentz])
|
||
|
>>> t1 = p(m0)
|
||
|
>>> t2 = q(-m0)
|
||
|
>>> t1*t2
|
||
|
p(L_0)*q(-L_0)
|
||
|
"""
|
||
|
return TensMul(self, other).doit()
|
||
|
|
||
|
def __rmul__(self, other):
|
||
|
return TensMul(other, self).doit()
|
||
|
|
||
|
def __truediv__(self, other):
|
||
|
other = _sympify(other)
|
||
|
if isinstance(other, TensExpr):
|
||
|
raise ValueError('cannot divide by a tensor')
|
||
|
return TensMul(self, S.One/other).doit()
|
||
|
|
||
|
def __rtruediv__(self, other):
|
||
|
raise ValueError('cannot divide by a tensor')
|
||
|
|
||
|
def __pow__(self, other):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
if self.data is None:
|
||
|
raise ValueError("No power without ndarray data.")
|
||
|
from .array import tensorproduct, tensorcontraction
|
||
|
free = self.free
|
||
|
marray = self.data
|
||
|
mdim = marray.rank()
|
||
|
for metric in free:
|
||
|
marray = tensorcontraction(
|
||
|
tensorproduct(
|
||
|
marray,
|
||
|
metric[0].tensor_index_type.data,
|
||
|
marray),
|
||
|
(0, mdim), (mdim+1, mdim+2)
|
||
|
)
|
||
|
return marray ** (other * S.Half)
|
||
|
|
||
|
def __rpow__(self, other):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
@property
|
||
|
@abstractmethod
|
||
|
def nocoeff(self):
|
||
|
raise NotImplementedError("abstract method")
|
||
|
|
||
|
@property
|
||
|
@abstractmethod
|
||
|
def coeff(self):
|
||
|
raise NotImplementedError("abstract method")
|
||
|
|
||
|
@abstractmethod
|
||
|
def get_indices(self):
|
||
|
raise NotImplementedError("abstract method")
|
||
|
|
||
|
@abstractmethod
|
||
|
def get_free_indices(self) -> list[TensorIndex]:
|
||
|
raise NotImplementedError("abstract method")
|
||
|
|
||
|
@abstractmethod
|
||
|
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
|
||
|
raise NotImplementedError("abstract method")
|
||
|
|
||
|
def fun_eval(self, *index_tuples):
|
||
|
deprecate_fun_eval()
|
||
|
return self.substitute_indices(*index_tuples)
|
||
|
|
||
|
def get_matrix(self):
|
||
|
"""
|
||
|
DEPRECATED: do not use.
|
||
|
|
||
|
Returns ndarray components data as a matrix, if components data are
|
||
|
available and ndarray dimension does not exceed 2.
|
||
|
"""
|
||
|
from sympy.matrices.dense import Matrix
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
if 0 < self.rank <= 2:
|
||
|
rows = self.data.shape[0]
|
||
|
columns = self.data.shape[1] if self.rank == 2 else 1
|
||
|
if self.rank == 2:
|
||
|
mat_list = [] * rows
|
||
|
for i in range(rows):
|
||
|
mat_list.append([])
|
||
|
for j in range(columns):
|
||
|
mat_list[i].append(self[i, j])
|
||
|
else:
|
||
|
mat_list = [None] * rows
|
||
|
for i in range(rows):
|
||
|
mat_list[i] = self[i]
|
||
|
return Matrix(mat_list)
|
||
|
else:
|
||
|
raise NotImplementedError(
|
||
|
"missing multidimensional reduction to matrix.")
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_indices_permutation(indices1, indices2):
|
||
|
return [indices1.index(i) for i in indices2]
|
||
|
|
||
|
def expand(self, **hints):
|
||
|
return _expand(self, **hints).doit()
|
||
|
|
||
|
def _expand(self, **kwargs):
|
||
|
return self
|
||
|
|
||
|
def _get_free_indices_set(self):
|
||
|
indset = set()
|
||
|
for arg in self.args:
|
||
|
if isinstance(arg, TensExpr):
|
||
|
indset.update(arg._get_free_indices_set())
|
||
|
return indset
|
||
|
|
||
|
def _get_dummy_indices_set(self):
|
||
|
indset = set()
|
||
|
for arg in self.args:
|
||
|
if isinstance(arg, TensExpr):
|
||
|
indset.update(arg._get_dummy_indices_set())
|
||
|
return indset
|
||
|
|
||
|
def _get_indices_set(self):
|
||
|
indset = set()
|
||
|
for arg in self.args:
|
||
|
if isinstance(arg, TensExpr):
|
||
|
indset.update(arg._get_indices_set())
|
||
|
return indset
|
||
|
|
||
|
@property
|
||
|
def _iterate_dummy_indices(self):
|
||
|
dummy_set = self._get_dummy_indices_set()
|
||
|
|
||
|
def recursor(expr, pos):
|
||
|
if isinstance(expr, TensorIndex):
|
||
|
if expr in dummy_set:
|
||
|
yield (expr, pos)
|
||
|
elif isinstance(expr, (Tuple, TensExpr)):
|
||
|
for p, arg in enumerate(expr.args):
|
||
|
yield from recursor(arg, pos+(p,))
|
||
|
|
||
|
return recursor(self, ())
|
||
|
|
||
|
@property
|
||
|
def _iterate_free_indices(self):
|
||
|
free_set = self._get_free_indices_set()
|
||
|
|
||
|
def recursor(expr, pos):
|
||
|
if isinstance(expr, TensorIndex):
|
||
|
if expr in free_set:
|
||
|
yield (expr, pos)
|
||
|
elif isinstance(expr, (Tuple, TensExpr)):
|
||
|
for p, arg in enumerate(expr.args):
|
||
|
yield from recursor(arg, pos+(p,))
|
||
|
|
||
|
return recursor(self, ())
|
||
|
|
||
|
@property
|
||
|
def _iterate_indices(self):
|
||
|
def recursor(expr, pos):
|
||
|
if isinstance(expr, TensorIndex):
|
||
|
yield (expr, pos)
|
||
|
elif isinstance(expr, (Tuple, TensExpr)):
|
||
|
for p, arg in enumerate(expr.args):
|
||
|
yield from recursor(arg, pos+(p,))
|
||
|
|
||
|
return recursor(self, ())
|
||
|
|
||
|
@staticmethod
|
||
|
def _contract_and_permute_with_metric(metric, array, pos, dim):
|
||
|
# TODO: add possibility of metric after (spinors)
|
||
|
from .array import tensorcontraction, tensorproduct, permutedims
|
||
|
|
||
|
array = tensorcontraction(tensorproduct(metric, array), (1, 2+pos))
|
||
|
permu = list(range(dim))
|
||
|
permu[0], permu[pos] = permu[pos], permu[0]
|
||
|
return permutedims(array, permu)
|
||
|
|
||
|
@staticmethod
|
||
|
def _match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict):
|
||
|
from .array import permutedims
|
||
|
|
||
|
index_types1 = [i.tensor_index_type for i in free_ind1]
|
||
|
|
||
|
# Check if variance of indices needs to be fixed:
|
||
|
pos2up = []
|
||
|
pos2down = []
|
||
|
free2remaining = free_ind2[:]
|
||
|
for pos1, index1 in enumerate(free_ind1):
|
||
|
if index1 in free2remaining:
|
||
|
pos2 = free2remaining.index(index1)
|
||
|
free2remaining[pos2] = None
|
||
|
continue
|
||
|
if -index1 in free2remaining:
|
||
|
pos2 = free2remaining.index(-index1)
|
||
|
free2remaining[pos2] = None
|
||
|
free_ind2[pos2] = index1
|
||
|
if index1.is_up:
|
||
|
pos2up.append(pos2)
|
||
|
else:
|
||
|
pos2down.append(pos2)
|
||
|
else:
|
||
|
index2 = free2remaining[pos1]
|
||
|
if index2 is None:
|
||
|
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
|
||
|
free2remaining[pos1] = None
|
||
|
free_ind2[pos1] = index1
|
||
|
if index1.is_up ^ index2.is_up:
|
||
|
if index1.is_up:
|
||
|
pos2up.append(pos1)
|
||
|
else:
|
||
|
pos2down.append(pos1)
|
||
|
|
||
|
if len(set(free_ind1) & set(free_ind2)) < len(free_ind1):
|
||
|
raise ValueError("incompatible indices: %s and %s" % (free_ind1, free_ind2))
|
||
|
|
||
|
# Raise indices:
|
||
|
for pos in pos2up:
|
||
|
index_type_pos = index_types1[pos]
|
||
|
if index_type_pos not in replacement_dict:
|
||
|
raise ValueError("No metric provided to lower index")
|
||
|
metric = replacement_dict[index_type_pos]
|
||
|
metric_inverse = _TensorDataLazyEvaluator.inverse_matrix(metric)
|
||
|
array = TensExpr._contract_and_permute_with_metric(metric_inverse, array, pos, len(free_ind1))
|
||
|
# Lower indices:
|
||
|
for pos in pos2down:
|
||
|
index_type_pos = index_types1[pos]
|
||
|
if index_type_pos not in replacement_dict:
|
||
|
raise ValueError("No metric provided to lower index")
|
||
|
metric = replacement_dict[index_type_pos]
|
||
|
array = TensExpr._contract_and_permute_with_metric(metric, array, pos, len(free_ind1))
|
||
|
|
||
|
if free_ind1:
|
||
|
permutation = TensExpr._get_indices_permutation(free_ind2, free_ind1)
|
||
|
array = permutedims(array, permutation)
|
||
|
|
||
|
if hasattr(array, "rank") and array.rank() == 0:
|
||
|
array = array[()]
|
||
|
|
||
|
return free_ind2, array
|
||
|
|
||
|
def replace_with_arrays(self, replacement_dict, indices=None):
|
||
|
"""
|
||
|
Replace the tensorial expressions with arrays. The final array will
|
||
|
correspond to the N-dimensional array with indices arranged according
|
||
|
to ``indices``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
replacement_dict
|
||
|
dictionary containing the replacement rules for tensors.
|
||
|
indices
|
||
|
the index order with respect to which the array is read. The
|
||
|
original index order will be used if no value is passed.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices
|
||
|
>>> from sympy.tensor.tensor import TensorHead
|
||
|
>>> from sympy import symbols, diag
|
||
|
|
||
|
>>> L = TensorIndexType("L")
|
||
|
>>> i, j = tensor_indices("i j", L)
|
||
|
>>> A = TensorHead("A", [L])
|
||
|
>>> A(i).replace_with_arrays({A(i): [1, 2]}, [i])
|
||
|
[1, 2]
|
||
|
|
||
|
Since 'indices' is optional, we can also call replace_with_arrays by
|
||
|
this way if no specific index order is needed:
|
||
|
|
||
|
>>> A(i).replace_with_arrays({A(i): [1, 2]})
|
||
|
[1, 2]
|
||
|
|
||
|
>>> expr = A(i)*A(j)
|
||
|
>>> expr.replace_with_arrays({A(i): [1, 2]})
|
||
|
[[1, 2], [2, 4]]
|
||
|
|
||
|
For contractions, specify the metric of the ``TensorIndexType``, which
|
||
|
in this case is ``L``, in its covariant form:
|
||
|
|
||
|
>>> expr = A(i)*A(-i)
|
||
|
>>> expr.replace_with_arrays({A(i): [1, 2], L: diag(1, -1)})
|
||
|
-3
|
||
|
|
||
|
Symmetrization of an array:
|
||
|
|
||
|
>>> H = TensorHead("H", [L, L])
|
||
|
>>> a, b, c, d = symbols("a b c d")
|
||
|
>>> expr = H(i, j)/2 + H(j, i)/2
|
||
|
>>> expr.replace_with_arrays({H(i, j): [[a, b], [c, d]]})
|
||
|
[[a, b/2 + c/2], [b/2 + c/2, d]]
|
||
|
|
||
|
Anti-symmetrization of an array:
|
||
|
|
||
|
>>> expr = H(i, j)/2 - H(j, i)/2
|
||
|
>>> repl = {H(i, j): [[a, b], [c, d]]}
|
||
|
>>> expr.replace_with_arrays(repl)
|
||
|
[[0, b/2 - c/2], [-b/2 + c/2, 0]]
|
||
|
|
||
|
The same expression can be read as the transpose by inverting ``i`` and
|
||
|
``j``:
|
||
|
|
||
|
>>> expr.replace_with_arrays(repl, [j, i])
|
||
|
[[0, -b/2 + c/2], [b/2 - c/2, 0]]
|
||
|
"""
|
||
|
from .array import Array
|
||
|
|
||
|
indices = indices or []
|
||
|
remap = {k.args[0] if k.is_up else -k.args[0]: k for k in self.get_free_indices()}
|
||
|
for i, index in enumerate(indices):
|
||
|
if isinstance(index, (Symbol, Mul)):
|
||
|
if index in remap:
|
||
|
indices[i] = remap[index]
|
||
|
else:
|
||
|
indices[i] = -remap[-index]
|
||
|
|
||
|
replacement_dict = {tensor: Array(array) for tensor, array in replacement_dict.items()}
|
||
|
|
||
|
# Check dimensions of replaced arrays:
|
||
|
for tensor, array in replacement_dict.items():
|
||
|
if isinstance(tensor, TensorIndexType):
|
||
|
expected_shape = [tensor.dim for i in range(2)]
|
||
|
else:
|
||
|
expected_shape = [index_type.dim for index_type in tensor.index_types]
|
||
|
if len(expected_shape) != array.rank() or (not all(dim1 == dim2 if
|
||
|
dim1.is_number else True for dim1, dim2 in zip(expected_shape,
|
||
|
array.shape))):
|
||
|
raise ValueError("shapes for tensor %s expected to be %s, "\
|
||
|
"replacement array shape is %s" % (tensor, expected_shape,
|
||
|
array.shape))
|
||
|
|
||
|
ret_indices, array = self._extract_data(replacement_dict)
|
||
|
|
||
|
last_indices, array = self._match_indices_with_other_tensor(array, indices, ret_indices, replacement_dict)
|
||
|
return array
|
||
|
|
||
|
def _check_add_Sum(self, expr, index_symbols):
|
||
|
from sympy.concrete.summations import Sum
|
||
|
indices = self.get_indices()
|
||
|
dum = self.dum
|
||
|
sum_indices = [ (index_symbols[i], 0,
|
||
|
indices[i].tensor_index_type.dim-1) for i, j in dum]
|
||
|
if sum_indices:
|
||
|
expr = Sum(expr, *sum_indices)
|
||
|
return expr
|
||
|
|
||
|
def _expand_partial_derivative(self):
|
||
|
# simply delegate the _expand_partial_derivative() to
|
||
|
# its arguments to expand a possibly found PartialDerivative
|
||
|
return self.func(*[
|
||
|
a._expand_partial_derivative()
|
||
|
if isinstance(a, TensExpr) else a
|
||
|
for a in self.args])
|
||
|
|
||
|
|
||
|
class TensAdd(TensExpr, AssocOp):
|
||
|
"""
|
||
|
Sum of tensors.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
free_args : list of the free indices
|
||
|
|
||
|
Attributes
|
||
|
==========
|
||
|
|
||
|
``args`` : tuple of addends
|
||
|
``rank`` : rank of the tensor
|
||
|
``free_args`` : list of the free indices in sorted order
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_heads, tensor_indices
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> a, b = tensor_indices('a,b', Lorentz)
|
||
|
>>> p, q = tensor_heads('p,q', [Lorentz])
|
||
|
>>> t = p(a) + q(a); t
|
||
|
p(a) + q(a)
|
||
|
|
||
|
Examples with components data added to the tensor expression:
|
||
|
|
||
|
>>> from sympy import symbols, diag
|
||
|
>>> x, y, z, t = symbols("x y z t")
|
||
|
>>> repl = {}
|
||
|
>>> repl[Lorentz] = diag(1, -1, -1, -1)
|
||
|
>>> repl[p(a)] = [1, 2, 3, 4]
|
||
|
>>> repl[q(a)] = [x, y, z, t]
|
||
|
|
||
|
The following are: 2**2 - 3**2 - 2**2 - 7**2 ==> -58
|
||
|
|
||
|
>>> expr = p(a) + q(a)
|
||
|
>>> expr.replace_with_arrays(repl, [a])
|
||
|
[x + 1, y + 2, z + 3, t + 4]
|
||
|
"""
|
||
|
|
||
|
def __new__(cls, *args, **kw_args):
|
||
|
args = [_sympify(x) for x in args if x]
|
||
|
args = TensAdd._tensAdd_flatten(args)
|
||
|
args.sort(key=default_sort_key)
|
||
|
if not args:
|
||
|
return S.Zero
|
||
|
if len(args) == 1:
|
||
|
return args[0]
|
||
|
|
||
|
return Basic.__new__(cls, *args, **kw_args)
|
||
|
|
||
|
@property
|
||
|
def coeff(self):
|
||
|
return S.One
|
||
|
|
||
|
@property
|
||
|
def nocoeff(self):
|
||
|
return self
|
||
|
|
||
|
def get_free_indices(self) -> list[TensorIndex]:
|
||
|
return self.free_indices
|
||
|
|
||
|
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
|
||
|
newargs = [arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args]
|
||
|
return self.func(*newargs)
|
||
|
|
||
|
@memoize_property
|
||
|
def rank(self):
|
||
|
if isinstance(self.args[0], TensExpr):
|
||
|
return self.args[0].rank
|
||
|
else:
|
||
|
return 0
|
||
|
|
||
|
@memoize_property
|
||
|
def free_args(self):
|
||
|
if isinstance(self.args[0], TensExpr):
|
||
|
return self.args[0].free_args
|
||
|
else:
|
||
|
return []
|
||
|
|
||
|
@memoize_property
|
||
|
def free_indices(self):
|
||
|
if isinstance(self.args[0], TensExpr):
|
||
|
return self.args[0].get_free_indices()
|
||
|
else:
|
||
|
return set()
|
||
|
|
||
|
def doit(self, **hints):
|
||
|
deep = hints.get('deep', True)
|
||
|
if deep:
|
||
|
args = [arg.doit(**hints) for arg in self.args]
|
||
|
else:
|
||
|
args = self.args
|
||
|
|
||
|
# if any of the args are zero (after doit), drop them. Otherwise, _tensAdd_check will complain about non-matching indices, even though the TensAdd is correctly formed.
|
||
|
args = [arg for arg in args if arg != S.Zero]
|
||
|
|
||
|
if len(args) == 0:
|
||
|
return S.Zero
|
||
|
elif len(args) == 1:
|
||
|
return args[0]
|
||
|
|
||
|
# now check that all addends have the same indices:
|
||
|
TensAdd._tensAdd_check(args)
|
||
|
|
||
|
# Collect terms appearing more than once, differing by their coefficients:
|
||
|
args = TensAdd._tensAdd_collect_terms(args)
|
||
|
|
||
|
# collect canonicalized terms
|
||
|
def sort_key(t):
|
||
|
if not isinstance(t, TensExpr):
|
||
|
return [], [], []
|
||
|
if hasattr(t, "_index_structure") and hasattr(t, "components"):
|
||
|
x = get_index_structure(t)
|
||
|
return t.components, x.free, x.dum
|
||
|
return [], [], []
|
||
|
args.sort(key=sort_key)
|
||
|
|
||
|
if not args:
|
||
|
return S.Zero
|
||
|
# it there is only a component tensor return it
|
||
|
if len(args) == 1:
|
||
|
return args[0]
|
||
|
|
||
|
obj = self.func(*args)
|
||
|
return obj
|
||
|
|
||
|
@staticmethod
|
||
|
def _tensAdd_flatten(args):
|
||
|
# flatten TensAdd, coerce terms which are not tensors to tensors
|
||
|
a = []
|
||
|
for x in args:
|
||
|
if isinstance(x, (Add, TensAdd)):
|
||
|
a.extend(list(x.args))
|
||
|
else:
|
||
|
a.append(x)
|
||
|
args = [x for x in a if x.coeff]
|
||
|
return args
|
||
|
|
||
|
@staticmethod
|
||
|
def _tensAdd_check(args):
|
||
|
# check that all addends have the same free indices
|
||
|
|
||
|
def get_indices_set(x: Expr) -> set[TensorIndex]:
|
||
|
if isinstance(x, TensExpr):
|
||
|
return set(x.get_free_indices())
|
||
|
return set()
|
||
|
|
||
|
indices0 = get_indices_set(args[0])
|
||
|
list_indices = [get_indices_set(arg) for arg in args[1:]]
|
||
|
if not all(x == indices0 for x in list_indices):
|
||
|
raise ValueError('all tensors must have the same indices')
|
||
|
|
||
|
@staticmethod
|
||
|
def _tensAdd_collect_terms(args):
|
||
|
# collect TensMul terms differing at most by their coefficient
|
||
|
terms_dict = defaultdict(list)
|
||
|
scalars = S.Zero
|
||
|
if isinstance(args[0], TensExpr):
|
||
|
free_indices = set(args[0].get_free_indices())
|
||
|
else:
|
||
|
free_indices = set()
|
||
|
|
||
|
for arg in args:
|
||
|
if not isinstance(arg, TensExpr):
|
||
|
if free_indices != set():
|
||
|
raise ValueError("wrong valence")
|
||
|
scalars += arg
|
||
|
continue
|
||
|
if free_indices != set(arg.get_free_indices()):
|
||
|
raise ValueError("wrong valence")
|
||
|
# TODO: what is the part which is not a coeff?
|
||
|
# needs an implementation similar to .as_coeff_Mul()
|
||
|
terms_dict[arg.nocoeff].append(arg.coeff)
|
||
|
|
||
|
new_args = [TensMul(Add(*coeff), t).doit() for t, coeff in terms_dict.items() if Add(*coeff) != 0]
|
||
|
if isinstance(scalars, Add):
|
||
|
new_args = list(scalars.args) + new_args
|
||
|
elif scalars != 0:
|
||
|
new_args = [scalars] + new_args
|
||
|
return new_args
|
||
|
|
||
|
def get_indices(self):
|
||
|
indices = []
|
||
|
for arg in self.args:
|
||
|
indices.extend([i for i in get_indices(arg) if i not in indices])
|
||
|
return indices
|
||
|
|
||
|
def _expand(self, **hints):
|
||
|
return TensAdd(*[_expand(i, **hints) for i in self.args])
|
||
|
|
||
|
def __call__(self, *indices):
|
||
|
deprecate_call()
|
||
|
free_args = self.free_args
|
||
|
indices = list(indices)
|
||
|
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
|
||
|
raise ValueError('incompatible types')
|
||
|
if indices == free_args:
|
||
|
return self
|
||
|
index_tuples = list(zip(free_args, indices))
|
||
|
a = [x.func(*x.substitute_indices(*index_tuples).args) for x in self.args]
|
||
|
res = TensAdd(*a).doit()
|
||
|
return res
|
||
|
|
||
|
def canon_bp(self):
|
||
|
"""
|
||
|
Canonicalize using the Butler-Portugal algorithm for canonicalization
|
||
|
under monoterm symmetries.
|
||
|
"""
|
||
|
expr = self.expand()
|
||
|
args = [canon_bp(x) for x in expr.args]
|
||
|
res = TensAdd(*args).doit()
|
||
|
return res
|
||
|
|
||
|
def equals(self, other):
|
||
|
other = _sympify(other)
|
||
|
if isinstance(other, TensMul) and other.coeff == 0:
|
||
|
return all(x.coeff == 0 for x in self.args)
|
||
|
if isinstance(other, TensExpr):
|
||
|
if self.rank != other.rank:
|
||
|
return False
|
||
|
if isinstance(other, TensAdd):
|
||
|
if set(self.args) != set(other.args):
|
||
|
return False
|
||
|
else:
|
||
|
return True
|
||
|
t = self - other
|
||
|
if not isinstance(t, TensExpr):
|
||
|
return t == 0
|
||
|
else:
|
||
|
if isinstance(t, TensMul):
|
||
|
return t.coeff == 0
|
||
|
else:
|
||
|
return all(x.coeff == 0 for x in t.args)
|
||
|
|
||
|
def __getitem__(self, item):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
return self.data[item]
|
||
|
|
||
|
def contract_delta(self, delta):
|
||
|
args = [x.contract_delta(delta) for x in self.args]
|
||
|
t = TensAdd(*args).doit()
|
||
|
return canon_bp(t)
|
||
|
|
||
|
def contract_metric(self, g):
|
||
|
"""
|
||
|
Raise or lower indices with the metric ``g``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
g : metric
|
||
|
|
||
|
contract_all : if True, eliminate all ``g`` which are contracted
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
see the ``TensorIndexType`` docstring for the contraction conventions
|
||
|
"""
|
||
|
|
||
|
args = [contract_metric(x, g) for x in self.args]
|
||
|
t = TensAdd(*args).doit()
|
||
|
return canon_bp(t)
|
||
|
|
||
|
def substitute_indices(self, *index_tuples):
|
||
|
new_args = []
|
||
|
for arg in self.args:
|
||
|
if isinstance(arg, TensExpr):
|
||
|
arg = arg.substitute_indices(*index_tuples)
|
||
|
new_args.append(arg)
|
||
|
return TensAdd(*new_args).doit()
|
||
|
|
||
|
def _print(self):
|
||
|
a = []
|
||
|
args = self.args
|
||
|
for x in args:
|
||
|
a.append(str(x))
|
||
|
s = ' + '.join(a)
|
||
|
s = s.replace('+ -', '- ')
|
||
|
return s
|
||
|
|
||
|
def _extract_data(self, replacement_dict):
|
||
|
from sympy.tensor.array import Array, permutedims
|
||
|
args_indices, arrays = zip(*[
|
||
|
arg._extract_data(replacement_dict) if
|
||
|
isinstance(arg, TensExpr) else ([], arg) for arg in self.args
|
||
|
])
|
||
|
arrays = [Array(i) for i in arrays]
|
||
|
ref_indices = args_indices[0]
|
||
|
for i in range(1, len(args_indices)):
|
||
|
indices = args_indices[i]
|
||
|
array = arrays[i]
|
||
|
permutation = TensMul._get_indices_permutation(indices, ref_indices)
|
||
|
arrays[i] = permutedims(array, permutation)
|
||
|
return ref_indices, sum(arrays, Array.zeros(*array.shape))
|
||
|
|
||
|
@property
|
||
|
def data(self):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
return _tensor_data_substitution_dict[self.expand()]
|
||
|
|
||
|
@data.setter
|
||
|
def data(self, data):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
_tensor_data_substitution_dict[self] = data
|
||
|
|
||
|
@data.deleter
|
||
|
def data(self):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
if self in _tensor_data_substitution_dict:
|
||
|
del _tensor_data_substitution_dict[self]
|
||
|
|
||
|
def __iter__(self):
|
||
|
deprecate_data()
|
||
|
if not self.data:
|
||
|
raise ValueError("No iteration on abstract tensors")
|
||
|
return self.data.flatten().__iter__()
|
||
|
|
||
|
def _eval_rewrite_as_Indexed(self, *args):
|
||
|
return Add.fromiter(args)
|
||
|
|
||
|
def _eval_partial_derivative(self, s):
|
||
|
# Evaluation like Add
|
||
|
list_addends = []
|
||
|
for a in self.args:
|
||
|
if isinstance(a, TensExpr):
|
||
|
list_addends.append(a._eval_partial_derivative(s))
|
||
|
# do not call diff if s is no symbol
|
||
|
elif s._diff_wrt:
|
||
|
list_addends.append(a._eval_derivative(s))
|
||
|
|
||
|
return self.func(*list_addends)
|
||
|
|
||
|
|
||
|
class Tensor(TensExpr):
|
||
|
"""
|
||
|
Base tensor class, i.e. this represents a tensor, the single unit to be
|
||
|
put into an expression.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
This object is usually created from a ``TensorHead``, by attaching indices
|
||
|
to it. Indices preceded by a minus sign are considered contravariant,
|
||
|
otherwise covariant.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead
|
||
|
>>> Lorentz = TensorIndexType("Lorentz", dummy_name="L")
|
||
|
>>> mu, nu = tensor_indices('mu nu', Lorentz)
|
||
|
>>> A = TensorHead("A", [Lorentz, Lorentz])
|
||
|
>>> A(mu, -nu)
|
||
|
A(mu, -nu)
|
||
|
>>> A(mu, -mu)
|
||
|
A(L_0, -L_0)
|
||
|
|
||
|
It is also possible to use symbols instead of inidices (appropriate indices
|
||
|
are then generated automatically).
|
||
|
|
||
|
>>> from sympy import Symbol
|
||
|
>>> x = Symbol('x')
|
||
|
>>> A(x, mu)
|
||
|
A(x, mu)
|
||
|
>>> A(x, -x)
|
||
|
A(L_0, -L_0)
|
||
|
|
||
|
"""
|
||
|
|
||
|
is_commutative = False
|
||
|
|
||
|
_index_structure = None # type: _IndexStructure
|
||
|
args: tuple[TensorHead, Tuple]
|
||
|
|
||
|
def __new__(cls, tensor_head, indices, *, is_canon_bp=False, **kw_args):
|
||
|
indices = cls._parse_indices(tensor_head, indices)
|
||
|
obj = Basic.__new__(cls, tensor_head, Tuple(*indices), **kw_args)
|
||
|
obj._index_structure = _IndexStructure.from_indices(*indices)
|
||
|
obj._free = obj._index_structure.free[:]
|
||
|
obj._dum = obj._index_structure.dum[:]
|
||
|
obj._ext_rank = obj._index_structure._ext_rank
|
||
|
obj._coeff = S.One
|
||
|
obj._nocoeff = obj
|
||
|
obj._component = tensor_head
|
||
|
obj._components = [tensor_head]
|
||
|
if tensor_head.rank != len(indices):
|
||
|
raise ValueError("wrong number of indices")
|
||
|
obj.is_canon_bp = is_canon_bp
|
||
|
obj._index_map = Tensor._build_index_map(indices, obj._index_structure)
|
||
|
return obj
|
||
|
|
||
|
@property
|
||
|
def free(self):
|
||
|
return self._free
|
||
|
|
||
|
@property
|
||
|
def dum(self):
|
||
|
return self._dum
|
||
|
|
||
|
@property
|
||
|
def ext_rank(self):
|
||
|
return self._ext_rank
|
||
|
|
||
|
@property
|
||
|
def coeff(self):
|
||
|
return self._coeff
|
||
|
|
||
|
@property
|
||
|
def nocoeff(self):
|
||
|
return self._nocoeff
|
||
|
|
||
|
@property
|
||
|
def component(self):
|
||
|
return self._component
|
||
|
|
||
|
@property
|
||
|
def components(self):
|
||
|
return self._components
|
||
|
|
||
|
@property
|
||
|
def head(self):
|
||
|
return self.args[0]
|
||
|
|
||
|
@property
|
||
|
def indices(self):
|
||
|
return self.args[1]
|
||
|
|
||
|
@property
|
||
|
def free_indices(self):
|
||
|
return set(self._index_structure.get_free_indices())
|
||
|
|
||
|
@property
|
||
|
def index_types(self):
|
||
|
return self.head.index_types
|
||
|
|
||
|
@property
|
||
|
def rank(self):
|
||
|
return len(self.free_indices)
|
||
|
|
||
|
@staticmethod
|
||
|
def _build_index_map(indices, index_structure):
|
||
|
index_map = {}
|
||
|
for idx in indices:
|
||
|
index_map[idx] = (indices.index(idx),)
|
||
|
return index_map
|
||
|
|
||
|
def doit(self, **hints):
|
||
|
args, indices, free, dum = TensMul._tensMul_contract_indices([self])
|
||
|
return args[0]
|
||
|
|
||
|
@staticmethod
|
||
|
def _parse_indices(tensor_head, indices):
|
||
|
if not isinstance(indices, (tuple, list, Tuple)):
|
||
|
raise TypeError("indices should be an array, got %s" % type(indices))
|
||
|
indices = list(indices)
|
||
|
for i, index in enumerate(indices):
|
||
|
if isinstance(index, Symbol):
|
||
|
indices[i] = TensorIndex(index, tensor_head.index_types[i], True)
|
||
|
elif isinstance(index, Mul):
|
||
|
c, e = index.as_coeff_Mul()
|
||
|
if c == -1 and isinstance(e, Symbol):
|
||
|
indices[i] = TensorIndex(e, tensor_head.index_types[i], False)
|
||
|
else:
|
||
|
raise ValueError("index not understood: %s" % index)
|
||
|
elif not isinstance(index, TensorIndex):
|
||
|
raise TypeError("wrong type for index: %s is %s" % (index, type(index)))
|
||
|
return indices
|
||
|
|
||
|
def _set_new_index_structure(self, im, is_canon_bp=False):
|
||
|
indices = im.get_indices()
|
||
|
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
|
||
|
|
||
|
def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
|
||
|
if len(indices) != self.ext_rank:
|
||
|
raise ValueError("indices length mismatch")
|
||
|
return self.func(self.args[0], indices, is_canon_bp=is_canon_bp).doit()
|
||
|
|
||
|
def _get_free_indices_set(self):
|
||
|
return {i[0] for i in self._index_structure.free}
|
||
|
|
||
|
def _get_dummy_indices_set(self):
|
||
|
dummy_pos = set(itertools.chain(*self._index_structure.dum))
|
||
|
return {idx for i, idx in enumerate(self.args[1]) if i in dummy_pos}
|
||
|
|
||
|
def _get_indices_set(self):
|
||
|
return set(self.args[1].args)
|
||
|
|
||
|
@property
|
||
|
def free_in_args(self):
|
||
|
return [(ind, pos, 0) for ind, pos in self.free]
|
||
|
|
||
|
@property
|
||
|
def dum_in_args(self):
|
||
|
return [(p1, p2, 0, 0) for p1, p2 in self.dum]
|
||
|
|
||
|
@property
|
||
|
def free_args(self):
|
||
|
return sorted([x[0] for x in self.free])
|
||
|
|
||
|
def commutes_with(self, other):
|
||
|
"""
|
||
|
:param other:
|
||
|
:return:
|
||
|
0 commute
|
||
|
1 anticommute
|
||
|
None neither commute nor anticommute
|
||
|
"""
|
||
|
if not isinstance(other, TensExpr):
|
||
|
return 0
|
||
|
elif isinstance(other, Tensor):
|
||
|
return self.component.commutes_with(other.component)
|
||
|
return NotImplementedError
|
||
|
|
||
|
def perm2tensor(self, g, is_canon_bp=False):
|
||
|
"""
|
||
|
Returns the tensor corresponding to the permutation ``g``.
|
||
|
|
||
|
For further details, see the method in ``TIDS`` with the same name.
|
||
|
"""
|
||
|
return perm2tensor(self, g, is_canon_bp)
|
||
|
|
||
|
def canon_bp(self):
|
||
|
if self.is_canon_bp:
|
||
|
return self
|
||
|
expr = self.expand()
|
||
|
g, dummies, msym = expr._index_structure.indices_canon_args()
|
||
|
v = components_canon_args([expr.component])
|
||
|
can = canonicalize(g, dummies, msym, *v)
|
||
|
if can == 0:
|
||
|
return S.Zero
|
||
|
tensor = self.perm2tensor(can, True)
|
||
|
return tensor
|
||
|
|
||
|
def split(self):
|
||
|
return [self]
|
||
|
|
||
|
def _expand(self, **kwargs):
|
||
|
return self
|
||
|
|
||
|
def sorted_components(self):
|
||
|
return self
|
||
|
|
||
|
def get_indices(self) -> list[TensorIndex]:
|
||
|
"""
|
||
|
Get a list of indices, corresponding to those of the tensor.
|
||
|
"""
|
||
|
return list(self.args[1])
|
||
|
|
||
|
def get_free_indices(self) -> list[TensorIndex]:
|
||
|
"""
|
||
|
Get a list of free indices, corresponding to those of the tensor.
|
||
|
"""
|
||
|
return self._index_structure.get_free_indices()
|
||
|
|
||
|
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
|
||
|
# TODO: this could be optimized by only swapping the indices
|
||
|
# instead of visiting the whole expression tree:
|
||
|
return self.xreplace(repl)
|
||
|
|
||
|
def as_base_exp(self):
|
||
|
return self, S.One
|
||
|
|
||
|
def substitute_indices(self, *index_tuples):
|
||
|
"""
|
||
|
Return a tensor with free indices substituted according to ``index_tuples``.
|
||
|
|
||
|
``index_types`` list of tuples ``(old_index, new_index)``.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
|
||
|
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
|
||
|
>>> t = A(i, k)*B(-k, -j); t
|
||
|
A(i, L_0)*B(-L_0, -j)
|
||
|
>>> t.substitute_indices((i, k),(-j, l))
|
||
|
A(k, L_0)*B(-L_0, l)
|
||
|
"""
|
||
|
indices = []
|
||
|
for index in self.indices:
|
||
|
for ind_old, ind_new in index_tuples:
|
||
|
if (index.name == ind_old.name and index.tensor_index_type ==
|
||
|
ind_old.tensor_index_type):
|
||
|
if index.is_up == ind_old.is_up:
|
||
|
indices.append(ind_new)
|
||
|
else:
|
||
|
indices.append(-ind_new)
|
||
|
break
|
||
|
else:
|
||
|
indices.append(index)
|
||
|
return self.head(*indices)
|
||
|
|
||
|
def __call__(self, *indices):
|
||
|
deprecate_call()
|
||
|
free_args = self.free_args
|
||
|
indices = list(indices)
|
||
|
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
|
||
|
raise ValueError('incompatible types')
|
||
|
if indices == free_args:
|
||
|
return self
|
||
|
t = self.substitute_indices(*list(zip(free_args, indices)))
|
||
|
|
||
|
# object is rebuilt in order to make sure that all contracted indices
|
||
|
# get recognized as dummies, but only if there are contracted indices.
|
||
|
if len({i if i.is_up else -i for i in indices}) != len(indices):
|
||
|
return t.func(*t.args)
|
||
|
return t
|
||
|
|
||
|
# TODO: put this into TensExpr?
|
||
|
def __iter__(self):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
return self.data.__iter__()
|
||
|
|
||
|
# TODO: put this into TensExpr?
|
||
|
def __getitem__(self, item):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
return self.data[item]
|
||
|
|
||
|
def _extract_data(self, replacement_dict):
|
||
|
from .array import Array
|
||
|
for k, v in replacement_dict.items():
|
||
|
if isinstance(k, Tensor) and k.args[0] == self.args[0]:
|
||
|
other = k
|
||
|
array = v
|
||
|
break
|
||
|
else:
|
||
|
raise ValueError("%s not found in %s" % (self, replacement_dict))
|
||
|
|
||
|
# TODO: inefficient, this should be done at root level only:
|
||
|
replacement_dict = {k: Array(v) for k, v in replacement_dict.items()}
|
||
|
array = Array(array)
|
||
|
|
||
|
dum1 = self.dum
|
||
|
dum2 = other.dum
|
||
|
|
||
|
if len(dum2) > 0:
|
||
|
for pair in dum2:
|
||
|
# allow `dum2` if the contained values are also in `dum1`.
|
||
|
if pair not in dum1:
|
||
|
raise NotImplementedError("%s with contractions is not implemented" % other)
|
||
|
# Remove elements in `dum2` from `dum1`:
|
||
|
dum1 = [pair for pair in dum1 if pair not in dum2]
|
||
|
if len(dum1) > 0:
|
||
|
indices1 = self.get_indices()
|
||
|
indices2 = other.get_indices()
|
||
|
repl = {}
|
||
|
for p1, p2 in dum1:
|
||
|
repl[indices2[p2]] = -indices2[p1]
|
||
|
for pos in (p1, p2):
|
||
|
if indices1[pos].is_up ^ indices2[pos].is_up:
|
||
|
metric = replacement_dict[indices1[pos].tensor_index_type]
|
||
|
if indices1[pos].is_up:
|
||
|
metric = _TensorDataLazyEvaluator.inverse_matrix(metric)
|
||
|
array = self._contract_and_permute_with_metric(metric, array, pos, len(indices2))
|
||
|
other = other.xreplace(repl).doit()
|
||
|
array = _TensorDataLazyEvaluator.data_contract_dum([array], dum1, len(indices2))
|
||
|
|
||
|
free_ind1 = self.get_free_indices()
|
||
|
free_ind2 = other.get_free_indices()
|
||
|
|
||
|
return self._match_indices_with_other_tensor(array, free_ind1, free_ind2, replacement_dict)
|
||
|
|
||
|
@property
|
||
|
def data(self):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
return _tensor_data_substitution_dict[self]
|
||
|
|
||
|
@data.setter
|
||
|
def data(self, data):
|
||
|
deprecate_data()
|
||
|
# TODO: check data compatibility with properties of tensor.
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
_tensor_data_substitution_dict[self] = data
|
||
|
|
||
|
@data.deleter
|
||
|
def data(self):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
if self in _tensor_data_substitution_dict:
|
||
|
del _tensor_data_substitution_dict[self]
|
||
|
if self.metric in _tensor_data_substitution_dict:
|
||
|
del _tensor_data_substitution_dict[self.metric]
|
||
|
|
||
|
def _print(self):
|
||
|
indices = [str(ind) for ind in self.indices]
|
||
|
component = self.component
|
||
|
if component.rank > 0:
|
||
|
return ('%s(%s)' % (component.name, ', '.join(indices)))
|
||
|
else:
|
||
|
return ('%s' % component.name)
|
||
|
|
||
|
def equals(self, other):
|
||
|
if other == 0:
|
||
|
return self.coeff == 0
|
||
|
other = _sympify(other)
|
||
|
if not isinstance(other, TensExpr):
|
||
|
assert not self.components
|
||
|
return S.One == other
|
||
|
|
||
|
def _get_compar_comp(self):
|
||
|
t = self.canon_bp()
|
||
|
r = (t.coeff, tuple(t.components), \
|
||
|
tuple(sorted(t.free)), tuple(sorted(t.dum)))
|
||
|
return r
|
||
|
|
||
|
return _get_compar_comp(self) == _get_compar_comp(other)
|
||
|
|
||
|
def contract_metric(self, g):
|
||
|
# if metric is not the same, ignore this step:
|
||
|
if self.component != g:
|
||
|
return self
|
||
|
# in case there are free components, do not perform anything:
|
||
|
if len(self.free) != 0:
|
||
|
return self
|
||
|
|
||
|
#antisym = g.index_types[0].metric_antisym
|
||
|
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
|
||
|
antisym = 1
|
||
|
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
|
||
|
antisym = 0
|
||
|
elif g.symmetry == TensorSymmetry.no_symmetry(2):
|
||
|
antisym = None
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
sign = S.One
|
||
|
typ = g.index_types[0]
|
||
|
|
||
|
if not antisym:
|
||
|
# g(i, -i)
|
||
|
sign = sign*typ.dim
|
||
|
else:
|
||
|
# g(i, -i)
|
||
|
sign = sign*typ.dim
|
||
|
|
||
|
dp0, dp1 = self.dum[0]
|
||
|
if dp0 < dp1:
|
||
|
# g(i, -i) = -D with antisymmetric metric
|
||
|
sign = -sign
|
||
|
|
||
|
return sign
|
||
|
|
||
|
def contract_delta(self, metric):
|
||
|
return self.contract_metric(metric)
|
||
|
|
||
|
def _eval_rewrite_as_Indexed(self, tens, indices):
|
||
|
from sympy.tensor.indexed import Indexed
|
||
|
# TODO: replace .args[0] with .name:
|
||
|
index_symbols = [i.args[0] for i in self.get_indices()]
|
||
|
expr = Indexed(tens.args[0], *index_symbols)
|
||
|
return self._check_add_Sum(expr, index_symbols)
|
||
|
|
||
|
def _eval_partial_derivative(self, s): # type: (Tensor) -> Expr
|
||
|
|
||
|
if not isinstance(s, Tensor):
|
||
|
return S.Zero
|
||
|
else:
|
||
|
|
||
|
# @a_i/@a_k = delta_i^k
|
||
|
# @a_i/@a^k = g_ij delta^j_k
|
||
|
# @a^i/@a^k = delta^i_k
|
||
|
# @a^i/@a_k = g^ij delta_j^k
|
||
|
# TODO: if there is no metric present, the derivative should be zero?
|
||
|
|
||
|
if self.head != s.head:
|
||
|
return S.Zero
|
||
|
|
||
|
# if heads are the same, provide delta and/or metric products
|
||
|
# for every free index pair in the appropriate tensor
|
||
|
# assumed that the free indices are in proper order
|
||
|
# A contravariante index in the derivative becomes covariant
|
||
|
# after performing the derivative and vice versa
|
||
|
|
||
|
kronecker_delta_list = [1]
|
||
|
|
||
|
# not guarantee a correct index order
|
||
|
|
||
|
for (count, (iself, iother)) in enumerate(zip(self.get_free_indices(), s.get_free_indices())):
|
||
|
if iself.tensor_index_type != iother.tensor_index_type:
|
||
|
raise ValueError("index types not compatible")
|
||
|
else:
|
||
|
tensor_index_type = iself.tensor_index_type
|
||
|
tensor_metric = tensor_index_type.metric
|
||
|
dummy = TensorIndex("d_" + str(count), tensor_index_type,
|
||
|
is_up=iself.is_up)
|
||
|
if iself.is_up == iother.is_up:
|
||
|
kroneckerdelta = tensor_index_type.delta(iself, -iother)
|
||
|
else:
|
||
|
kroneckerdelta = (
|
||
|
TensMul(tensor_metric(iself, dummy),
|
||
|
tensor_index_type.delta(-dummy, -iother))
|
||
|
)
|
||
|
kronecker_delta_list.append(kroneckerdelta)
|
||
|
return TensMul.fromiter(kronecker_delta_list).doit()
|
||
|
# doit necessary to rename dummy indices accordingly
|
||
|
|
||
|
|
||
|
class TensMul(TensExpr, AssocOp):
|
||
|
"""
|
||
|
Product of tensors.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
coeff : SymPy coefficient of the tensor
|
||
|
args
|
||
|
|
||
|
Attributes
|
||
|
==========
|
||
|
|
||
|
``components`` : list of ``TensorHead`` of the component tensors
|
||
|
``types`` : list of nonrepeated ``TensorIndexType``
|
||
|
``free`` : list of ``(ind, ipos, icomp)``, see Notes
|
||
|
``dum`` : list of ``(ipos1, ipos2, icomp1, icomp2)``, see Notes
|
||
|
``ext_rank`` : rank of the tensor counting the dummy indices
|
||
|
``rank`` : rank of the tensor
|
||
|
``coeff`` : SymPy coefficient of the tensor
|
||
|
``free_args`` : list of the free indices in sorted order
|
||
|
``is_canon_bp`` : ``True`` if the tensor in in canonical form
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
``args[0]`` list of ``TensorHead`` of the component tensors.
|
||
|
|
||
|
``args[1]`` list of ``(ind, ipos, icomp)``
|
||
|
where ``ind`` is a free index, ``ipos`` is the slot position
|
||
|
of ``ind`` in the ``icomp``-th component tensor.
|
||
|
|
||
|
``args[2]`` list of tuples representing dummy indices.
|
||
|
``(ipos1, ipos2, icomp1, icomp2)`` indicates that the contravariant
|
||
|
dummy index is the ``ipos1``-th slot position in the ``icomp1``-th
|
||
|
component tensor; the corresponding covariant index is
|
||
|
in the ``ipos2`` slot position in the ``icomp2``-th component tensor.
|
||
|
|
||
|
"""
|
||
|
identity = S.One
|
||
|
|
||
|
_index_structure = None # type: _IndexStructure
|
||
|
|
||
|
def __new__(cls, *args, **kw_args):
|
||
|
is_canon_bp = kw_args.get('is_canon_bp', False)
|
||
|
args = list(map(_sympify, args))
|
||
|
|
||
|
"""
|
||
|
If the internal dummy indices in one arg conflict with the free indices
|
||
|
of the remaining args, we need to rename those internal dummy indices.
|
||
|
"""
|
||
|
free = [get_free_indices(arg) for arg in args]
|
||
|
free = set(itertools.chain(*free)) #flatten free
|
||
|
newargs = []
|
||
|
for arg in args:
|
||
|
dum_this = set(get_dummy_indices(arg))
|
||
|
dum_other = [get_dummy_indices(a) for a in newargs]
|
||
|
dum_other = set(itertools.chain(*dum_other)) #flatten dum_other
|
||
|
free_this = set(get_free_indices(arg))
|
||
|
if len(dum_this.intersection(free)) > 0:
|
||
|
exclude = free_this.union(free, dum_other)
|
||
|
newarg = TensMul._dedupe_indices(arg, exclude)
|
||
|
else:
|
||
|
newarg = arg
|
||
|
newargs.append(newarg)
|
||
|
|
||
|
args = newargs
|
||
|
|
||
|
# Flatten:
|
||
|
args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])]
|
||
|
|
||
|
args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False)
|
||
|
|
||
|
# Data for indices:
|
||
|
index_types = [i.tensor_index_type for i in indices]
|
||
|
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
|
||
|
|
||
|
obj = TensExpr.__new__(cls, *args)
|
||
|
obj._indices = indices
|
||
|
obj._index_types = index_types[:]
|
||
|
obj._index_structure = index_structure
|
||
|
obj._free = index_structure.free[:]
|
||
|
obj._dum = index_structure.dum[:]
|
||
|
obj._free_indices = {x[0] for x in obj.free}
|
||
|
obj._rank = len(obj.free)
|
||
|
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
|
||
|
obj._coeff = S.One
|
||
|
obj._is_canon_bp = is_canon_bp
|
||
|
return obj
|
||
|
|
||
|
index_types = property(lambda self: self._index_types)
|
||
|
free = property(lambda self: self._free)
|
||
|
dum = property(lambda self: self._dum)
|
||
|
free_indices = property(lambda self: self._free_indices)
|
||
|
rank = property(lambda self: self._rank)
|
||
|
ext_rank = property(lambda self: self._ext_rank)
|
||
|
|
||
|
@staticmethod
|
||
|
def _indices_to_free_dum(args_indices):
|
||
|
free2pos1 = {}
|
||
|
free2pos2 = {}
|
||
|
dummy_data = []
|
||
|
indices = []
|
||
|
|
||
|
# Notation for positions (to better understand the code):
|
||
|
# `pos1`: position in the `args`.
|
||
|
# `pos2`: position in the indices.
|
||
|
|
||
|
# Example:
|
||
|
# A(i, j)*B(k, m, n)*C(p)
|
||
|
# `pos1` of `n` is 1 because it's in `B` (second `args` of TensMul).
|
||
|
# `pos2` of `n` is 4 because it's the fifth overall index.
|
||
|
|
||
|
# Counter for the index position wrt the whole expression:
|
||
|
pos2 = 0
|
||
|
|
||
|
for pos1, arg_indices in enumerate(args_indices):
|
||
|
|
||
|
for index_pos, index in enumerate(arg_indices):
|
||
|
if not isinstance(index, TensorIndex):
|
||
|
raise TypeError("expected TensorIndex")
|
||
|
if -index in free2pos1:
|
||
|
# Dummy index detected:
|
||
|
other_pos1 = free2pos1.pop(-index)
|
||
|
other_pos2 = free2pos2.pop(-index)
|
||
|
if index.is_up:
|
||
|
dummy_data.append((index, pos1, other_pos1, pos2, other_pos2))
|
||
|
else:
|
||
|
dummy_data.append((-index, other_pos1, pos1, other_pos2, pos2))
|
||
|
indices.append(index)
|
||
|
elif index in free2pos1:
|
||
|
raise ValueError("Repeated index: %s" % index)
|
||
|
else:
|
||
|
free2pos1[index] = pos1
|
||
|
free2pos2[index] = pos2
|
||
|
indices.append(index)
|
||
|
pos2 += 1
|
||
|
|
||
|
free = [(i, p) for (i, p) in free2pos2.items()]
|
||
|
free_names = [i.name for i in free2pos2.keys()]
|
||
|
|
||
|
dummy_data.sort(key=lambda x: x[3])
|
||
|
return indices, free, free_names, dummy_data
|
||
|
|
||
|
@staticmethod
|
||
|
def _dummy_data_to_dum(dummy_data):
|
||
|
return [(p2a, p2b) for (i, p1a, p1b, p2a, p2b) in dummy_data]
|
||
|
|
||
|
@staticmethod
|
||
|
def _tensMul_contract_indices(args, replace_indices=True):
|
||
|
replacements = [{} for _ in args]
|
||
|
|
||
|
#_index_order = all(_has_index_order(arg) for arg in args)
|
||
|
|
||
|
args_indices = [get_indices(arg) for arg in args]
|
||
|
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
|
||
|
|
||
|
cdt = defaultdict(int)
|
||
|
|
||
|
def dummy_name_gen(tensor_index_type):
|
||
|
nd = str(cdt[tensor_index_type])
|
||
|
cdt[tensor_index_type] += 1
|
||
|
return tensor_index_type.dummy_name + '_' + nd
|
||
|
|
||
|
if replace_indices:
|
||
|
for old_index, pos1cov, pos1contra, pos2cov, pos2contra in dummy_data:
|
||
|
index_type = old_index.tensor_index_type
|
||
|
while True:
|
||
|
dummy_name = dummy_name_gen(index_type)
|
||
|
if dummy_name not in free_names:
|
||
|
break
|
||
|
dummy = TensorIndex(dummy_name, index_type, True)
|
||
|
replacements[pos1cov][old_index] = dummy
|
||
|
replacements[pos1contra][-old_index] = -dummy
|
||
|
indices[pos2cov] = dummy
|
||
|
indices[pos2contra] = -dummy
|
||
|
args = [
|
||
|
arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg
|
||
|
for arg, repl in zip(args, replacements)]
|
||
|
|
||
|
dum = TensMul._dummy_data_to_dum(dummy_data)
|
||
|
return args, indices, free, dum
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_components_from_args(args):
|
||
|
"""
|
||
|
Get a list of ``Tensor`` objects having the same ``TIDS`` if multiplied
|
||
|
by one another.
|
||
|
"""
|
||
|
components = []
|
||
|
for arg in args:
|
||
|
if not isinstance(arg, TensExpr):
|
||
|
continue
|
||
|
if isinstance(arg, TensAdd):
|
||
|
continue
|
||
|
components.extend(arg.components)
|
||
|
return components
|
||
|
|
||
|
@staticmethod
|
||
|
def _rebuild_tensors_list(args, index_structure):
|
||
|
indices = index_structure.get_indices()
|
||
|
#tensors = [None for i in components] # pre-allocate list
|
||
|
ind_pos = 0
|
||
|
for i, arg in enumerate(args):
|
||
|
if not isinstance(arg, TensExpr):
|
||
|
continue
|
||
|
prev_pos = ind_pos
|
||
|
ind_pos += arg.ext_rank
|
||
|
args[i] = Tensor(arg.component, indices[prev_pos:ind_pos])
|
||
|
|
||
|
def doit(self, **hints):
|
||
|
is_canon_bp = self._is_canon_bp
|
||
|
deep = hints.get('deep', True)
|
||
|
if deep:
|
||
|
args = [arg.doit(**hints) for arg in self.args]
|
||
|
|
||
|
"""
|
||
|
There may now be conflicts between dummy indices of different args
|
||
|
(each arg's doit method does not have any information about which
|
||
|
dummy indices are already used in the other args), so we
|
||
|
deduplicate them.
|
||
|
"""
|
||
|
rule = dict(zip(self.args, args))
|
||
|
rule = self._dedupe_indices_in_rule(rule)
|
||
|
args = [rule[a] for a in self.args]
|
||
|
|
||
|
else:
|
||
|
args = self.args
|
||
|
|
||
|
args = [arg for arg in args if arg != self.identity]
|
||
|
|
||
|
# Extract non-tensor coefficients:
|
||
|
coeff = reduce(lambda a, b: a*b, [arg for arg in args if not isinstance(arg, TensExpr)], S.One)
|
||
|
args = [arg for arg in args if isinstance(arg, TensExpr)]
|
||
|
|
||
|
if len(args) == 0:
|
||
|
return coeff
|
||
|
|
||
|
if coeff != self.identity:
|
||
|
args = [coeff] + args
|
||
|
if coeff == 0:
|
||
|
return S.Zero
|
||
|
|
||
|
if len(args) == 1:
|
||
|
return args[0]
|
||
|
|
||
|
args, indices, free, dum = TensMul._tensMul_contract_indices(args)
|
||
|
|
||
|
# Data for indices:
|
||
|
index_types = [i.tensor_index_type for i in indices]
|
||
|
index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp)
|
||
|
|
||
|
obj = self.func(*args)
|
||
|
obj._index_types = index_types
|
||
|
obj._index_structure = index_structure
|
||
|
obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum)
|
||
|
obj._coeff = coeff
|
||
|
obj._is_canon_bp = is_canon_bp
|
||
|
return obj
|
||
|
|
||
|
# TODO: this method should be private
|
||
|
# TODO: should this method be renamed _from_components_free_dum ?
|
||
|
@staticmethod
|
||
|
def from_data(coeff, components, free, dum, **kw_args):
|
||
|
return TensMul(coeff, *TensMul._get_tensors_from_components_free_dum(components, free, dum), **kw_args).doit()
|
||
|
|
||
|
@staticmethod
|
||
|
def _get_tensors_from_components_free_dum(components, free, dum):
|
||
|
"""
|
||
|
Get a list of ``Tensor`` objects by distributing ``free`` and ``dum`` indices on the ``components``.
|
||
|
"""
|
||
|
index_structure = _IndexStructure.from_components_free_dum(components, free, dum)
|
||
|
indices = index_structure.get_indices()
|
||
|
tensors = [None for i in components] # pre-allocate list
|
||
|
|
||
|
# distribute indices on components to build a list of tensors:
|
||
|
ind_pos = 0
|
||
|
for i, component in enumerate(components):
|
||
|
prev_pos = ind_pos
|
||
|
ind_pos += component.rank
|
||
|
tensors[i] = Tensor(component, indices[prev_pos:ind_pos])
|
||
|
return tensors
|
||
|
|
||
|
def _get_free_indices_set(self):
|
||
|
return {i[0] for i in self.free}
|
||
|
|
||
|
def _get_dummy_indices_set(self):
|
||
|
dummy_pos = set(itertools.chain(*self.dum))
|
||
|
return {idx for i, idx in enumerate(self._index_structure.get_indices()) if i in dummy_pos}
|
||
|
|
||
|
def _get_position_offset_for_indices(self):
|
||
|
arg_offset = [None for i in range(self.ext_rank)]
|
||
|
counter = 0
|
||
|
for i, arg in enumerate(self.args):
|
||
|
if not isinstance(arg, TensExpr):
|
||
|
continue
|
||
|
for j in range(arg.ext_rank):
|
||
|
arg_offset[j + counter] = counter
|
||
|
counter += arg.ext_rank
|
||
|
return arg_offset
|
||
|
|
||
|
@property
|
||
|
def free_args(self):
|
||
|
return sorted([x[0] for x in self.free])
|
||
|
|
||
|
@property
|
||
|
def components(self):
|
||
|
return self._get_components_from_args(self.args)
|
||
|
|
||
|
@property
|
||
|
def free_in_args(self):
|
||
|
arg_offset = self._get_position_offset_for_indices()
|
||
|
argpos = self._get_indices_to_args_pos()
|
||
|
return [(ind, pos-arg_offset[pos], argpos[pos]) for (ind, pos) in self.free]
|
||
|
|
||
|
@property
|
||
|
def coeff(self):
|
||
|
# return Mul.fromiter([c for c in self.args if not isinstance(c, TensExpr)])
|
||
|
return self._coeff
|
||
|
|
||
|
@property
|
||
|
def nocoeff(self):
|
||
|
return self.func(*[t for t in self.args if isinstance(t, TensExpr)]).doit()
|
||
|
|
||
|
@property
|
||
|
def dum_in_args(self):
|
||
|
arg_offset = self._get_position_offset_for_indices()
|
||
|
argpos = self._get_indices_to_args_pos()
|
||
|
return [(p1-arg_offset[p1], p2-arg_offset[p2], argpos[p1], argpos[p2]) for p1, p2 in self.dum]
|
||
|
|
||
|
def equals(self, other):
|
||
|
if other == 0:
|
||
|
return self.coeff == 0
|
||
|
other = _sympify(other)
|
||
|
if not isinstance(other, TensExpr):
|
||
|
assert not self.components
|
||
|
return self.coeff == other
|
||
|
|
||
|
return self.canon_bp() == other.canon_bp()
|
||
|
|
||
|
def get_indices(self):
|
||
|
"""
|
||
|
Returns the list of indices of the tensor.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The indices are listed in the order in which they appear in the
|
||
|
component tensors.
|
||
|
The dummy indices are given a name which does not collide with
|
||
|
the names of the free indices.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
|
||
|
>>> g = Lorentz.metric
|
||
|
>>> p, q = tensor_heads('p,q', [Lorentz])
|
||
|
>>> t = p(m1)*g(m0,m2)
|
||
|
>>> t.get_indices()
|
||
|
[m1, m0, m2]
|
||
|
>>> t2 = p(m1)*g(-m1, m2)
|
||
|
>>> t2.get_indices()
|
||
|
[L_0, -L_0, m2]
|
||
|
"""
|
||
|
return self._indices
|
||
|
|
||
|
def get_free_indices(self) -> list[TensorIndex]:
|
||
|
"""
|
||
|
Returns the list of free indices of the tensor.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The indices are listed in the order in which they appear in the
|
||
|
component tensors.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
|
||
|
>>> g = Lorentz.metric
|
||
|
>>> p, q = tensor_heads('p,q', [Lorentz])
|
||
|
>>> t = p(m1)*g(m0,m2)
|
||
|
>>> t.get_free_indices()
|
||
|
[m1, m0, m2]
|
||
|
>>> t2 = p(m1)*g(-m1, m2)
|
||
|
>>> t2.get_free_indices()
|
||
|
[m2]
|
||
|
"""
|
||
|
return self._index_structure.get_free_indices()
|
||
|
|
||
|
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
|
||
|
return self.func(*[arg._replace_indices(repl) if isinstance(arg, TensExpr) else arg for arg in self.args])
|
||
|
|
||
|
def split(self):
|
||
|
"""
|
||
|
Returns a list of tensors, whose product is ``self``.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Dummy indices contracted among different tensor components
|
||
|
become free indices with the same name as the one used to
|
||
|
represent the dummy indices.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads, TensorSymmetry
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> a, b, c, d = tensor_indices('a,b,c,d', Lorentz)
|
||
|
>>> A, B = tensor_heads('A,B', [Lorentz]*2, TensorSymmetry.fully_symmetric(2))
|
||
|
>>> t = A(a,b)*B(-b,c)
|
||
|
>>> t
|
||
|
A(a, L_0)*B(-L_0, c)
|
||
|
>>> t.split()
|
||
|
[A(a, L_0), B(-L_0, c)]
|
||
|
"""
|
||
|
if self.args == ():
|
||
|
return [self]
|
||
|
splitp = []
|
||
|
res = 1
|
||
|
for arg in self.args:
|
||
|
if isinstance(arg, Tensor):
|
||
|
splitp.append(res*arg)
|
||
|
res = 1
|
||
|
else:
|
||
|
res *= arg
|
||
|
return splitp
|
||
|
|
||
|
def _expand(self, **hints):
|
||
|
# TODO: temporary solution, in the future this should be linked to
|
||
|
# `Expr.expand`.
|
||
|
args = [_expand(arg, **hints) for arg in self.args]
|
||
|
args1 = [arg.args if isinstance(arg, (Add, TensAdd)) else (arg,) for arg in args]
|
||
|
return TensAdd(*[
|
||
|
TensMul(*i) for i in itertools.product(*args1)]
|
||
|
)
|
||
|
|
||
|
def __neg__(self):
|
||
|
return TensMul(S.NegativeOne, self, is_canon_bp=self._is_canon_bp).doit()
|
||
|
|
||
|
def __getitem__(self, item):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
return self.data[item]
|
||
|
|
||
|
def _get_args_for_traditional_printer(self):
|
||
|
args = list(self.args)
|
||
|
if self.coeff.could_extract_minus_sign():
|
||
|
# expressions like "-A(a)"
|
||
|
sign = "-"
|
||
|
if args[0] == S.NegativeOne:
|
||
|
args = args[1:]
|
||
|
else:
|
||
|
args[0] = -args[0]
|
||
|
else:
|
||
|
sign = ""
|
||
|
return sign, args
|
||
|
|
||
|
def _sort_args_for_sorted_components(self):
|
||
|
"""
|
||
|
Returns the ``args`` sorted according to the components commutation
|
||
|
properties.
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
The sorting is done taking into account the commutation group
|
||
|
of the component tensors.
|
||
|
"""
|
||
|
cv = [arg for arg in self.args if isinstance(arg, TensExpr)]
|
||
|
sign = 1
|
||
|
n = len(cv) - 1
|
||
|
for i in range(n):
|
||
|
for j in range(n, i, -1):
|
||
|
c = cv[j-1].commutes_with(cv[j])
|
||
|
# if `c` is `None`, it does neither commute nor anticommute, skip:
|
||
|
if c not in (0, 1):
|
||
|
continue
|
||
|
typ1 = sorted(set(cv[j-1].component.index_types), key=lambda x: x.name)
|
||
|
typ2 = sorted(set(cv[j].component.index_types), key=lambda x: x.name)
|
||
|
if (typ1, cv[j-1].component.name) > (typ2, cv[j].component.name):
|
||
|
cv[j-1], cv[j] = cv[j], cv[j-1]
|
||
|
# if `c` is 1, the anticommute, so change sign:
|
||
|
if c:
|
||
|
sign = -sign
|
||
|
|
||
|
coeff = sign * self.coeff
|
||
|
if coeff != 1:
|
||
|
return [coeff] + cv
|
||
|
return cv
|
||
|
|
||
|
def sorted_components(self):
|
||
|
"""
|
||
|
Returns a tensor product with sorted components.
|
||
|
"""
|
||
|
return TensMul(*self._sort_args_for_sorted_components()).doit()
|
||
|
|
||
|
def perm2tensor(self, g, is_canon_bp=False):
|
||
|
"""
|
||
|
Returns the tensor corresponding to the permutation ``g``
|
||
|
|
||
|
For further details, see the method in ``TIDS`` with the same name.
|
||
|
"""
|
||
|
return perm2tensor(self, g, is_canon_bp=is_canon_bp)
|
||
|
|
||
|
def canon_bp(self):
|
||
|
"""
|
||
|
Canonicalize using the Butler-Portugal algorithm for canonicalization
|
||
|
under monoterm symmetries.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, TensorSymmetry
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
|
||
|
>>> A = TensorHead('A', [Lorentz]*2, TensorSymmetry.fully_symmetric(-2))
|
||
|
>>> t = A(m0,-m1)*A(m1,-m0)
|
||
|
>>> t.canon_bp()
|
||
|
-A(L_0, L_1)*A(-L_0, -L_1)
|
||
|
>>> t = A(m0,-m1)*A(m1,-m2)*A(m2,-m0)
|
||
|
>>> t.canon_bp()
|
||
|
0
|
||
|
"""
|
||
|
if self._is_canon_bp:
|
||
|
return self
|
||
|
expr = self.expand()
|
||
|
if isinstance(expr, TensAdd):
|
||
|
return expr.canon_bp()
|
||
|
if not expr.components:
|
||
|
return expr
|
||
|
t = expr.sorted_components()
|
||
|
g, dummies, msym = t._index_structure.indices_canon_args()
|
||
|
v = components_canon_args(t.components)
|
||
|
can = canonicalize(g, dummies, msym, *v)
|
||
|
if can == 0:
|
||
|
return S.Zero
|
||
|
tmul = t.perm2tensor(can, True)
|
||
|
return tmul
|
||
|
|
||
|
def contract_delta(self, delta):
|
||
|
t = self.contract_metric(delta)
|
||
|
return t
|
||
|
|
||
|
def _get_indices_to_args_pos(self):
|
||
|
"""
|
||
|
Get a dict mapping the index position to TensMul's argument number.
|
||
|
"""
|
||
|
pos_map = {}
|
||
|
pos_counter = 0
|
||
|
for arg_i, arg in enumerate(self.args):
|
||
|
if not isinstance(arg, TensExpr):
|
||
|
continue
|
||
|
assert isinstance(arg, Tensor)
|
||
|
for i in range(arg.ext_rank):
|
||
|
pos_map[pos_counter] = arg_i
|
||
|
pos_counter += 1
|
||
|
return pos_map
|
||
|
|
||
|
def contract_metric(self, g):
|
||
|
"""
|
||
|
Raise or lower indices with the metric ``g``.
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
|
||
|
g : metric
|
||
|
|
||
|
Notes
|
||
|
=====
|
||
|
|
||
|
See the ``TensorIndexType`` docstring for the contraction conventions.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, tensor_heads
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> m0, m1, m2 = tensor_indices('m0,m1,m2', Lorentz)
|
||
|
>>> g = Lorentz.metric
|
||
|
>>> p, q = tensor_heads('p,q', [Lorentz])
|
||
|
>>> t = p(m0)*q(m1)*g(-m0, -m1)
|
||
|
>>> t.canon_bp()
|
||
|
metric(L_0, L_1)*p(-L_0)*q(-L_1)
|
||
|
>>> t.contract_metric(g).canon_bp()
|
||
|
p(L_0)*q(-L_0)
|
||
|
"""
|
||
|
expr = self.expand()
|
||
|
if self != expr:
|
||
|
expr = canon_bp(expr)
|
||
|
return contract_metric(expr, g)
|
||
|
pos_map = self._get_indices_to_args_pos()
|
||
|
args = list(self.args)
|
||
|
|
||
|
#antisym = g.index_types[0].metric_antisym
|
||
|
if g.symmetry == TensorSymmetry.fully_symmetric(-2):
|
||
|
antisym = 1
|
||
|
elif g.symmetry == TensorSymmetry.fully_symmetric(2):
|
||
|
antisym = 0
|
||
|
elif g.symmetry == TensorSymmetry.no_symmetry(2):
|
||
|
antisym = None
|
||
|
else:
|
||
|
raise NotImplementedError
|
||
|
|
||
|
# list of positions of the metric ``g`` inside ``args``
|
||
|
gpos = [i for i, x in enumerate(self.args) if isinstance(x, Tensor) and x.component == g]
|
||
|
if not gpos:
|
||
|
return self
|
||
|
|
||
|
# Sign is either 1 or -1, to correct the sign after metric contraction
|
||
|
# (for spinor indices).
|
||
|
sign = 1
|
||
|
dum = self.dum[:]
|
||
|
free = self.free[:]
|
||
|
elim = set()
|
||
|
for gposx in gpos:
|
||
|
if gposx in elim:
|
||
|
continue
|
||
|
free1 = [x for x in free if pos_map[x[1]] == gposx]
|
||
|
dum1 = [x for x in dum if pos_map[x[0]] == gposx or pos_map[x[1]] == gposx]
|
||
|
if not dum1:
|
||
|
continue
|
||
|
elim.add(gposx)
|
||
|
# subs with the multiplication neutral element, that is, remove it:
|
||
|
args[gposx] = 1
|
||
|
if len(dum1) == 2:
|
||
|
if not antisym:
|
||
|
dum10, dum11 = dum1
|
||
|
if pos_map[dum10[1]] == gposx:
|
||
|
# the index with pos p0 contravariant
|
||
|
p0 = dum10[0]
|
||
|
else:
|
||
|
# the index with pos p0 is covariant
|
||
|
p0 = dum10[1]
|
||
|
if pos_map[dum11[1]] == gposx:
|
||
|
# the index with pos p1 is contravariant
|
||
|
p1 = dum11[0]
|
||
|
else:
|
||
|
# the index with pos p1 is covariant
|
||
|
p1 = dum11[1]
|
||
|
|
||
|
dum.append((p0, p1))
|
||
|
else:
|
||
|
dum10, dum11 = dum1
|
||
|
# change the sign to bring the indices of the metric to contravariant
|
||
|
# form; change the sign if dum10 has the metric index in position 0
|
||
|
if pos_map[dum10[1]] == gposx:
|
||
|
# the index with pos p0 is contravariant
|
||
|
p0 = dum10[0]
|
||
|
if dum10[1] == 1:
|
||
|
sign = -sign
|
||
|
else:
|
||
|
# the index with pos p0 is covariant
|
||
|
p0 = dum10[1]
|
||
|
if dum10[0] == 0:
|
||
|
sign = -sign
|
||
|
if pos_map[dum11[1]] == gposx:
|
||
|
# the index with pos p1 is contravariant
|
||
|
p1 = dum11[0]
|
||
|
sign = -sign
|
||
|
else:
|
||
|
# the index with pos p1 is covariant
|
||
|
p1 = dum11[1]
|
||
|
|
||
|
dum.append((p0, p1))
|
||
|
|
||
|
elif len(dum1) == 1:
|
||
|
if not antisym:
|
||
|
dp0, dp1 = dum1[0]
|
||
|
if pos_map[dp0] == pos_map[dp1]:
|
||
|
# g(i, -i)
|
||
|
typ = g.index_types[0]
|
||
|
sign = sign*typ.dim
|
||
|
|
||
|
else:
|
||
|
# g(i0, i1)*p(-i1)
|
||
|
if pos_map[dp0] == gposx:
|
||
|
p1 = dp1
|
||
|
else:
|
||
|
p1 = dp0
|
||
|
|
||
|
ind, p = free1[0]
|
||
|
free.append((ind, p1))
|
||
|
else:
|
||
|
dp0, dp1 = dum1[0]
|
||
|
if pos_map[dp0] == pos_map[dp1]:
|
||
|
# g(i, -i)
|
||
|
typ = g.index_types[0]
|
||
|
sign = sign*typ.dim
|
||
|
|
||
|
if dp0 < dp1:
|
||
|
# g(i, -i) = -D with antisymmetric metric
|
||
|
sign = -sign
|
||
|
else:
|
||
|
# g(i0, i1)*p(-i1)
|
||
|
if pos_map[dp0] == gposx:
|
||
|
p1 = dp1
|
||
|
if dp0 == 0:
|
||
|
sign = -sign
|
||
|
else:
|
||
|
p1 = dp0
|
||
|
ind, p = free1[0]
|
||
|
free.append((ind, p1))
|
||
|
dum = [x for x in dum if x not in dum1]
|
||
|
free = [x for x in free if x not in free1]
|
||
|
|
||
|
# shift positions:
|
||
|
shift = 0
|
||
|
shifts = [0]*len(args)
|
||
|
for i in range(len(args)):
|
||
|
if i in elim:
|
||
|
shift += 2
|
||
|
continue
|
||
|
shifts[i] = shift
|
||
|
free = [(ind, p - shifts[pos_map[p]]) for (ind, p) in free if pos_map[p] not in elim]
|
||
|
dum = [(p0 - shifts[pos_map[p0]], p1 - shifts[pos_map[p1]]) for i, (p0, p1) in enumerate(dum) if pos_map[p0] not in elim and pos_map[p1] not in elim]
|
||
|
|
||
|
res = sign*TensMul(*args).doit()
|
||
|
if not isinstance(res, TensExpr):
|
||
|
return res
|
||
|
im = _IndexStructure.from_components_free_dum(res.components, free, dum)
|
||
|
return res._set_new_index_structure(im)
|
||
|
|
||
|
def _set_new_index_structure(self, im, is_canon_bp=False):
|
||
|
indices = im.get_indices()
|
||
|
return self._set_indices(*indices, is_canon_bp=is_canon_bp)
|
||
|
|
||
|
def _set_indices(self, *indices, is_canon_bp=False, **kw_args):
|
||
|
if len(indices) != self.ext_rank:
|
||
|
raise ValueError("indices length mismatch")
|
||
|
args = list(self.args)[:]
|
||
|
pos = 0
|
||
|
for i, arg in enumerate(args):
|
||
|
if not isinstance(arg, TensExpr):
|
||
|
continue
|
||
|
assert isinstance(arg, Tensor)
|
||
|
ext_rank = arg.ext_rank
|
||
|
args[i] = arg._set_indices(*indices[pos:pos+ext_rank])
|
||
|
pos += ext_rank
|
||
|
return TensMul(*args, is_canon_bp=is_canon_bp).doit()
|
||
|
|
||
|
@staticmethod
|
||
|
def _index_replacement_for_contract_metric(args, free, dum):
|
||
|
for arg in args:
|
||
|
if not isinstance(arg, TensExpr):
|
||
|
continue
|
||
|
assert isinstance(arg, Tensor)
|
||
|
|
||
|
def substitute_indices(self, *index_tuples):
|
||
|
new_args = []
|
||
|
for arg in self.args:
|
||
|
if isinstance(arg, TensExpr):
|
||
|
arg = arg.substitute_indices(*index_tuples)
|
||
|
new_args.append(arg)
|
||
|
return TensMul(*new_args).doit()
|
||
|
|
||
|
def __call__(self, *indices):
|
||
|
deprecate_call()
|
||
|
free_args = self.free_args
|
||
|
indices = list(indices)
|
||
|
if [x.tensor_index_type for x in indices] != [x.tensor_index_type for x in free_args]:
|
||
|
raise ValueError('incompatible types')
|
||
|
if indices == free_args:
|
||
|
return self
|
||
|
t = self.substitute_indices(*list(zip(free_args, indices)))
|
||
|
|
||
|
# object is rebuilt in order to make sure that all contracted indices
|
||
|
# get recognized as dummies, but only if there are contracted indices.
|
||
|
if len({i if i.is_up else -i for i in indices}) != len(indices):
|
||
|
return t.func(*t.args)
|
||
|
return t
|
||
|
|
||
|
def _extract_data(self, replacement_dict):
|
||
|
args_indices, arrays = zip(*[arg._extract_data(replacement_dict) for arg in self.args if isinstance(arg, TensExpr)])
|
||
|
coeff = reduce(operator.mul, [a for a in self.args if not isinstance(a, TensExpr)], S.One)
|
||
|
indices, free, free_names, dummy_data = TensMul._indices_to_free_dum(args_indices)
|
||
|
dum = TensMul._dummy_data_to_dum(dummy_data)
|
||
|
ext_rank = self.ext_rank
|
||
|
free.sort(key=lambda x: x[1])
|
||
|
free_indices = [i[0] for i in free]
|
||
|
return free_indices, coeff*_TensorDataLazyEvaluator.data_contract_dum(arrays, dum, ext_rank)
|
||
|
|
||
|
@property
|
||
|
def data(self):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
dat = _tensor_data_substitution_dict[self.expand()]
|
||
|
return dat
|
||
|
|
||
|
@data.setter
|
||
|
def data(self, data):
|
||
|
deprecate_data()
|
||
|
raise ValueError("Not possible to set component data to a tensor expression")
|
||
|
|
||
|
@data.deleter
|
||
|
def data(self):
|
||
|
deprecate_data()
|
||
|
raise ValueError("Not possible to delete component data to a tensor expression")
|
||
|
|
||
|
def __iter__(self):
|
||
|
deprecate_data()
|
||
|
with ignore_warnings(SymPyDeprecationWarning):
|
||
|
if self.data is None:
|
||
|
raise ValueError("No iteration on abstract tensors")
|
||
|
return self.data.__iter__()
|
||
|
|
||
|
@staticmethod
|
||
|
def _dedupe_indices(new, exclude):
|
||
|
"""
|
||
|
exclude: set
|
||
|
new: TensExpr
|
||
|
|
||
|
If ``new`` has any dummy indices that are in ``exclude``, return a version
|
||
|
of new with those indices replaced. If no replacements are needed,
|
||
|
return None
|
||
|
|
||
|
"""
|
||
|
exclude = set(exclude)
|
||
|
dums_new = set(get_dummy_indices(new))
|
||
|
free_new = set(get_free_indices(new))
|
||
|
|
||
|
conflicts = dums_new.intersection(exclude)
|
||
|
if len(conflicts) == 0:
|
||
|
return None
|
||
|
|
||
|
"""
|
||
|
``exclude_for_gen`` is to be passed to ``_IndexStructure._get_generator_for_dummy_indices()``.
|
||
|
Since the latter does not use the index position for anything, we just
|
||
|
set it as ``None`` here.
|
||
|
"""
|
||
|
exclude.update(dums_new)
|
||
|
exclude.update(free_new)
|
||
|
exclude_for_gen = [(i, None) for i in exclude]
|
||
|
gen = _IndexStructure._get_generator_for_dummy_indices(exclude_for_gen)
|
||
|
repl = {}
|
||
|
for d in conflicts:
|
||
|
if -d in repl.keys():
|
||
|
continue
|
||
|
newname = gen(d.tensor_index_type)
|
||
|
new_d = d.func(newname, *d.args[1:])
|
||
|
repl[d] = new_d
|
||
|
repl[-d] = -new_d
|
||
|
|
||
|
if len(repl) == 0:
|
||
|
return None
|
||
|
|
||
|
new_renamed = new._replace_indices(repl)
|
||
|
return new_renamed
|
||
|
|
||
|
def _dedupe_indices_in_rule(self, rule):
|
||
|
"""
|
||
|
rule: dict
|
||
|
|
||
|
This applies TensMul._dedupe_indices on all values of rule.
|
||
|
|
||
|
"""
|
||
|
index_rules = {k:v for k,v in rule.items() if isinstance(k, TensorIndex)}
|
||
|
other_rules = {k:v for k,v in rule.items() if k not in index_rules.keys()}
|
||
|
exclude = set(self.get_indices())
|
||
|
|
||
|
newrule = {}
|
||
|
newrule.update(index_rules)
|
||
|
exclude.update(index_rules.keys())
|
||
|
exclude.update(index_rules.values())
|
||
|
for old, new in other_rules.items():
|
||
|
new_renamed = TensMul._dedupe_indices(new, exclude)
|
||
|
if old == new or new_renamed is None:
|
||
|
newrule[old] = new
|
||
|
else:
|
||
|
newrule[old] = new_renamed
|
||
|
exclude.update(get_indices(new_renamed))
|
||
|
return newrule
|
||
|
|
||
|
def _eval_rewrite_as_Indexed(self, *args):
|
||
|
from sympy.concrete.summations import Sum
|
||
|
index_symbols = [i.args[0] for i in self.get_indices()]
|
||
|
args = [arg.args[0] if isinstance(arg, Sum) else arg for arg in args]
|
||
|
expr = Mul.fromiter(args)
|
||
|
return self._check_add_Sum(expr, index_symbols)
|
||
|
|
||
|
def _eval_partial_derivative(self, s):
|
||
|
# Evaluation like Mul
|
||
|
terms = []
|
||
|
for i, arg in enumerate(self.args):
|
||
|
# checking whether some tensor instance is differentiated
|
||
|
# or some other thing is necessary, but ugly
|
||
|
if isinstance(arg, TensExpr):
|
||
|
d = arg._eval_partial_derivative(s)
|
||
|
else:
|
||
|
# do not call diff is s is no symbol
|
||
|
if s._diff_wrt:
|
||
|
d = arg._eval_derivative(s)
|
||
|
else:
|
||
|
d = S.Zero
|
||
|
if d:
|
||
|
terms.append(TensMul.fromiter(self.args[:i] + (d,) + self.args[i + 1:]))
|
||
|
return TensAdd.fromiter(terms)
|
||
|
|
||
|
|
||
|
class TensorElement(TensExpr):
|
||
|
"""
|
||
|
Tensor with evaluated components.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, TensorHead, TensorSymmetry
|
||
|
>>> from sympy import symbols
|
||
|
>>> L = TensorIndexType("L")
|
||
|
>>> i, j, k = symbols("i j k")
|
||
|
>>> A = TensorHead("A", [L, L], TensorSymmetry.fully_symmetric(2))
|
||
|
>>> A(i, j).get_free_indices()
|
||
|
[i, j]
|
||
|
|
||
|
If we want to set component ``i`` to a specific value, use the
|
||
|
``TensorElement`` class:
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorElement
|
||
|
>>> te = TensorElement(A(i, j), {i: 2})
|
||
|
|
||
|
As index ``i`` has been accessed (``{i: 2}`` is the evaluation of its 3rd
|
||
|
element), the free indices will only contain ``j``:
|
||
|
|
||
|
>>> te.get_free_indices()
|
||
|
[j]
|
||
|
"""
|
||
|
|
||
|
def __new__(cls, expr, index_map):
|
||
|
if not isinstance(expr, Tensor):
|
||
|
# remap
|
||
|
if not isinstance(expr, TensExpr):
|
||
|
raise TypeError("%s is not a tensor expression" % expr)
|
||
|
return expr.func(*[TensorElement(arg, index_map) for arg in expr.args])
|
||
|
expr_free_indices = expr.get_free_indices()
|
||
|
name_translation = {i.args[0]: i for i in expr_free_indices}
|
||
|
index_map = {name_translation.get(index, index): value for index, value in index_map.items()}
|
||
|
index_map = {index: value for index, value in index_map.items() if index in expr_free_indices}
|
||
|
if len(index_map) == 0:
|
||
|
return expr
|
||
|
free_indices = [i for i in expr_free_indices if i not in index_map.keys()]
|
||
|
index_map = Dict(index_map)
|
||
|
obj = TensExpr.__new__(cls, expr, index_map)
|
||
|
obj._free_indices = free_indices
|
||
|
return obj
|
||
|
|
||
|
@property
|
||
|
def free(self):
|
||
|
return [(index, i) for i, index in enumerate(self.get_free_indices())]
|
||
|
|
||
|
@property
|
||
|
def dum(self):
|
||
|
# TODO: inherit dummies from expr
|
||
|
return []
|
||
|
|
||
|
@property
|
||
|
def expr(self):
|
||
|
return self._args[0]
|
||
|
|
||
|
@property
|
||
|
def index_map(self):
|
||
|
return self._args[1]
|
||
|
|
||
|
@property
|
||
|
def coeff(self):
|
||
|
return S.One
|
||
|
|
||
|
@property
|
||
|
def nocoeff(self):
|
||
|
return self
|
||
|
|
||
|
def get_free_indices(self):
|
||
|
return self._free_indices
|
||
|
|
||
|
def _replace_indices(self, repl: dict[TensorIndex, TensorIndex]) -> TensExpr:
|
||
|
# TODO: can be improved:
|
||
|
return self.xreplace(repl)
|
||
|
|
||
|
def get_indices(self):
|
||
|
return self.get_free_indices()
|
||
|
|
||
|
def _extract_data(self, replacement_dict):
|
||
|
ret_indices, array = self.expr._extract_data(replacement_dict)
|
||
|
index_map = self.index_map
|
||
|
slice_tuple = tuple(index_map.get(i, slice(None)) for i in ret_indices)
|
||
|
ret_indices = [i for i in ret_indices if i not in index_map]
|
||
|
array = array.__getitem__(slice_tuple)
|
||
|
return ret_indices, array
|
||
|
|
||
|
|
||
|
class WildTensorHead(TensorHead):
|
||
|
"""
|
||
|
A wild object that is used to create ``WildTensor`` instances
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
>>> from sympy.tensor.tensor import TensorHead, TensorIndex, WildTensorHead, TensorIndexType
|
||
|
>>> R3 = TensorIndexType('R3', dim=3)
|
||
|
>>> p = TensorIndex('p', R3)
|
||
|
>>> q = TensorIndex('q', R3)
|
||
|
|
||
|
A WildTensorHead can be created without specifying a ``TensorIndexType``
|
||
|
|
||
|
>>> W = WildTensorHead("W")
|
||
|
|
||
|
Calling it with a ``TensorIndex`` creates a ``WildTensor`` instance.
|
||
|
|
||
|
>>> type(W(p))
|
||
|
<class 'sympy.tensor.tensor.WildTensor'>
|
||
|
|
||
|
The ``TensorIndexType`` is automatically detected from the index that is passed
|
||
|
|
||
|
>>> W(p).component
|
||
|
W(R3)
|
||
|
|
||
|
Calling it with no indices returns an object that can match tensors with any number of indices.
|
||
|
|
||
|
>>> K = TensorHead('K', [R3])
|
||
|
>>> Q = TensorHead('Q', [R3, R3])
|
||
|
>>> W().matches(K(p))
|
||
|
{W: K(p)}
|
||
|
>>> W().matches(Q(p,q))
|
||
|
{W: Q(p, q)}
|
||
|
|
||
|
If you want to ignore the order of indices while matching, pass ``unordered_indices=True``.
|
||
|
|
||
|
>>> U = WildTensorHead("U", unordered_indices=True)
|
||
|
>>> W(p,q).matches(Q(q,p))
|
||
|
>>> U(p,q).matches(Q(q,p))
|
||
|
{U(R3,R3): _WildTensExpr(Q(q, p))}
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
name : name of the tensor
|
||
|
unordered_indices : whether the order of the indices matters for matching
|
||
|
(default: False)
|
||
|
|
||
|
See also
|
||
|
========
|
||
|
``WildTensor``
|
||
|
``TensorHead``
|
||
|
|
||
|
"""
|
||
|
def __new__(cls, name, index_types=None, symmetry=None, comm=0, unordered_indices=False):
|
||
|
if isinstance(name, str):
|
||
|
name_symbol = Symbol(name)
|
||
|
elif isinstance(name, Symbol):
|
||
|
name_symbol = name
|
||
|
else:
|
||
|
raise ValueError("invalid name")
|
||
|
|
||
|
if index_types is None:
|
||
|
index_types = []
|
||
|
|
||
|
if symmetry is None:
|
||
|
symmetry = TensorSymmetry.no_symmetry(len(index_types))
|
||
|
else:
|
||
|
assert symmetry.rank == len(index_types)
|
||
|
|
||
|
if symmetry != TensorSymmetry.no_symmetry(len(index_types)):
|
||
|
raise NotImplementedError("Wild matching based on symmetry is not implemented.")
|
||
|
|
||
|
obj = Basic.__new__(cls, name_symbol, Tuple(*index_types), sympify(symmetry), sympify(comm), sympify(unordered_indices))
|
||
|
obj.comm = TensorManager.comm_symbols2i(comm)
|
||
|
obj.unordered_indices = unordered_indices
|
||
|
|
||
|
return obj
|
||
|
|
||
|
def __call__(self, *indices, **kwargs):
|
||
|
tensor = WildTensor(self, indices, **kwargs)
|
||
|
return tensor.doit()
|
||
|
|
||
|
|
||
|
class WildTensor(Tensor):
|
||
|
"""
|
||
|
A wild object which matches ``Tensor`` instances
|
||
|
|
||
|
Explanation
|
||
|
===========
|
||
|
This is instantiated by attaching indices to a ``WildTensorHead`` instance.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
>>> from sympy.tensor.tensor import TensorHead, TensorIndex, WildTensorHead, TensorIndexType
|
||
|
>>> W = WildTensorHead("W")
|
||
|
>>> R3 = TensorIndexType('R3', dim=3)
|
||
|
>>> p = TensorIndex('p', R3)
|
||
|
>>> q = TensorIndex('q', R3)
|
||
|
>>> K = TensorHead('K', [R3])
|
||
|
>>> Q = TensorHead('Q', [R3, R3])
|
||
|
|
||
|
Matching also takes the indices into account
|
||
|
>>> W(p).matches(K(p))
|
||
|
{W(R3): _WildTensExpr(K(p))}
|
||
|
>>> W(p).matches(K(q))
|
||
|
>>> W(p).matches(K(-p))
|
||
|
|
||
|
If you want to match objects with any number of indices, just use a ``WildTensor`` with no indices.
|
||
|
>>> W().matches(K(p))
|
||
|
{W: K(p)}
|
||
|
>>> W().matches(Q(p,q))
|
||
|
{W: Q(p, q)}
|
||
|
|
||
|
See Also
|
||
|
========
|
||
|
``WildTensorHead``
|
||
|
``Tensor``
|
||
|
|
||
|
"""
|
||
|
def __new__(cls, tensor_head, indices, **kw_args):
|
||
|
is_canon_bp = kw_args.pop("is_canon_bp", False)
|
||
|
|
||
|
if tensor_head.func == TensorHead:
|
||
|
"""
|
||
|
If someone tried to call WildTensor by supplying a TensorHead (not a WildTensorHead), return a normal tensor instead. This is helpful when using subs on an expression to replace occurrences of a WildTensorHead with a TensorHead.
|
||
|
"""
|
||
|
return Tensor(tensor_head, indices, is_canon_bp=is_canon_bp, **kw_args)
|
||
|
elif tensor_head.func == _WildTensExpr:
|
||
|
return tensor_head(*indices)
|
||
|
|
||
|
indices = cls._parse_indices(tensor_head, indices)
|
||
|
index_types = [ind.tensor_index_type for ind in indices]
|
||
|
tensor_head = tensor_head.func(
|
||
|
tensor_head.name,
|
||
|
index_types,
|
||
|
symmetry=None,
|
||
|
comm=tensor_head.comm,
|
||
|
unordered_indices=tensor_head.unordered_indices,
|
||
|
)
|
||
|
|
||
|
obj = Basic.__new__(cls, tensor_head, Tuple(*indices))
|
||
|
obj.name = tensor_head.name
|
||
|
obj._index_structure = _IndexStructure.from_indices(*indices)
|
||
|
obj._free = obj._index_structure.free[:]
|
||
|
obj._dum = obj._index_structure.dum[:]
|
||
|
obj._ext_rank = obj._index_structure._ext_rank
|
||
|
obj._coeff = S.One
|
||
|
obj._nocoeff = obj
|
||
|
obj._component = tensor_head
|
||
|
obj._components = [tensor_head]
|
||
|
if tensor_head.rank != len(indices):
|
||
|
raise ValueError("wrong number of indices")
|
||
|
obj.is_canon_bp = is_canon_bp
|
||
|
obj._index_map = obj._build_index_map(indices, obj._index_structure)
|
||
|
|
||
|
return obj
|
||
|
|
||
|
|
||
|
def matches(self, expr, repl_dict=None, old=False):
|
||
|
if not isinstance(expr, TensExpr) and expr != S(1):
|
||
|
return None
|
||
|
|
||
|
if repl_dict is None:
|
||
|
repl_dict = {}
|
||
|
else:
|
||
|
repl_dict = repl_dict.copy()
|
||
|
|
||
|
if len(self.indices) > 0:
|
||
|
if not hasattr(expr, "get_free_indices"):
|
||
|
return None
|
||
|
expr_indices = expr.get_free_indices()
|
||
|
if len(expr_indices) != len(self.indices):
|
||
|
return None
|
||
|
if self._component.unordered_indices:
|
||
|
m = self._match_indices_ignoring_order(expr)
|
||
|
if m is None:
|
||
|
return None
|
||
|
else:
|
||
|
repl_dict.update(m)
|
||
|
else:
|
||
|
for i in range(len(expr_indices)):
|
||
|
m = self.indices[i].matches(expr_indices[i])
|
||
|
if m is None:
|
||
|
return None
|
||
|
else:
|
||
|
repl_dict.update(m)
|
||
|
|
||
|
repl_dict[self.component] = _WildTensExpr(expr)
|
||
|
else:
|
||
|
#If no indices were passed to the WildTensor, it may match tensors with any number of indices.
|
||
|
repl_dict[self] = expr
|
||
|
|
||
|
return repl_dict
|
||
|
|
||
|
def _match_indices_ignoring_order(self, expr, repl_dict=None, old=False):
|
||
|
"""
|
||
|
Helper method for matches. Checks if the indices of self and expr
|
||
|
match disregarding index ordering.
|
||
|
"""
|
||
|
if repl_dict is None:
|
||
|
repl_dict = {}
|
||
|
else:
|
||
|
repl_dict = repl_dict.copy()
|
||
|
|
||
|
def siftkey(ind):
|
||
|
if isinstance(ind, WildTensorIndex):
|
||
|
if ind.ignore_updown:
|
||
|
return "wild, updown"
|
||
|
else:
|
||
|
return "wild"
|
||
|
else:
|
||
|
return "nonwild"
|
||
|
|
||
|
indices_sifted = sift(self.indices, siftkey)
|
||
|
|
||
|
matched_indices = []
|
||
|
expr_indices_remaining = expr.get_indices()
|
||
|
for ind in indices_sifted["nonwild"]:
|
||
|
matched_this_ind = False
|
||
|
for e_ind in expr_indices_remaining:
|
||
|
if e_ind in matched_indices:
|
||
|
continue
|
||
|
m = ind.matches(e_ind)
|
||
|
if m is not None:
|
||
|
matched_this_ind = True
|
||
|
repl_dict.update(m)
|
||
|
matched_indices.append(e_ind)
|
||
|
break
|
||
|
if not matched_this_ind:
|
||
|
return None
|
||
|
|
||
|
expr_indices_remaining = [i for i in expr_indices_remaining if i not in matched_indices]
|
||
|
for ind in indices_sifted["wild"]:
|
||
|
matched_this_ind = False
|
||
|
for e_ind in expr_indices_remaining:
|
||
|
m = ind.matches(e_ind)
|
||
|
if m is not None:
|
||
|
if -ind in repl_dict.keys() and -repl_dict[-ind] != m[ind]:
|
||
|
return None
|
||
|
matched_this_ind = True
|
||
|
repl_dict.update(m)
|
||
|
matched_indices.append(e_ind)
|
||
|
break
|
||
|
if not matched_this_ind:
|
||
|
return None
|
||
|
|
||
|
expr_indices_remaining = [i for i in expr_indices_remaining if i not in matched_indices]
|
||
|
for ind in indices_sifted["wild, updown"]:
|
||
|
matched_this_ind = False
|
||
|
for e_ind in expr_indices_remaining:
|
||
|
m = ind.matches(e_ind)
|
||
|
if m is not None:
|
||
|
if -ind in repl_dict.keys() and -repl_dict[-ind] != m[ind]:
|
||
|
return None
|
||
|
matched_this_ind = True
|
||
|
repl_dict.update(m)
|
||
|
matched_indices.append(e_ind)
|
||
|
break
|
||
|
if not matched_this_ind:
|
||
|
return None
|
||
|
|
||
|
if len(matched_indices) < len(self.indices):
|
||
|
return None
|
||
|
else:
|
||
|
return repl_dict
|
||
|
|
||
|
class WildTensorIndex(TensorIndex):
|
||
|
"""
|
||
|
A wild object that matches TensorIndex instances.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
>>> from sympy.tensor.tensor import TensorIndex, TensorIndexType, WildTensorIndex
|
||
|
>>> R3 = TensorIndexType('R3', dim=3)
|
||
|
>>> p = TensorIndex("p", R3)
|
||
|
|
||
|
By default, covariant indices only match with covariant indices (and
|
||
|
similarly for contravariant)
|
||
|
|
||
|
>>> q = WildTensorIndex("q", R3)
|
||
|
>>> (q).matches(p)
|
||
|
{q: p}
|
||
|
>>> (q).matches(-p)
|
||
|
|
||
|
If you want matching to ignore whether the index is co/contra-variant, set
|
||
|
ignore_updown=True
|
||
|
|
||
|
>>> r = WildTensorIndex("r", R3, ignore_updown=True)
|
||
|
>>> (r).matches(-p)
|
||
|
{r: -p}
|
||
|
>>> (r).matches(p)
|
||
|
{r: p}
|
||
|
|
||
|
Parameters
|
||
|
==========
|
||
|
name : name of the index (string), or ``True`` if you want it to be
|
||
|
automatically assigned
|
||
|
tensor_index_type : ``TensorIndexType`` of the index
|
||
|
is_up : flag for contravariant index (is_up=True by default)
|
||
|
ignore_updown : bool, Whether this should match both co- and contra-variant
|
||
|
indices (default:False)
|
||
|
"""
|
||
|
def __new__(cls, name, tensor_index_type, is_up=True, ignore_updown=False):
|
||
|
if isinstance(name, str):
|
||
|
name_symbol = Symbol(name)
|
||
|
elif isinstance(name, Symbol):
|
||
|
name_symbol = name
|
||
|
elif name is True:
|
||
|
name = "_i{}".format(len(tensor_index_type._autogenerated))
|
||
|
name_symbol = Symbol(name)
|
||
|
tensor_index_type._autogenerated.append(name_symbol)
|
||
|
else:
|
||
|
raise ValueError("invalid name")
|
||
|
|
||
|
is_up = sympify(is_up)
|
||
|
ignore_updown = sympify(ignore_updown)
|
||
|
return Basic.__new__(cls, name_symbol, tensor_index_type, is_up, ignore_updown)
|
||
|
|
||
|
@property
|
||
|
def ignore_updown(self):
|
||
|
return self.args[3]
|
||
|
|
||
|
def __neg__(self):
|
||
|
t1 = WildTensorIndex(self.name, self.tensor_index_type,
|
||
|
(not self.is_up), self.ignore_updown)
|
||
|
return t1
|
||
|
|
||
|
def matches(self, expr, repl_dict=None, old=False):
|
||
|
if not isinstance(expr, TensorIndex):
|
||
|
return None
|
||
|
if self.tensor_index_type != expr.tensor_index_type:
|
||
|
return None
|
||
|
if not self.ignore_updown:
|
||
|
if self.is_up != expr.is_up:
|
||
|
return None
|
||
|
|
||
|
if repl_dict is None:
|
||
|
repl_dict = {}
|
||
|
else:
|
||
|
repl_dict = repl_dict.copy()
|
||
|
|
||
|
repl_dict[self] = expr
|
||
|
return repl_dict
|
||
|
|
||
|
|
||
|
class _WildTensExpr(Basic):
|
||
|
"""
|
||
|
INTERNAL USE ONLY
|
||
|
|
||
|
This is an object that helps with replacement of WildTensors in expressions.
|
||
|
When this object is set as the tensor_head of a WildTensor, it replaces the
|
||
|
WildTensor by a TensExpr (passed when initializing this object).
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
>>> from sympy.tensor.tensor import WildTensorHead, TensorIndex, TensorHead, TensorIndexType
|
||
|
>>> W = WildTensorHead("W")
|
||
|
>>> R3 = TensorIndexType('R3', dim=3)
|
||
|
>>> p = TensorIndex('p', R3)
|
||
|
>>> q = TensorIndex('q', R3)
|
||
|
>>> K = TensorHead('K', [R3])
|
||
|
>>> print( ( K(p) ).replace( W(p), W(q)*W(-q)*W(p) ) )
|
||
|
K(R_0)*K(-R_0)*K(p)
|
||
|
|
||
|
"""
|
||
|
def __init__(self, expr):
|
||
|
if not isinstance(expr, TensExpr):
|
||
|
raise TypeError("_WildTensExpr expects a TensExpr as argument")
|
||
|
self.expr = expr
|
||
|
|
||
|
def __call__(self, *indices):
|
||
|
return self.expr._replace_indices(dict(zip(self.expr.get_free_indices(), indices)))
|
||
|
|
||
|
def __neg__(self):
|
||
|
return self.func(self.expr*S.NegativeOne)
|
||
|
|
||
|
def __abs__(self):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __add__(self, other):
|
||
|
if other.func != self.func:
|
||
|
raise TypeError(f"Cannot add {self.func} to {other.func}")
|
||
|
return self.func(self.expr+other.expr)
|
||
|
|
||
|
def __radd__(self, other):
|
||
|
if other.func != self.func:
|
||
|
raise TypeError(f"Cannot add {self.func} to {other.func}")
|
||
|
return self.func(other.expr+self.expr)
|
||
|
|
||
|
def __sub__(self, other):
|
||
|
return self + (-other)
|
||
|
|
||
|
def __rsub__(self, other):
|
||
|
return other + (-self)
|
||
|
|
||
|
def __mul__(self, other):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __rmul__(self, other):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __truediv__(self, other):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __rtruediv__(self, other):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __pow__(self, other):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def __rpow__(self, other):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
def canon_bp(p):
|
||
|
"""
|
||
|
Butler-Portugal canonicalization. See ``tensor_can.py`` from the
|
||
|
combinatorics module for the details.
|
||
|
"""
|
||
|
if isinstance(p, TensExpr):
|
||
|
return p.canon_bp()
|
||
|
return p
|
||
|
|
||
|
|
||
|
def tensor_mul(*a):
|
||
|
"""
|
||
|
product of tensors
|
||
|
"""
|
||
|
if not a:
|
||
|
return TensMul.from_data(S.One, [], [], [])
|
||
|
t = a[0]
|
||
|
for tx in a[1:]:
|
||
|
t = t*tx
|
||
|
return t
|
||
|
|
||
|
|
||
|
def riemann_cyclic_replace(t_r):
|
||
|
"""
|
||
|
replace Riemann tensor with an equivalent expression
|
||
|
|
||
|
``R(m,n,p,q) -> 2/3*R(m,n,p,q) - 1/3*R(m,q,n,p) + 1/3*R(m,p,n,q)``
|
||
|
|
||
|
"""
|
||
|
free = sorted(t_r.free, key=lambda x: x[1])
|
||
|
m, n, p, q = [x[0] for x in free]
|
||
|
t0 = t_r*Rational(2, 3)
|
||
|
t1 = -t_r.substitute_indices((m,m),(n,q),(p,n),(q,p))*Rational(1, 3)
|
||
|
t2 = t_r.substitute_indices((m,m),(n,p),(p,n),(q,q))*Rational(1, 3)
|
||
|
t3 = t0 + t1 + t2
|
||
|
return t3
|
||
|
|
||
|
def riemann_cyclic(t2):
|
||
|
"""
|
||
|
Replace each Riemann tensor with an equivalent expression
|
||
|
satisfying the cyclic identity.
|
||
|
|
||
|
This trick is discussed in the reference guide to Cadabra.
|
||
|
|
||
|
Examples
|
||
|
========
|
||
|
|
||
|
>>> from sympy.tensor.tensor import TensorIndexType, tensor_indices, TensorHead, riemann_cyclic, TensorSymmetry
|
||
|
>>> Lorentz = TensorIndexType('Lorentz', dummy_name='L')
|
||
|
>>> i, j, k, l = tensor_indices('i,j,k,l', Lorentz)
|
||
|
>>> R = TensorHead('R', [Lorentz]*4, TensorSymmetry.riemann())
|
||
|
>>> t = R(i,j,k,l)*(R(-i,-j,-k,-l) - 2*R(-i,-k,-j,-l))
|
||
|
>>> riemann_cyclic(t)
|
||
|
0
|
||
|
"""
|
||
|
t2 = t2.expand()
|
||
|
if isinstance(t2, (TensMul, Tensor)):
|
||
|
args = [t2]
|
||
|
else:
|
||
|
args = t2.args
|
||
|
a1 = [x.split() for x in args]
|
||
|
a2 = [[riemann_cyclic_replace(tx) for tx in y] for y in a1]
|
||
|
a3 = [tensor_mul(*v) for v in a2]
|
||
|
t3 = TensAdd(*a3).doit()
|
||
|
if not t3:
|
||
|
return t3
|
||
|
else:
|
||
|
return canon_bp(t3)
|
||
|
|
||
|
|
||
|
def get_lines(ex, index_type):
|
||
|
"""
|
||
|
Returns ``(lines, traces, rest)`` for an index type,
|
||
|
where ``lines`` is the list of list of positions of a matrix line,
|
||
|
``traces`` is the list of list of traced matrix lines,
|
||
|
``rest`` is the rest of the elements of the tensor.
|
||
|
"""
|
||
|
def _join_lines(a):
|
||
|
i = 0
|
||
|
while i < len(a):
|
||
|
x = a[i]
|
||
|
xend = x[-1]
|
||
|
xstart = x[0]
|
||
|
hit = True
|
||
|
while hit:
|
||
|
hit = False
|
||
|
for j in range(i + 1, len(a)):
|
||
|
if j >= len(a):
|
||
|
break
|
||
|
if a[j][0] == xend:
|
||
|
hit = True
|
||
|
x.extend(a[j][1:])
|
||
|
xend = x[-1]
|
||
|
a.pop(j)
|
||
|
continue
|
||
|
if a[j][0] == xstart:
|
||
|
hit = True
|
||
|
a[i] = reversed(a[j][1:]) + x
|
||
|
x = a[i]
|
||
|
xstart = a[i][0]
|
||
|
a.pop(j)
|
||
|
continue
|
||
|
if a[j][-1] == xend:
|
||
|
hit = True
|
||
|
x.extend(reversed(a[j][:-1]))
|
||
|
xend = x[-1]
|
||
|
a.pop(j)
|
||
|
continue
|
||
|
if a[j][-1] == xstart:
|
||
|
hit = True
|
||
|
a[i] = a[j][:-1] + x
|
||
|
x = a[i]
|
||
|
xstart = x[0]
|
||
|
a.pop(j)
|
||
|
continue
|
||
|
i += 1
|
||
|
return a
|
||
|
|
||
|
arguments = ex.args
|
||
|
dt = {}
|
||
|
for c in ex.args:
|
||
|
if not isinstance(c, TensExpr):
|
||
|
continue
|
||
|
if c in dt:
|
||
|
continue
|
||
|
index_types = c.index_types
|
||
|
a = []
|
||
|
for i in range(len(index_types)):
|
||
|
if index_types[i] is index_type:
|
||
|
a.append(i)
|
||
|
if len(a) > 2:
|
||
|
raise ValueError('at most two indices of type %s allowed' % index_type)
|
||
|
if len(a) == 2:
|
||
|
dt[c] = a
|
||
|
#dum = ex.dum
|
||
|
lines = []
|
||
|
traces = []
|
||
|
traces1 = []
|
||
|
#indices_to_args_pos = ex._get_indices_to_args_pos()
|
||
|
# TODO: add a dum_to_components_map ?
|
||
|
for p0, p1, c0, c1 in ex.dum_in_args:
|
||
|
if arguments[c0] not in dt:
|
||
|
continue
|
||
|
if c0 == c1:
|
||
|
traces.append([c0])
|
||
|
continue
|
||
|
ta0 = dt[arguments[c0]]
|
||
|
ta1 = dt[arguments[c1]]
|
||
|
if p0 not in ta0:
|
||
|
continue
|
||
|
if ta0.index(p0) == ta1.index(p1):
|
||
|
# case gamma(i,s0,-s1) in c0, gamma(j,-s0,s2) in c1;
|
||
|
# to deal with this case one could add to the position
|
||
|
# a flag for transposition;
|
||
|
# one could write [(c0, False), (c1, True)]
|
||
|
raise NotImplementedError
|
||
|
# if p0 == ta0[1] then G in pos c0 is mult on the right by G in c1
|
||
|
# if p0 == ta0[0] then G in pos c1 is mult on the right by G in c0
|
||
|
ta0 = dt[arguments[c0]]
|
||
|
b0, b1 = (c0, c1) if p0 == ta0[1] else (c1, c0)
|
||
|
lines1 = lines[:]
|
||
|
for line in lines:
|
||
|
if line[-1] == b0:
|
||
|
if line[0] == b1:
|
||
|
n = line.index(min(line))
|
||
|
traces1.append(line)
|
||
|
traces.append(line[n:] + line[:n])
|
||
|
else:
|
||
|
line.append(b1)
|
||
|
break
|
||
|
elif line[0] == b1:
|
||
|
line.insert(0, b0)
|
||
|
break
|
||
|
else:
|
||
|
lines1.append([b0, b1])
|
||
|
|
||
|
lines = [x for x in lines1 if x not in traces1]
|
||
|
lines = _join_lines(lines)
|
||
|
rest = []
|
||
|
for line in lines:
|
||
|
for y in line:
|
||
|
rest.append(y)
|
||
|
for line in traces:
|
||
|
for y in line:
|
||
|
rest.append(y)
|
||
|
rest = [x for x in range(len(arguments)) if x not in rest]
|
||
|
|
||
|
return lines, traces, rest
|
||
|
|
||
|
|
||
|
def get_free_indices(t):
|
||
|
if not isinstance(t, TensExpr):
|
||
|
return ()
|
||
|
return t.get_free_indices()
|
||
|
|
||
|
|
||
|
def get_indices(t):
|
||
|
if not isinstance(t, TensExpr):
|
||
|
return ()
|
||
|
return t.get_indices()
|
||
|
|
||
|
def get_dummy_indices(t):
|
||
|
if not isinstance(t, TensExpr):
|
||
|
return ()
|
||
|
inds = t.get_indices()
|
||
|
free = t.get_free_indices()
|
||
|
return [i for i in inds if i not in free]
|
||
|
|
||
|
def get_index_structure(t):
|
||
|
if isinstance(t, TensExpr):
|
||
|
return t._index_structure
|
||
|
return _IndexStructure([], [], [], [])
|
||
|
|
||
|
|
||
|
def get_coeff(t):
|
||
|
if isinstance(t, Tensor):
|
||
|
return S.One
|
||
|
if isinstance(t, TensMul):
|
||
|
return t.coeff
|
||
|
if isinstance(t, TensExpr):
|
||
|
raise ValueError("no coefficient associated to this tensor expression")
|
||
|
return t
|
||
|
|
||
|
def contract_metric(t, g):
|
||
|
if isinstance(t, TensExpr):
|
||
|
return t.contract_metric(g)
|
||
|
return t
|
||
|
|
||
|
|
||
|
def perm2tensor(t, g, is_canon_bp=False):
|
||
|
"""
|
||
|
Returns the tensor corresponding to the permutation ``g``
|
||
|
|
||
|
For further details, see the method in ``TIDS`` with the same name.
|
||
|
"""
|
||
|
if not isinstance(t, TensExpr):
|
||
|
return t
|
||
|
elif isinstance(t, (Tensor, TensMul)):
|
||
|
nim = get_index_structure(t).perm2tensor(g, is_canon_bp=is_canon_bp)
|
||
|
res = t._set_new_index_structure(nim, is_canon_bp=is_canon_bp)
|
||
|
if g[-1] != len(g) - 1:
|
||
|
return -res
|
||
|
|
||
|
return res
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
|
||
|
def substitute_indices(t, *index_tuples):
|
||
|
if not isinstance(t, TensExpr):
|
||
|
return t
|
||
|
return t.substitute_indices(*index_tuples)
|
||
|
|
||
|
|
||
|
def _expand(expr, **kwargs):
|
||
|
if isinstance(expr, TensExpr):
|
||
|
return expr._expand(**kwargs)
|
||
|
else:
|
||
|
return expr.expand(**kwargs)
|