You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2041 lines
78 KiB
2041 lines
78 KiB
5 months ago
|
|
||
|
r"""
|
||
|
The torch package contains data structures for multi-dimensional
|
||
|
tensors and defines mathematical operations over these tensors.
|
||
|
Additionally, it provides many utilities for efficient serialization of
|
||
|
Tensors and arbitrary types, and other useful utilities.
|
||
|
|
||
|
It has a CUDA counterpart, that enables you to run your tensor computations
|
||
|
on an NVIDIA GPU with compute capability >= 3.0.
|
||
|
"""
|
||
|
|
||
|
import math
|
||
|
import os
|
||
|
import sys
|
||
|
import platform
|
||
|
import textwrap
|
||
|
import ctypes
|
||
|
import inspect
|
||
|
import threading
|
||
|
|
||
|
# multipy/deploy is setting this import before importing torch, this is the most
|
||
|
# reliable way we have to detect if we're running within deploy.
|
||
|
# https://github.com/pytorch/multipy/blob/d60f34ad38c371e441fe7ffdb77a3c3dda5a5d19/multipy/runtime/interpreter/interpreter_impl.cpp#L134-L137
|
||
|
def _running_with_deploy():
|
||
|
return sys.modules.get("torch._meta_registrations", None) is object
|
||
|
|
||
|
from ._utils import _import_dotted_name, classproperty
|
||
|
from ._utils import _functionalize_sync as _sync
|
||
|
from ._utils_internal import get_file_path, prepare_multiprocessing_environment, \
|
||
|
USE_RTLD_GLOBAL_WITH_LIBTORCH, USE_GLOBAL_DEPS
|
||
|
|
||
|
# TODO(torch_deploy) figure out how to freeze version.py in fbcode build
|
||
|
if _running_with_deploy():
|
||
|
__version__ = "torch-deploy-1.8"
|
||
|
else:
|
||
|
from .torch_version import __version__ as __version__
|
||
|
|
||
|
from typing import Any, Callable, Dict, Optional, Set, Tuple, Type, TYPE_CHECKING, Union, List
|
||
|
import builtins
|
||
|
|
||
|
__all__ = [
|
||
|
'typename', 'is_tensor', 'is_storage',
|
||
|
'set_default_tensor_type', 'set_default_device', 'get_default_device',
|
||
|
'set_rng_state', 'get_rng_state', 'manual_seed', 'initial_seed', 'seed',
|
||
|
'save', 'load', 'set_printoptions', 'chunk', 'split', 'stack', 'matmul',
|
||
|
'no_grad', 'enable_grad', 'rand', 'randn', 'inference_mode',
|
||
|
'DoubleStorage', 'FloatStorage', 'LongStorage', 'IntStorage',
|
||
|
'ShortStorage', 'CharStorage', 'ByteStorage', 'BoolStorage',
|
||
|
'TypedStorage', 'UntypedStorage',
|
||
|
'DoubleTensor', 'FloatTensor', 'LongTensor', 'IntTensor',
|
||
|
'ShortTensor', 'CharTensor', 'ByteTensor', 'BoolTensor', 'Tensor',
|
||
|
'lobpcg', 'use_deterministic_algorithms',
|
||
|
'are_deterministic_algorithms_enabled',
|
||
|
'is_deterministic_algorithms_warn_only_enabled',
|
||
|
'set_deterministic_debug_mode', 'get_deterministic_debug_mode',
|
||
|
'set_float32_matmul_precision', 'get_float32_matmul_precision',
|
||
|
'set_warn_always', 'is_warn_always_enabled', 'SymInt', 'SymFloat',
|
||
|
'SymBool', 'sym_not', 'unravel_index',
|
||
|
'sym_int', 'sym_float', 'sym_max', 'sym_min', 'sym_ite', 'compile', 'vmap',
|
||
|
'export', 'autocast', 'cond', 'GradScaler',
|
||
|
]
|
||
|
|
||
|
################################################################################
|
||
|
# Load the extension module
|
||
|
################################################################################
|
||
|
|
||
|
if sys.platform == 'win32':
|
||
|
import sysconfig
|
||
|
pfiles_path = os.getenv('ProgramFiles', 'C:\\Program Files')
|
||
|
py_dll_path = os.path.join(sys.exec_prefix, 'Library', 'bin')
|
||
|
th_dll_path = os.path.join(os.path.dirname(__file__), 'lib')
|
||
|
usebase_path = os.path.join(sysconfig.get_config_var("userbase"), 'Library', 'bin')
|
||
|
|
||
|
# When users create a virtualenv that inherits the base environment,
|
||
|
# we will need to add the corresponding library directory into
|
||
|
# DLL search directories. Otherwise, it will rely on `PATH` which
|
||
|
# is dependent on user settings.
|
||
|
if sys.exec_prefix != sys.base_exec_prefix:
|
||
|
base_py_dll_path = os.path.join(sys.base_exec_prefix, 'Library', 'bin')
|
||
|
else:
|
||
|
base_py_dll_path = ''
|
||
|
|
||
|
dll_paths = list(filter(os.path.exists, [th_dll_path, py_dll_path, base_py_dll_path, usebase_path]))
|
||
|
|
||
|
if all(not os.path.exists(os.path.join(p, 'nvToolsExt64_1.dll')) for p in dll_paths):
|
||
|
nvtoolsext_dll_path = os.path.join(
|
||
|
os.getenv('NVTOOLSEXT_PATH', os.path.join(pfiles_path, 'NVIDIA Corporation', 'NvToolsExt')), 'bin', 'x64')
|
||
|
else:
|
||
|
nvtoolsext_dll_path = ''
|
||
|
|
||
|
from .version import cuda as cuda_version
|
||
|
import glob
|
||
|
if cuda_version and all(not glob.glob(os.path.join(p, 'cudart64*.dll')) for p in dll_paths):
|
||
|
cuda_version_1 = cuda_version.replace('.', '_')
|
||
|
cuda_path_var = 'CUDA_PATH_V' + cuda_version_1
|
||
|
default_path = os.path.join(pfiles_path, 'NVIDIA GPU Computing Toolkit', 'CUDA', 'v' + cuda_version)
|
||
|
cuda_path = os.path.join(os.getenv(cuda_path_var, default_path), 'bin')
|
||
|
else:
|
||
|
cuda_path = ''
|
||
|
|
||
|
dll_paths.extend(filter(os.path.exists, [nvtoolsext_dll_path, cuda_path]))
|
||
|
|
||
|
kernel32 = ctypes.WinDLL('kernel32.dll', use_last_error=True)
|
||
|
with_load_library_flags = hasattr(kernel32, 'AddDllDirectory')
|
||
|
prev_error_mode = kernel32.SetErrorMode(0x0001)
|
||
|
|
||
|
kernel32.LoadLibraryW.restype = ctypes.c_void_p
|
||
|
if with_load_library_flags:
|
||
|
kernel32.LoadLibraryExW.restype = ctypes.c_void_p
|
||
|
|
||
|
for dll_path in dll_paths:
|
||
|
os.add_dll_directory(dll_path)
|
||
|
|
||
|
try:
|
||
|
ctypes.CDLL('vcruntime140.dll')
|
||
|
ctypes.CDLL('msvcp140.dll')
|
||
|
ctypes.CDLL('vcruntime140_1.dll')
|
||
|
except OSError:
|
||
|
print('''Microsoft Visual C++ Redistributable is not installed, this may lead to the DLL load failure.
|
||
|
It can be downloaded at https://aka.ms/vs/16/release/vc_redist.x64.exe''')
|
||
|
|
||
|
dlls = glob.glob(os.path.join(th_dll_path, '*.dll'))
|
||
|
path_patched = False
|
||
|
for dll in dlls:
|
||
|
is_loaded = False
|
||
|
if with_load_library_flags:
|
||
|
res = kernel32.LoadLibraryExW(dll, None, 0x00001100)
|
||
|
last_error = ctypes.get_last_error()
|
||
|
if res is None and last_error != 126:
|
||
|
err = ctypes.WinError(last_error)
|
||
|
err.strerror += f' Error loading "{dll}" or one of its dependencies.'
|
||
|
raise err
|
||
|
elif res is not None:
|
||
|
is_loaded = True
|
||
|
if not is_loaded:
|
||
|
if not path_patched:
|
||
|
os.environ['PATH'] = ';'.join(dll_paths + [os.environ['PATH']])
|
||
|
path_patched = True
|
||
|
res = kernel32.LoadLibraryW(dll)
|
||
|
if res is None:
|
||
|
err = ctypes.WinError(ctypes.get_last_error())
|
||
|
err.strerror += f' Error loading "{dll}" or one of its dependencies.'
|
||
|
raise err
|
||
|
|
||
|
kernel32.SetErrorMode(prev_error_mode)
|
||
|
|
||
|
|
||
|
def _preload_cuda_deps(lib_folder, lib_name):
|
||
|
"""Preloads cuda deps if they could not be found otherwise."""
|
||
|
# Should only be called on Linux if default path resolution have failed
|
||
|
assert platform.system() == 'Linux', 'Should only be called on Linux'
|
||
|
import glob
|
||
|
lib_path = None
|
||
|
for path in sys.path:
|
||
|
nvidia_path = os.path.join(path, 'nvidia')
|
||
|
if not os.path.exists(nvidia_path):
|
||
|
continue
|
||
|
candidate_lib_paths = glob.glob(os.path.join(nvidia_path, lib_folder, 'lib', lib_name))
|
||
|
if candidate_lib_paths and not lib_path:
|
||
|
lib_path = candidate_lib_paths[0]
|
||
|
if lib_path:
|
||
|
break
|
||
|
if not lib_path:
|
||
|
raise ValueError(f"{lib_name} not found in the system path {sys.path}")
|
||
|
ctypes.CDLL(lib_path)
|
||
|
|
||
|
|
||
|
# See Note [Global dependencies]
|
||
|
def _load_global_deps() -> None:
|
||
|
if _running_with_deploy() or platform.system() == 'Windows':
|
||
|
return
|
||
|
|
||
|
lib_name = 'libtorch_global_deps' + ('.dylib' if platform.system() == 'Darwin' else '.so')
|
||
|
here = os.path.abspath(__file__)
|
||
|
lib_path = os.path.join(os.path.dirname(here), 'lib', lib_name)
|
||
|
|
||
|
try:
|
||
|
ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL)
|
||
|
except OSError as err:
|
||
|
# Can only happen for wheel with cuda libs as PYPI deps
|
||
|
# As PyTorch is not purelib, but nvidia-*-cu12 is
|
||
|
cuda_libs: Dict[str, str] = {
|
||
|
'cublas': 'libcublas.so.*[0-9]',
|
||
|
'cudnn': 'libcudnn.so.*[0-9]',
|
||
|
'cuda_nvrtc': 'libnvrtc.so.*[0-9]',
|
||
|
'cuda_runtime': 'libcudart.so.*[0-9]',
|
||
|
'cuda_cupti': 'libcupti.so.*[0-9]',
|
||
|
'cufft': 'libcufft.so.*[0-9]',
|
||
|
'curand': 'libcurand.so.*[0-9]',
|
||
|
'cusolver': 'libcusolver.so.*[0-9]',
|
||
|
'cusparse': 'libcusparse.so.*[0-9]',
|
||
|
'nccl': 'libnccl.so.*[0-9]',
|
||
|
'nvtx': 'libnvToolsExt.so.*[0-9]',
|
||
|
}
|
||
|
is_cuda_lib_err = [lib for lib in cuda_libs.values() if lib.split('.')[0] in err.args[0]]
|
||
|
if not is_cuda_lib_err:
|
||
|
raise err
|
||
|
for lib_folder, lib_name in cuda_libs.items():
|
||
|
_preload_cuda_deps(lib_folder, lib_name)
|
||
|
ctypes.CDLL(lib_path, mode=ctypes.RTLD_GLOBAL)
|
||
|
|
||
|
|
||
|
if (USE_RTLD_GLOBAL_WITH_LIBTORCH or os.getenv('TORCH_USE_RTLD_GLOBAL')) and \
|
||
|
(_running_with_deploy() or platform.system() != 'Windows'):
|
||
|
# Do it the hard way. You might want to load libtorch with RTLD_GLOBAL in a
|
||
|
# few circumstances:
|
||
|
#
|
||
|
# 1. You're in a build environment (e.g., fbcode) where
|
||
|
# libtorch_global_deps is not available, but you still need
|
||
|
# to get mkl to link in with RTLD_GLOBAL or it will just
|
||
|
# not work.
|
||
|
#
|
||
|
# 2. You're trying to run PyTorch under UBSAN and you need
|
||
|
# to ensure that only one copy of libtorch is loaded, so
|
||
|
# vptr checks work properly
|
||
|
#
|
||
|
# If you're using this setting, you must verify that all the libraries
|
||
|
# you load consistently use the same libstdc++, or you may have
|
||
|
# mysterious segfaults.
|
||
|
#
|
||
|
old_flags = sys.getdlopenflags()
|
||
|
sys.setdlopenflags(os.RTLD_GLOBAL | os.RTLD_LAZY)
|
||
|
from torch._C import * # noqa: F403
|
||
|
sys.setdlopenflags(old_flags)
|
||
|
del old_flags
|
||
|
|
||
|
else:
|
||
|
# Easy way. You want this most of the time, because it will prevent
|
||
|
# C++ symbols from libtorch clobbering C++ symbols from other
|
||
|
# libraries, leading to mysterious segfaults.
|
||
|
#
|
||
|
# If building in an environment where libtorch_global_deps isn't available
|
||
|
# like parts of fbsource, but where RTLD_GLOBAL causes segfaults, you will
|
||
|
# want USE_RTLD_GLOBAL_WITH_LIBTORCH = False and USE_GLOBAL_DEPS = False
|
||
|
#
|
||
|
# See Note [Global dependencies]
|
||
|
if USE_GLOBAL_DEPS:
|
||
|
_load_global_deps()
|
||
|
from torch._C import * # noqa: F403
|
||
|
|
||
|
# Appease the type checker; ordinarily this binding is inserted by the
|
||
|
# torch._C module initialization code in C
|
||
|
if TYPE_CHECKING:
|
||
|
from . import _C as _C
|
||
|
|
||
|
class SymInt:
|
||
|
"""
|
||
|
Like an int (including magic methods), but redirects all operations on the
|
||
|
wrapped node. This is used in particular to symbolically record operations
|
||
|
in the symbolic shape workflow.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, node):
|
||
|
# This field MUST be named node; C++ binding code assumes that this
|
||
|
# class has a field named node that stores SymNode
|
||
|
self.node = node
|
||
|
|
||
|
def __bool__(self):
|
||
|
return builtins.bool(self != 0)
|
||
|
|
||
|
def __int__(self):
|
||
|
return self.node.int_()
|
||
|
|
||
|
def __index__(self):
|
||
|
return self.node.int_()
|
||
|
|
||
|
# Magic methods installed by torch.fx.experimental.sym_node
|
||
|
|
||
|
def __eq__(self, other: object) -> builtins.bool:
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __lt__(self, other) -> builtins.bool:
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __gt__(self, other) -> builtins.bool:
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __le__(self, other) -> builtins.bool:
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __ge__(self, other) -> builtins.bool:
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __add__(self, other) -> "SymInt":
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __mul__(self, other) -> "SymInt":
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __sym_max__(self, other):
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __sym_min__(self, other):
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __sym_float__(self):
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __neg__(self):
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __repr__(self):
|
||
|
return str(self.node)
|
||
|
|
||
|
def __hash__(self) -> builtins.int:
|
||
|
if self.node.is_nested_int():
|
||
|
return hash(self.node.nested_int())
|
||
|
else:
|
||
|
# We could support constant SymInts as well, but not doing it for now
|
||
|
raise TypeError("unhashable type: non-nested SymInt")
|
||
|
|
||
|
class SymFloat:
|
||
|
"""
|
||
|
Like an float (including magic methods), but redirects all operations on the
|
||
|
wrapped node. This is used in particular to symbolically record operations
|
||
|
in the symbolic shape workflow.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, node):
|
||
|
# This field MUST be named node; C++ binding code assumes that this
|
||
|
# class has a field named node that stores SymNode
|
||
|
self.node = node
|
||
|
|
||
|
def __bool__(self):
|
||
|
return self.node.bool_()
|
||
|
|
||
|
# Magic methods installed by torch.fx.experimental.sym_node
|
||
|
|
||
|
def __eq__(self, other: object) -> builtins.bool:
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __lt__(self, other) -> builtins.bool:
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __gt__(self, other) -> builtins.bool:
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __le__(self, other) -> builtins.bool:
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __ge__(self, other) -> builtins.bool:
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __sym_max__(self, other):
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __sym_min__(self, other):
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __sym_int__(self):
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def is_integer(self):
|
||
|
"""Return True if the float is an integer."""
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __repr__(self):
|
||
|
return self.node.str()
|
||
|
|
||
|
class SymBool:
|
||
|
"""
|
||
|
Like an bool (including magic methods), but redirects all operations on the
|
||
|
wrapped node. This is used in particular to symbolically record operations
|
||
|
in the symbolic shape workflow.
|
||
|
|
||
|
Unlike regular bools, regular boolean operators will force extra guards instead
|
||
|
of symbolically evaluate. Use the bitwise operators instead to handle this.
|
||
|
"""
|
||
|
|
||
|
def __init__(self, node):
|
||
|
# This field MUST be named node; C++ binding code assumes that this
|
||
|
# class has a field named node that stores SymNode
|
||
|
self.node = node
|
||
|
|
||
|
def __bool__(self):
|
||
|
return self.node.bool_()
|
||
|
|
||
|
def __int__(self):
|
||
|
return builtins.int(self.node.bool_())
|
||
|
|
||
|
# Magic methods installed by torch.fx.experimental.sym_node
|
||
|
def __and__(self, other) -> "SymBool":
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __or__(self, other) -> "SymBool":
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
# We very carefully define __sym_not__, and not a number of other
|
||
|
# plausible alternatives:
|
||
|
#
|
||
|
# - We do not override __not__ because this is not a real magic
|
||
|
# method; you cannot override the meaning of the not builtin in
|
||
|
# Python. We use the name 'sym_not' to clarify that in user code you
|
||
|
# cannot use the builtin not or operator.not_ or operator.__not__ and
|
||
|
# hit this magic method; you must use our custom sym_not operator.
|
||
|
#
|
||
|
# - We do not override the __invert__ method because SymBool is
|
||
|
# meant to be usable in situations where bool is expected. However,
|
||
|
# bitwise negation ~a does the wrong thing with booleans (because
|
||
|
# bool is a subclass of int, so ~1 = -2 which is not falseish.)
|
||
|
# This would be a giant footgun, so we get around it by defining
|
||
|
# our own operator. Note that bitwise and/or do the right thing,
|
||
|
# so we reuse the conventional operators there for readability.
|
||
|
#
|
||
|
def __sym_not__(self) -> "SymBool":
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __sym_ite__(self, then_val, else_val):
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __eq__(self, other) -> builtins.bool:
|
||
|
raise AssertionError("type stub not overridden")
|
||
|
|
||
|
def __repr__(self):
|
||
|
return str(self.node)
|
||
|
|
||
|
def __hash__(self):
|
||
|
if self.node.is_constant():
|
||
|
return hash(self.node.bool_())
|
||
|
else:
|
||
|
raise TypeError("unhashable type: SymBool")
|
||
|
|
||
|
def sym_not(a):
|
||
|
r""" SymInt-aware utility for logical negation.
|
||
|
|
||
|
Args:
|
||
|
a (SymBool or bool): Object to negate
|
||
|
"""
|
||
|
import sympy
|
||
|
from .overrides import has_torch_function_unary, handle_torch_function
|
||
|
|
||
|
if has_torch_function_unary(a):
|
||
|
return handle_torch_function(sym_not, (a,), a)
|
||
|
if hasattr(a, '__sym_not__'):
|
||
|
return a.__sym_not__()
|
||
|
if isinstance(a, sympy.Basic):
|
||
|
return ~a # type: ignore[operator]
|
||
|
return not a
|
||
|
|
||
|
def sym_float(a):
|
||
|
r""" SymInt-aware utility for float casting.
|
||
|
|
||
|
Args:
|
||
|
a (SymInt, SymFloat, or object): Object to cast
|
||
|
"""
|
||
|
from .overrides import has_torch_function_unary, handle_torch_function
|
||
|
|
||
|
if has_torch_function_unary(a):
|
||
|
return handle_torch_function(sym_float, (a,), a)
|
||
|
if isinstance(a, SymFloat):
|
||
|
return a
|
||
|
elif hasattr(a, '__sym_float__'):
|
||
|
return a.__sym_float__()
|
||
|
return py_float(a) # type: ignore[operator]
|
||
|
|
||
|
|
||
|
def sym_int(a):
|
||
|
r""" SymInt-aware utility for int casting.
|
||
|
|
||
|
Args:
|
||
|
a (SymInt, SymFloat, or object): Object to cast
|
||
|
"""
|
||
|
from .overrides import has_torch_function_unary, handle_torch_function
|
||
|
|
||
|
if has_torch_function_unary(a):
|
||
|
return handle_torch_function(sym_int, (a,), a)
|
||
|
if isinstance(a, SymInt):
|
||
|
return a
|
||
|
elif isinstance(a, SymFloat):
|
||
|
return math.floor(a) if a >= 0 else math.ceil(a) # type: ignore[arg-type, call-overload]
|
||
|
return py_int(a) # type: ignore[operator]
|
||
|
|
||
|
def sym_max(a, b):
|
||
|
""" SymInt-aware utility for max()."""
|
||
|
from .overrides import has_torch_function, handle_torch_function
|
||
|
|
||
|
if has_torch_function((a, b)):
|
||
|
return handle_torch_function(sym_max, (a, b), a, b)
|
||
|
if isinstance(a, (SymInt, SymFloat)):
|
||
|
return a.__sym_max__(b)
|
||
|
elif isinstance(b, (SymInt, SymFloat)):
|
||
|
# NB: If you actually care about preserving output type exactly
|
||
|
# if you do something like max(0, 0.0), it is NOT sound to treat
|
||
|
# min/max as commutative
|
||
|
return b.__sym_max__(a)
|
||
|
return builtins.max(a, b) # type: ignore[operator]
|
||
|
|
||
|
def sym_min(a, b):
|
||
|
""" SymInt-aware utility for max()."""
|
||
|
from .overrides import has_torch_function, handle_torch_function
|
||
|
|
||
|
if has_torch_function((a, b)):
|
||
|
return handle_torch_function(sym_min, (a, b), a, b)
|
||
|
if isinstance(a, (SymInt, SymFloat)):
|
||
|
return a.__sym_min__(b)
|
||
|
elif isinstance(b, (SymInt, SymFloat)):
|
||
|
return b.__sym_min__(a)
|
||
|
return builtins.min(a, b) # type: ignore[operator]
|
||
|
|
||
|
# Drop in replacement for math.sqrt, math.sin, math.cos etc
|
||
|
current_module = sys.modules[__name__]
|
||
|
|
||
|
def _get_sym_math_fn(name):
|
||
|
def fn(a):
|
||
|
from .overrides import has_torch_function_unary, handle_torch_function
|
||
|
|
||
|
if has_torch_function_unary(a):
|
||
|
return handle_torch_function(fn, (a,), a)
|
||
|
if hasattr(a, f"__sym_{name}__"):
|
||
|
return getattr(a, f"__sym_{name}__")()
|
||
|
return getattr(math, name)(a)
|
||
|
|
||
|
return fn
|
||
|
|
||
|
for name in ("sqrt", "cos", "cosh", "sin", "sinh", "tan", "tanh", "asin", "acos", "atan"):
|
||
|
sym_name = f"_sym_{name}"
|
||
|
fn = _get_sym_math_fn(name)
|
||
|
fn.__qualname__ = fn.__name__ = sym_name
|
||
|
setattr(current_module, sym_name, fn)
|
||
|
|
||
|
# Adding temporary shortcut
|
||
|
sym_sqrt = current_module._sym_sqrt
|
||
|
__all__.append("sym_sqrt")
|
||
|
|
||
|
del fn, name, sym_name, current_module # type: ignore[possibly-undefined]
|
||
|
|
||
|
|
||
|
def sym_ite(b, t, f):
|
||
|
from .overrides import has_torch_function, handle_torch_function
|
||
|
|
||
|
if has_torch_function((b, t, f)):
|
||
|
return handle_torch_function(sym_ite, (b, t, f), b, t, f)
|
||
|
assert isinstance(b, (SymBool, builtins.bool)) and type(t) == type(f)
|
||
|
if isinstance(b, SymBool):
|
||
|
return b.__sym_ite__(t, f)
|
||
|
return t if b else f
|
||
|
|
||
|
# Check to see if we can load C extensions, and if not provide some guidance
|
||
|
# on what the problem might be.
|
||
|
try:
|
||
|
# _initExtension is chosen (arbitrarily) as a sentinel.
|
||
|
from torch._C import _initExtension
|
||
|
except ImportError:
|
||
|
import torch._C as _C_for_compiled_check
|
||
|
|
||
|
# The __file__ check only works for Python 3.7 and above.
|
||
|
if _C_for_compiled_check.__file__ is None:
|
||
|
raise ImportError(textwrap.dedent('''
|
||
|
Failed to load PyTorch C extensions:
|
||
|
It appears that PyTorch has loaded the `torch/_C` folder
|
||
|
of the PyTorch repository rather than the C extensions which
|
||
|
are expected in the `torch._C` namespace. This can occur when
|
||
|
using the `install` workflow. e.g.
|
||
|
$ python setup.py install && python -c "import torch"
|
||
|
|
||
|
This error can generally be solved using the `develop` workflow
|
||
|
$ python setup.py develop && python -c "import torch" # This should succeed
|
||
|
or by running Python from a different directory.
|
||
|
''').strip()) from None
|
||
|
raise # If __file__ is not None the cause is unknown, so just re-raise.
|
||
|
|
||
|
for name in dir(_C):
|
||
|
if name[0] != '_' and not name.endswith('Base'):
|
||
|
__all__.append(name)
|
||
|
obj = getattr(_C, name)
|
||
|
if (isinstance(obj, Callable) or inspect.isclass(obj)): # type: ignore[arg-type]
|
||
|
if (obj.__module__ != 'torch'):
|
||
|
# TODO: fix their module from C++ side
|
||
|
if name not in ['DisableTorchFunctionSubclass', 'DisableTorchFunction', 'Generator']:
|
||
|
obj.__module__ = 'torch'
|
||
|
elif name == 'TensorBase':
|
||
|
# issue 109438 / pr 109940. Prevent TensorBase from being copied into torch.
|
||
|
delattr(sys.modules[__name__], name)
|
||
|
|
||
|
if not TYPE_CHECKING:
|
||
|
# issue 38137 and python issue 43367. Submodules of a C extension are
|
||
|
# non-standard, and attributes of those submodules cannot be pickled since
|
||
|
# pickle expect to be able to import them as "from _C.sub import attr"
|
||
|
# which fails with "_C is not a package
|
||
|
for attr in dir(_C):
|
||
|
candidate = getattr(_C, attr)
|
||
|
if type(candidate) is type(_C):
|
||
|
# submodule
|
||
|
if f'torch._C.{attr}' not in sys.modules:
|
||
|
sys.modules[f'torch._C.{attr}'] = candidate
|
||
|
|
||
|
|
||
|
################################################################################
|
||
|
# Define basic utilities
|
||
|
################################################################################
|
||
|
|
||
|
|
||
|
def typename(o):
|
||
|
if isinstance(o, torch.Tensor):
|
||
|
return o.type()
|
||
|
|
||
|
module = ''
|
||
|
class_name = ''
|
||
|
if hasattr(o, '__module__') and o.__module__ != 'builtins' \
|
||
|
and o.__module__ != '__builtin__' and o.__module__ is not None:
|
||
|
module = o.__module__ + '.'
|
||
|
|
||
|
if hasattr(o, '__qualname__'):
|
||
|
class_name = o.__qualname__
|
||
|
elif hasattr(o, '__name__'):
|
||
|
class_name = o.__name__
|
||
|
else:
|
||
|
class_name = o.__class__.__name__
|
||
|
|
||
|
return module + class_name
|
||
|
|
||
|
|
||
|
def is_tensor(obj):
|
||
|
r"""Returns True if `obj` is a PyTorch tensor.
|
||
|
|
||
|
Note that this function is simply doing ``isinstance(obj, Tensor)``.
|
||
|
Using that ``isinstance`` check is better for typechecking with mypy,
|
||
|
and more explicit - so it's recommended to use that instead of
|
||
|
``is_tensor``.
|
||
|
|
||
|
Args:
|
||
|
obj (Object): Object to test
|
||
|
Example::
|
||
|
|
||
|
>>> x = torch.tensor([1, 2, 3])
|
||
|
>>> torch.is_tensor(x)
|
||
|
True
|
||
|
|
||
|
"""
|
||
|
return isinstance(obj, torch.Tensor)
|
||
|
|
||
|
|
||
|
def is_storage(obj):
|
||
|
r"""Returns True if `obj` is a PyTorch storage object.
|
||
|
|
||
|
Args:
|
||
|
obj (Object): Object to test
|
||
|
"""
|
||
|
return type(obj) in _storage_classes
|
||
|
|
||
|
|
||
|
_GLOBAL_DEVICE_CONTEXT = threading.local()
|
||
|
|
||
|
|
||
|
def get_default_device() -> "torch.device":
|
||
|
r"""Gets the default ``torch.Tensor`` to be allocated on ``device``"""
|
||
|
global _GLOBAL_DEVICE_CONTEXT
|
||
|
if hasattr(_GLOBAL_DEVICE_CONTEXT, "device_context"):
|
||
|
device = _GLOBAL_DEVICE_CONTEXT.device_context.device
|
||
|
if device.index is not None:
|
||
|
return device
|
||
|
else:
|
||
|
# TODO: Call like get_device_index() method corresponding to
|
||
|
# each device type
|
||
|
return torch.tensor([]).device
|
||
|
else:
|
||
|
return torch.device("cpu")
|
||
|
|
||
|
|
||
|
def set_default_device(device):
|
||
|
"""Sets the default ``torch.Tensor`` to be allocated on ``device``. This
|
||
|
does not affect factory function calls which are called with an explicit
|
||
|
``device`` argument. Factory calls will be performed as if they
|
||
|
were passed ``device`` as an argument.
|
||
|
|
||
|
To only temporarily change the default device instead of setting it
|
||
|
globally, use ``with torch.device(device):`` instead.
|
||
|
|
||
|
The default device is initially ``cpu``. If you set the default tensor
|
||
|
device to another device (e.g., ``cuda``) without a device index, tensors
|
||
|
will be allocated on whatever the current device for the device type,
|
||
|
even after :func:`torch.cuda.set_device` is called.
|
||
|
|
||
|
.. warning::
|
||
|
|
||
|
This function imposes a slight performance cost on every Python
|
||
|
call to the torch API (not just factory functions). If this
|
||
|
is causing problems for you, please comment on
|
||
|
https://github.com/pytorch/pytorch/issues/92701
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
This doesn't affect functions that create tensors that share the same memory as the input, like:
|
||
|
:func:`torch.from_numpy` and :func:`torch.frombuffer`
|
||
|
|
||
|
Args:
|
||
|
device (device or string): the device to set as default
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> # xdoctest: +SKIP("requires cuda, changes global state")
|
||
|
>>> torch.get_default_device()
|
||
|
device(type='cpu')
|
||
|
>>> torch.set_default_device('cuda') # current device is 0
|
||
|
>>> torch.get_default_device()
|
||
|
device(type='cuda', index=0)
|
||
|
>>> torch.set_default_device('cuda')
|
||
|
>>> torch.cuda.set_device('cuda:1') # current device is 1
|
||
|
>>> torch.get_default_device()
|
||
|
device(type='cuda', index=1)
|
||
|
>>> torch.set_default_device('cuda:1')
|
||
|
>>> torch.get_default_device()
|
||
|
device(type='cuda', index=1)
|
||
|
|
||
|
"""
|
||
|
global _GLOBAL_DEVICE_CONTEXT
|
||
|
if hasattr(_GLOBAL_DEVICE_CONTEXT, "device_context"):
|
||
|
device_context = _GLOBAL_DEVICE_CONTEXT.device_context
|
||
|
if device_context is not None:
|
||
|
device_context.__exit__(None, None, None)
|
||
|
|
||
|
if device is None:
|
||
|
device_context = None
|
||
|
else:
|
||
|
from torch.utils._device import DeviceContext
|
||
|
device_context = DeviceContext(device)
|
||
|
device_context.__enter__()
|
||
|
_GLOBAL_DEVICE_CONTEXT.device_context = device_context
|
||
|
|
||
|
|
||
|
def set_default_tensor_type(t):
|
||
|
r"""
|
||
|
.. warning::
|
||
|
|
||
|
This function is deprecated as of PyTorch 2.1, please use :func:`torch.set_default_dtype()` and
|
||
|
:func:`torch.set_default_device()` as alternatives.
|
||
|
|
||
|
Sets the default ``torch.Tensor`` type to floating point tensor type
|
||
|
``t``. This type will also be used as default floating point type for
|
||
|
type inference in :func:`torch.tensor`.
|
||
|
|
||
|
The default floating point tensor type is initially ``torch.FloatTensor``.
|
||
|
|
||
|
Args:
|
||
|
t (type or string): the floating point tensor type or its name
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> # xdoctest: +SKIP("Other tests may have changed the default type. Can we reset it?")
|
||
|
>>> torch.tensor([1.2, 3]).dtype # initial default for floating point is torch.float32
|
||
|
torch.float32
|
||
|
>>> torch.set_default_tensor_type(torch.DoubleTensor)
|
||
|
>>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
|
||
|
torch.float64
|
||
|
|
||
|
"""
|
||
|
if isinstance(t, str):
|
||
|
t = _import_dotted_name(t)
|
||
|
_C._set_default_tensor_type(t)
|
||
|
|
||
|
|
||
|
def set_default_dtype(d):
|
||
|
r"""
|
||
|
|
||
|
Sets the default floating point dtype to :attr:`d`. Supports torch.float32
|
||
|
and torch.float64 as inputs. Other dtypes may be accepted without complaint
|
||
|
but are not supported and are unlikely to work as expected.
|
||
|
|
||
|
When PyTorch is initialized its default floating point dtype is torch.float32,
|
||
|
and the intent of set_default_dtype(torch.float64) is to facilitate NumPy-like
|
||
|
type inference. The default floating point dtype is used to:
|
||
|
|
||
|
1. Implicitly determine the default complex dtype. When the default floating point
|
||
|
type is float32 the default complex dtype is complex64, and when the default
|
||
|
floating point type is float64 the default complex type is complex128.
|
||
|
2. Infer the dtype for tensors constructed using Python floats or complex Python
|
||
|
numbers. See examples below.
|
||
|
3. Determine the result of type promotion between bool and integer tensors and
|
||
|
Python floats and complex Python numbers.
|
||
|
|
||
|
Args:
|
||
|
d (:class:`torch.dtype`): the floating point dtype to make the default.
|
||
|
Either torch.float32 or torch.float64.
|
||
|
|
||
|
Example:
|
||
|
>>> # xdoctest: +SKIP("Other tests may have changed the default type. Can we reset it?")
|
||
|
>>> # initial default for floating point is torch.float32
|
||
|
>>> # Python floats are interpreted as float32
|
||
|
>>> torch.tensor([1.2, 3]).dtype
|
||
|
torch.float32
|
||
|
>>> # initial default for floating point is torch.complex64
|
||
|
>>> # Complex Python numbers are interpreted as complex64
|
||
|
>>> torch.tensor([1.2, 3j]).dtype
|
||
|
torch.complex64
|
||
|
|
||
|
>>> torch.set_default_dtype(torch.float64)
|
||
|
|
||
|
>>> # Python floats are now interpreted as float64
|
||
|
>>> torch.tensor([1.2, 3]).dtype # a new floating point tensor
|
||
|
torch.float64
|
||
|
>>> # Complex Python numbers are now interpreted as complex128
|
||
|
>>> torch.tensor([1.2, 3j]).dtype # a new complex tensor
|
||
|
torch.complex128
|
||
|
|
||
|
"""
|
||
|
_C._set_default_dtype(d)
|
||
|
|
||
|
def use_deterministic_algorithms(mode: builtins.bool, *, warn_only: builtins.bool = False) -> None:
|
||
|
r""" Sets whether PyTorch operations must use "deterministic"
|
||
|
algorithms. That is, algorithms which, given the same input, and when
|
||
|
run on the same software and hardware, always produce the same output.
|
||
|
When enabled, operations will use deterministic algorithms when available,
|
||
|
and if only nondeterministic algorithms are available they will throw a
|
||
|
:class:`RuntimeError` when called.
|
||
|
|
||
|
.. note:: This setting alone is not always enough to make an application
|
||
|
reproducible. Refer to :ref:`reproducibility` for more information.
|
||
|
|
||
|
.. note:: :func:`torch.set_deterministic_debug_mode` offers an alternative
|
||
|
interface for this feature.
|
||
|
|
||
|
The following normally-nondeterministic operations will act
|
||
|
deterministically when ``mode=True``:
|
||
|
|
||
|
* :class:`torch.nn.Conv1d` when called on CUDA tensor
|
||
|
* :class:`torch.nn.Conv2d` when called on CUDA tensor
|
||
|
* :class:`torch.nn.Conv3d` when called on CUDA tensor
|
||
|
* :class:`torch.nn.ConvTranspose1d` when called on CUDA tensor
|
||
|
* :class:`torch.nn.ConvTranspose2d` when called on CUDA tensor
|
||
|
* :class:`torch.nn.ConvTranspose3d` when called on CUDA tensor
|
||
|
* :class:`torch.nn.ReplicationPad2d` when attempting to differentiate a CUDA tensor
|
||
|
* :func:`torch.bmm` when called on sparse-dense CUDA tensors
|
||
|
* :func:`torch.Tensor.__getitem__` when attempting to differentiate a CPU tensor
|
||
|
and the index is a list of tensors
|
||
|
* :func:`torch.Tensor.index_put` with ``accumulate=False``
|
||
|
* :func:`torch.Tensor.index_put` with ``accumulate=True`` when called on a CPU
|
||
|
tensor
|
||
|
* :func:`torch.Tensor.put_` with ``accumulate=True`` when called on a CPU
|
||
|
tensor
|
||
|
* :func:`torch.Tensor.scatter_add_` when called on a CUDA tensor
|
||
|
* :func:`torch.gather` when called on a CUDA tensor that requires grad
|
||
|
* :func:`torch.index_add` when called on CUDA tensor
|
||
|
* :func:`torch.index_select` when attempting to differentiate a CUDA tensor
|
||
|
* :func:`torch.repeat_interleave` when attempting to differentiate a CUDA tensor
|
||
|
* :func:`torch.Tensor.index_copy` when called on a CPU or CUDA tensor
|
||
|
* :func:`torch.Tensor.scatter` when `src` type is Tensor and called on CUDA tensor
|
||
|
* :func:`torch.Tensor.scatter_reduce` when ``reduce='sum'`` or ``reduce='mean'`` and called on CUDA tensor
|
||
|
|
||
|
The following normally-nondeterministic operations will throw a
|
||
|
:class:`RuntimeError` when ``mode=True``:
|
||
|
|
||
|
* :class:`torch.nn.AvgPool3d` when attempting to differentiate a CUDA tensor
|
||
|
* :class:`torch.nn.AdaptiveAvgPool2d` when attempting to differentiate a CUDA tensor
|
||
|
* :class:`torch.nn.AdaptiveAvgPool3d` when attempting to differentiate a CUDA tensor
|
||
|
* :class:`torch.nn.MaxPool3d` when attempting to differentiate a CUDA tensor
|
||
|
* :class:`torch.nn.AdaptiveMaxPool2d` when attempting to differentiate a CUDA tensor
|
||
|
* :class:`torch.nn.FractionalMaxPool2d` when attempting to differentiate a CUDA tensor
|
||
|
* :class:`torch.nn.FractionalMaxPool3d` when attempting to differentiate a CUDA tensor
|
||
|
* :class:`torch.nn.MaxUnpool1d`
|
||
|
* :class:`torch.nn.MaxUnpool2d`
|
||
|
* :class:`torch.nn.MaxUnpool3d`
|
||
|
* :func:`torch.nn.functional.interpolate` when attempting to differentiate a CUDA tensor
|
||
|
and one of the following modes is used:
|
||
|
|
||
|
- ``linear``
|
||
|
- ``bilinear``
|
||
|
- ``bicubic``
|
||
|
- ``trilinear``
|
||
|
|
||
|
* :class:`torch.nn.ReflectionPad1d` when attempting to differentiate a CUDA tensor
|
||
|
* :class:`torch.nn.ReflectionPad2d` when attempting to differentiate a CUDA tensor
|
||
|
* :class:`torch.nn.ReflectionPad3d` when attempting to differentiate a CUDA tensor
|
||
|
* :class:`torch.nn.ReplicationPad1d` when attempting to differentiate a CUDA tensor
|
||
|
* :class:`torch.nn.ReplicationPad3d` when attempting to differentiate a CUDA tensor
|
||
|
* :class:`torch.nn.NLLLoss` when called on a CUDA tensor
|
||
|
* :class:`torch.nn.CTCLoss` when attempting to differentiate a CUDA tensor
|
||
|
* :class:`torch.nn.EmbeddingBag` when attempting to differentiate a CUDA tensor when
|
||
|
``mode='max'``
|
||
|
* :func:`torch.Tensor.put_` when ``accumulate=False``
|
||
|
* :func:`torch.Tensor.put_` when ``accumulate=True`` and called on a CUDA tensor
|
||
|
* :func:`torch.histc` when called on a CUDA tensor
|
||
|
* :func:`torch.bincount` when called on a CUDA tensor and ``weights``
|
||
|
tensor is given
|
||
|
* :func:`torch.kthvalue` with called on a CUDA tensor
|
||
|
* :func:`torch.median` with indices output when called on a CUDA tensor
|
||
|
* :func:`torch.nn.functional.grid_sample` when attempting to differentiate a CUDA tensor
|
||
|
* :func:`torch.cumsum` when called on a CUDA tensor when dtype is floating point or complex
|
||
|
* :func:`torch.Tensor.scatter_reduce` when ``reduce='prod'`` and called on CUDA tensor
|
||
|
* :func:`torch.Tensor.resize_` when called with a quantized tensor
|
||
|
|
||
|
In addition, several operations fill uninitialized memory when this setting
|
||
|
is turned on and when
|
||
|
:attr:`torch.utils.deterministic.fill_uninitialized_memory` is turned on.
|
||
|
See the documentation for that attribute for more information.
|
||
|
|
||
|
A handful of CUDA operations are nondeterministic if the CUDA version is
|
||
|
10.2 or greater, unless the environment variable ``CUBLAS_WORKSPACE_CONFIG=:4096:8``
|
||
|
or ``CUBLAS_WORKSPACE_CONFIG=:16:8`` is set. See the CUDA documentation for more
|
||
|
details: `<https://docs.nvidia.com/cuda/cublas/index.html#results-reproducibility>`_
|
||
|
If one of these environment variable configurations is not set, a :class:`RuntimeError`
|
||
|
will be raised from these operations when called with CUDA tensors:
|
||
|
|
||
|
* :func:`torch.mm`
|
||
|
* :func:`torch.mv`
|
||
|
* :func:`torch.bmm`
|
||
|
|
||
|
Note that deterministic operations tend to have worse performance than
|
||
|
nondeterministic operations.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
This flag does not detect or prevent nondeterministic behavior caused
|
||
|
by calling an inplace operation on a tensor with an internal memory
|
||
|
overlap or by giving such a tensor as the :attr:`out` argument for an
|
||
|
operation. In these cases, multiple writes of different data may target
|
||
|
a single memory location, and the order of writes is not guaranteed.
|
||
|
|
||
|
Args:
|
||
|
mode (:class:`bool`): If True, makes potentially nondeterministic
|
||
|
operations switch to a deterministic algorithm or throw a runtime
|
||
|
error. If False, allows nondeterministic operations.
|
||
|
|
||
|
Keyword args:
|
||
|
warn_only (:class:`bool`, optional): If True, operations that do not
|
||
|
have a deterministic implementation will throw a warning instead of
|
||
|
an error. Default: ``False``
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> # xdoctest: +SKIP
|
||
|
>>> torch.use_deterministic_algorithms(True)
|
||
|
|
||
|
# Forward mode nondeterministic error
|
||
|
>>> torch.randn(10, device='cuda').kthvalue(1)
|
||
|
...
|
||
|
RuntimeError: kthvalue CUDA does not have a deterministic implementation...
|
||
|
|
||
|
# Backward mode nondeterministic error
|
||
|
>>> torch.nn.AvgPool3d(1)(torch.randn(3, 4, 5, 6, requires_grad=True).cuda()).sum().backward()
|
||
|
...
|
||
|
RuntimeError: avg_pool3d_backward_cuda does not have a deterministic implementation...
|
||
|
"""
|
||
|
_C._set_deterministic_algorithms(mode, warn_only=warn_only)
|
||
|
|
||
|
def are_deterministic_algorithms_enabled() -> builtins.bool:
|
||
|
r"""Returns True if the global deterministic flag is turned on. Refer to
|
||
|
:func:`torch.use_deterministic_algorithms` documentation for more details.
|
||
|
"""
|
||
|
return _C._get_deterministic_algorithms()
|
||
|
|
||
|
def is_deterministic_algorithms_warn_only_enabled() -> builtins.bool:
|
||
|
r"""Returns True if the global deterministic flag is set to warn only.
|
||
|
Refer to :func:`torch.use_deterministic_algorithms` documentation for more
|
||
|
details.
|
||
|
"""
|
||
|
return _C._get_deterministic_algorithms_warn_only()
|
||
|
|
||
|
def set_deterministic_debug_mode(debug_mode: Union[builtins.int, str]) -> None:
|
||
|
r"""Sets the debug mode for deterministic operations.
|
||
|
|
||
|
.. note:: This is an alternative interface for
|
||
|
:func:`torch.use_deterministic_algorithms`. Refer to that function's
|
||
|
documentation for details about affected operations.
|
||
|
|
||
|
Args:
|
||
|
debug_mode(str or int): If "default" or 0, don't error or warn on
|
||
|
nondeterministic operations. If "warn" or 1, warn on
|
||
|
nondeterministic operations. If "error" or 2, error on
|
||
|
nondeterministic operations.
|
||
|
"""
|
||
|
|
||
|
# NOTE: builtins.int is used here because int in this scope resolves
|
||
|
# to torch.int
|
||
|
if not isinstance(debug_mode, (builtins.int, str)):
|
||
|
raise TypeError(f'debug_mode must be str or int, but got {type(debug_mode)}')
|
||
|
|
||
|
if isinstance(debug_mode, str):
|
||
|
if debug_mode == 'default':
|
||
|
debug_mode = 0
|
||
|
elif debug_mode == 'warn':
|
||
|
debug_mode = 1
|
||
|
elif debug_mode == 'error':
|
||
|
debug_mode = 2
|
||
|
else:
|
||
|
raise RuntimeError(
|
||
|
'invalid value of debug_mode, expected one of `default`, '
|
||
|
f'`warn`, `error`, but got {debug_mode}')
|
||
|
|
||
|
if debug_mode == 0:
|
||
|
_C._set_deterministic_algorithms(False)
|
||
|
elif debug_mode == 1:
|
||
|
_C._set_deterministic_algorithms(True, warn_only=True)
|
||
|
elif debug_mode == 2:
|
||
|
_C._set_deterministic_algorithms(True)
|
||
|
else:
|
||
|
raise RuntimeError(
|
||
|
'invalid value of debug_mode, expected 0, 1, or 2, '
|
||
|
f'but got {debug_mode}')
|
||
|
|
||
|
def get_deterministic_debug_mode() -> builtins.int:
|
||
|
r"""Returns the current value of the debug mode for deterministic
|
||
|
operations. Refer to :func:`torch.set_deterministic_debug_mode`
|
||
|
documentation for more details.
|
||
|
"""
|
||
|
|
||
|
if _C._get_deterministic_algorithms():
|
||
|
if _C._get_deterministic_algorithms_warn_only():
|
||
|
return 1
|
||
|
else:
|
||
|
return 2
|
||
|
else:
|
||
|
return 0
|
||
|
|
||
|
def get_float32_matmul_precision() -> builtins.str:
|
||
|
r"""Returns the current value of float32 matrix multiplication precision. Refer to
|
||
|
:func:`torch.set_float32_matmul_precision` documentation for more details.
|
||
|
"""
|
||
|
return _C._get_float32_matmul_precision()
|
||
|
|
||
|
def set_float32_matmul_precision(precision: str) -> None:
|
||
|
r"""Sets the internal precision of float32 matrix multiplications.
|
||
|
|
||
|
Running float32 matrix multiplications in lower precision may significantly increase
|
||
|
performance, and in some programs the loss of precision has a negligible impact.
|
||
|
|
||
|
Supports three settings:
|
||
|
|
||
|
* "highest", float32 matrix multiplications use the float32 datatype (24 mantissa
|
||
|
bits with 23 bits explicitly stored) for internal computations.
|
||
|
* "high", float32 matrix multiplications either use the TensorFloat32 datatype (10
|
||
|
mantissa bits explicitly stored) or treat each float32 number as the sum of two bfloat16 numbers
|
||
|
(approximately 16 mantissa bits with 14 bits explicitly stored), if the appropriate fast matrix multiplication
|
||
|
algorithms are available. Otherwise float32 matrix multiplications are computed
|
||
|
as if the precision is "highest". See below for more information on the bfloat16
|
||
|
approach.
|
||
|
* "medium", float32 matrix multiplications use the bfloat16 datatype (8 mantissa
|
||
|
bits with 7 bits explicitly stored) for internal computations, if a fast matrix multiplication algorithm
|
||
|
using that datatype internally is available. Otherwise float32
|
||
|
matrix multiplications are computed as if the precision is "high".
|
||
|
|
||
|
When using "high" precision, float32 multiplications may use a bfloat16-based algorithm
|
||
|
that is more complicated than simply truncating to some smaller number mantissa bits
|
||
|
(e.g. 10 for TensorFloat32, 7 for bfloat16 explicitly stored). Refer to [Henry2019]_ for a complete
|
||
|
description of this algorithm. To briefly explain here, the first step is to realize
|
||
|
that we can perfectly encode a single float32 number as the sum of three bfloat16
|
||
|
numbers (because float32 has 23 mantissa bits while bfloat16 has 7 explicitly stored, and both have the
|
||
|
same number of exponent bits). This means that the product of two float32 numbers can
|
||
|
be exactly given by the sum of nine products of bfloat16 numbers. We can then trade
|
||
|
accuracy for speed by dropping some of these products. The "high" precision algorithm
|
||
|
specifically keeps only the three most significant products, which conveniently excludes
|
||
|
all of the products involving the last 8 mantissa bits of either input. This means that
|
||
|
we can represent our inputs as the sum of two bfloat16 numbers rather than three.
|
||
|
Because bfloat16 fused-multiply-add (FMA) instructions are typically >10x faster than
|
||
|
float32 ones, it's faster to do three multiplications and 2 additions with bfloat16
|
||
|
precision than it is to do a single multiplication with float32 precision.
|
||
|
|
||
|
.. [Henry2019] http://arxiv.org/abs/1904.06376
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
This does not change the output dtype of float32 matrix multiplications,
|
||
|
it controls how the internal computation of the matrix multiplication is performed.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
This does not change the precision of convolution operations. Other flags,
|
||
|
like `torch.backends.cudnn.allow_tf32`, may control the precision of convolution
|
||
|
operations.
|
||
|
|
||
|
.. note::
|
||
|
|
||
|
This flag currently only affects one native device type: CUDA.
|
||
|
If "high" or "medium" are set then the TensorFloat32 datatype will be used
|
||
|
when computing float32 matrix multiplications, equivalent to setting
|
||
|
`torch.backends.cuda.matmul.allow_tf32 = True`. When "highest" (the default)
|
||
|
is set then the float32 datatype is used for internal computations, equivalent
|
||
|
to setting `torch.backends.cuda.matmul.allow_tf32 = False`.
|
||
|
|
||
|
Args:
|
||
|
precision(str): can be set to "highest" (default), "high", or "medium" (see above).
|
||
|
|
||
|
"""
|
||
|
_C._set_float32_matmul_precision(precision)
|
||
|
|
||
|
def set_warn_always(b: builtins.bool) -> None:
|
||
|
r"""When this flag is False (default) then some PyTorch warnings may only
|
||
|
appear once per process. This helps avoid excessive warning information.
|
||
|
Setting it to True causes these warnings to always appear, which may be
|
||
|
helpful when debugging.
|
||
|
|
||
|
Args:
|
||
|
b (:class:`bool`): If True, force warnings to always be emitted
|
||
|
If False, set to the default behaviour
|
||
|
"""
|
||
|
_C._set_warnAlways(b)
|
||
|
|
||
|
def is_warn_always_enabled() -> builtins.bool:
|
||
|
r"""Returns True if the global warn_always flag is turned on. Refer to
|
||
|
:func:`torch.set_warn_always` documentation for more details.
|
||
|
"""
|
||
|
return _C._get_warnAlways()
|
||
|
|
||
|
################################################################################
|
||
|
# Define error checking functions
|
||
|
################################################################################
|
||
|
|
||
|
# These error checking functions must be kept consistent with their C++
|
||
|
# equivalents. Their C++ equivalents are mentioned where applicable.
|
||
|
|
||
|
def _check_with(error_type, cond: Union[builtins.bool, SymBool], message: Callable[[], str]): # noqa: F811
|
||
|
if not isinstance(cond, (builtins.bool, torch.SymBool)):
|
||
|
raise TypeError(f'cond must be a bool, but got {type(cond)}')
|
||
|
|
||
|
from torch.fx.experimental.symbolic_shapes import expect_true
|
||
|
if expect_true(cond):
|
||
|
return
|
||
|
|
||
|
# error_type must be a subclass of Exception and not subclass of Warning
|
||
|
assert issubclass(error_type, Exception) and not issubclass(error_type, Warning)
|
||
|
|
||
|
if message is None:
|
||
|
message_evaluated = (
|
||
|
'Expected cond to be True, but got False. (Could this error '
|
||
|
'message be improved? If so, please report an enhancement request '
|
||
|
'to PyTorch.)')
|
||
|
|
||
|
else:
|
||
|
if not callable(message):
|
||
|
raise TypeError('message must be a callable')
|
||
|
|
||
|
message_evaluated = str(message())
|
||
|
|
||
|
raise error_type(message_evaluated)
|
||
|
|
||
|
def _check(cond, message=None): # noqa: F811
|
||
|
r"""Throws error containing an optional message if the specified condition
|
||
|
is False.
|
||
|
|
||
|
Error type: ``RuntimeError``
|
||
|
|
||
|
C++ equivalent: ``TORCH_CHECK``
|
||
|
|
||
|
Args:
|
||
|
cond (:class:`bool`): If False, throw error
|
||
|
|
||
|
message (Callable, optional): Callable that returns either a string or
|
||
|
an object that has a ``__str__()`` method to be used as the error
|
||
|
message. Default: ``None``
|
||
|
"""
|
||
|
_check_with(RuntimeError, cond, message)
|
||
|
|
||
|
def _check_is_size(i, message=None):
|
||
|
"""Checks that a given integer is a valid size (i.e., is non-negative).
|
||
|
You should use this over _check(i >= 0) because we can use the semantic
|
||
|
information (that i is a size) to make some further inferences in case
|
||
|
i is an unbacked SymInt.
|
||
|
|
||
|
NB: Do NOT use this in contexts where a -1 size would be valid (indicating
|
||
|
to infer the size from context, or if you should wrap-around or truncate).
|
||
|
Only use this if the only valid value is an honest to goodness size.
|
||
|
"""
|
||
|
# This is responsible for the expect_true
|
||
|
_check(i >= 0, message)
|
||
|
from torch.fx.experimental.symbolic_shapes import _advise_is_size
|
||
|
_advise_is_size(i)
|
||
|
|
||
|
def _check_index(cond, message=None): # noqa: F811
|
||
|
r"""Throws error containing an optional message if the specified condition
|
||
|
is False.
|
||
|
|
||
|
Error type: ``IndexError``
|
||
|
|
||
|
C++ equivalent: ``TORCH_CHECK_INDEX``
|
||
|
|
||
|
Args:
|
||
|
cond (:class:`bool`): If False, throw error
|
||
|
|
||
|
message (Callable, optional): Callable that returns either a string or
|
||
|
an object that has a ``__str__()`` method to be used as the error
|
||
|
message. Default: ``None``
|
||
|
"""
|
||
|
_check_with(IndexError, cond, message)
|
||
|
|
||
|
def _check_value(cond, message=None): # noqa: F811
|
||
|
r"""Throws error containing an optional message if the specified condition
|
||
|
is False.
|
||
|
|
||
|
Error type: ``ValueError``
|
||
|
|
||
|
C++ equivalent: ``TORCH_CHECK_VALUE``
|
||
|
|
||
|
Args:
|
||
|
cond (:class:`bool`): If False, throw error
|
||
|
|
||
|
message (Callable, optional): Callable that returns either a string or
|
||
|
an object that has a ``__str__()`` method to be used as the error
|
||
|
message. Default: ``None``
|
||
|
"""
|
||
|
_check_with(ValueError, cond, message)
|
||
|
|
||
|
def _check_type(cond, message=None): # noqa: F811
|
||
|
r"""Throws error containing an optional message if the specified condition
|
||
|
is False.
|
||
|
|
||
|
Error type: ``TypeError``
|
||
|
|
||
|
C++ equivalent: ``TORCH_CHECK_TYPE``
|
||
|
|
||
|
Args:
|
||
|
cond (:class:`bool`): If False, throw error
|
||
|
|
||
|
message (Callable, optional): Callable that returns either a string or
|
||
|
an object that has a ``__str__()`` method to be used as the error
|
||
|
message. Default: ``None``
|
||
|
"""
|
||
|
_check_with(TypeError, cond, message)
|
||
|
|
||
|
def _check_not_implemented(cond, message=None): # noqa: F811
|
||
|
r"""Throws error containing an optional message if the specified condition
|
||
|
is False.
|
||
|
|
||
|
Error type: ``NotImplementedError``
|
||
|
|
||
|
C++ equivalent: ``TORCH_CHECK_NOT_IMPLEMENTED``
|
||
|
|
||
|
Args:
|
||
|
cond (:class:`bool`): If False, throw error
|
||
|
|
||
|
message (Callable, optional): Callable that returns either a string or
|
||
|
an object that has a ``__str__()`` method to be used as the error
|
||
|
message. Default: ``None``
|
||
|
"""
|
||
|
_check_with(NotImplementedError, cond, message)
|
||
|
|
||
|
def _check_tensor_all_with(error_type, cond, message=None): # noqa: F811
|
||
|
if not torch.is_tensor(cond):
|
||
|
raise TypeError(f'cond must be a tensor, but got {type(cond)}')
|
||
|
|
||
|
if not cond.dtype == torch.bool:
|
||
|
raise TypeError(
|
||
|
f'cond tensor must have dtype torch.bool, but got {cond.dtype}')
|
||
|
|
||
|
_check_with(error_type, cond._is_all_true().item(), message)
|
||
|
|
||
|
# C++ equivalent: `TORCH_CHECK_TENSOR_ALL`
|
||
|
def _check_tensor_all(cond, message=None): # noqa: F811
|
||
|
r"""Throws error containing an optional message if the specified condition
|
||
|
is False.
|
||
|
|
||
|
Error type: ``RuntimeError``
|
||
|
|
||
|
C++ equivalent: ``TORCH_CHECK_TENSOR_ALL``
|
||
|
|
||
|
Args:
|
||
|
cond (:class:`torch.Tensor`): Tensor of dtype ``torch.bool``. If any
|
||
|
element is ``False``, throw error
|
||
|
|
||
|
message (Callable, optional): Callable that returns either a string or
|
||
|
an object that has a ``__str__()`` method to be used as the error
|
||
|
message. Default: ``None``
|
||
|
"""
|
||
|
_check_tensor_all_with(RuntimeError, cond, message)
|
||
|
|
||
|
################################################################################
|
||
|
# Define numeric constants
|
||
|
################################################################################
|
||
|
|
||
|
# For Python Array API (https://data-apis.org/array-api/latest/API_specification/constants.html) and
|
||
|
# NumPy consistency (https://numpy.org/devdocs/reference/constants.html)
|
||
|
from math import e , nan , inf , pi
|
||
|
__all__.extend(['e', 'pi', 'nan', 'inf'])
|
||
|
|
||
|
################################################################################
|
||
|
# Define Storage and Tensor classes
|
||
|
################################################################################
|
||
|
|
||
|
from ._tensor import Tensor
|
||
|
from .storage import _StorageBase, TypedStorage, _LegacyStorage, UntypedStorage, _warn_typed_storage_removal
|
||
|
|
||
|
# NOTE: New <type>Storage classes should never be added. When adding a new
|
||
|
# dtype, use torch.storage.TypedStorage directly.
|
||
|
|
||
|
class ByteStorage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.uint8
|
||
|
|
||
|
class DoubleStorage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.double
|
||
|
|
||
|
class FloatStorage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.float
|
||
|
|
||
|
class HalfStorage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.half
|
||
|
|
||
|
class LongStorage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.long
|
||
|
|
||
|
class IntStorage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.int
|
||
|
|
||
|
class ShortStorage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.short
|
||
|
|
||
|
class CharStorage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.int8
|
||
|
|
||
|
class BoolStorage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.bool
|
||
|
|
||
|
class BFloat16Storage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.bfloat16
|
||
|
|
||
|
class ComplexDoubleStorage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.cdouble
|
||
|
|
||
|
class ComplexFloatStorage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.cfloat
|
||
|
|
||
|
class QUInt8Storage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.quint8
|
||
|
|
||
|
class QInt8Storage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.qint8
|
||
|
|
||
|
class QInt32Storage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.qint32
|
||
|
|
||
|
class QUInt4x2Storage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.quint4x2
|
||
|
|
||
|
class QUInt2x4Storage(_LegacyStorage):
|
||
|
@classproperty
|
||
|
def dtype(self):
|
||
|
_warn_typed_storage_removal(stacklevel=3)
|
||
|
return self._dtype
|
||
|
|
||
|
@classproperty
|
||
|
def _dtype(self):
|
||
|
return torch.quint2x4
|
||
|
|
||
|
_storage_classes = {
|
||
|
UntypedStorage, DoubleStorage, FloatStorage, LongStorage, IntStorage,
|
||
|
ShortStorage, CharStorage, ByteStorage, HalfStorage, BoolStorage,
|
||
|
QUInt8Storage, QInt8Storage, QInt32Storage, BFloat16Storage,
|
||
|
ComplexFloatStorage, ComplexDoubleStorage, QUInt4x2Storage, QUInt2x4Storage,
|
||
|
TypedStorage
|
||
|
}
|
||
|
|
||
|
# The _tensor_classes set is initialized by the call to initialize_python_bindings.
|
||
|
_tensor_classes: Set[Type] = set()
|
||
|
|
||
|
# If you edit these imports, please update torch/__init__.py.in as well
|
||
|
from .random import set_rng_state, get_rng_state, manual_seed, initial_seed, seed
|
||
|
from .serialization import save, load
|
||
|
from ._tensor_str import set_printoptions
|
||
|
|
||
|
################################################################################
|
||
|
# Initialize extension
|
||
|
################################################################################
|
||
|
|
||
|
def manager_path():
|
||
|
if _running_with_deploy() or platform.system() == 'Windows':
|
||
|
return b""
|
||
|
path = get_file_path('torch', 'bin', 'torch_shm_manager')
|
||
|
prepare_multiprocessing_environment(get_file_path('torch'))
|
||
|
if not os.path.exists(path):
|
||
|
raise RuntimeError("Unable to find torch_shm_manager at " + path)
|
||
|
return path.encode('utf-8')
|
||
|
|
||
|
from torch.amp import autocast, GradScaler
|
||
|
|
||
|
# Initializing the extension shadows the built-in python float / int classes;
|
||
|
# store them for later use by SymInt / SymFloat.
|
||
|
py_float = float
|
||
|
py_int = int
|
||
|
|
||
|
# Shared memory manager needs to know the exact location of manager executable
|
||
|
_C._initExtension(manager_path())
|
||
|
del manager_path
|
||
|
|
||
|
# Appease the type checker: it can't deal with direct setting of globals().
|
||
|
# Note that we will see "too many" functions when reexporting this way; there
|
||
|
# is not a good way to fix this problem. Perhaps, try to redesign VariableFunctions
|
||
|
# so that this import is good enough
|
||
|
if TYPE_CHECKING:
|
||
|
# Some type signatures pulled in from _VariableFunctions here clash with
|
||
|
# signatures already imported. For now these clashes are ignored; see
|
||
|
# PR #43339 for details.
|
||
|
from torch._C._VariableFunctions import * # type: ignore[assignment, misc] # noqa: F403
|
||
|
# Fixup segment_reduce visibility
|
||
|
_segment_reduce = segment_reduce
|
||
|
del segment_reduce # noqa: F821
|
||
|
|
||
|
# Ops not to be exposed in `torch` namespace,
|
||
|
# mostly helper ops.
|
||
|
PRIVATE_OPS = (
|
||
|
'unique_dim',
|
||
|
)
|
||
|
|
||
|
for name in dir(_C._VariableFunctions):
|
||
|
if name.startswith('__') or name in PRIVATE_OPS:
|
||
|
continue
|
||
|
obj = getattr(_C._VariableFunctions, name)
|
||
|
obj.__module__ = 'torch'
|
||
|
# Hide some APIs that should not be public
|
||
|
if name == "segment_reduce":
|
||
|
# TODO: Once the undocumented FC window is passed, remove the line bellow
|
||
|
globals()[name] = obj
|
||
|
name = "_" + name
|
||
|
globals()[name] = obj
|
||
|
if not name.startswith("_"):
|
||
|
__all__.append(name)
|
||
|
|
||
|
|
||
|
################################################################################
|
||
|
# Add torch.dtype instances to the public API
|
||
|
################################################################################
|
||
|
|
||
|
import torch
|
||
|
|
||
|
for attribute in dir(torch):
|
||
|
if isinstance(getattr(torch, attribute), torch.dtype):
|
||
|
__all__.append(attribute)
|
||
|
|
||
|
################################################################################
|
||
|
# Import TorchDynamo's lazy APIs to avoid circular dependenices
|
||
|
################################################################################
|
||
|
|
||
|
# needs to be before from .functional import * to avoid circular dependencies
|
||
|
from ._compile import _disable_dynamo
|
||
|
|
||
|
################################################################################
|
||
|
# Import interface functions defined in Python
|
||
|
################################################################################
|
||
|
|
||
|
# needs to be after the above ATen bindings so we can overwrite from Python side
|
||
|
from .functional import * # noqa: F403
|
||
|
|
||
|
|
||
|
################################################################################
|
||
|
# Remove unnecessary members
|
||
|
################################################################################
|
||
|
|
||
|
del _StorageBase
|
||
|
del _LegacyStorage
|
||
|
|
||
|
################################################################################
|
||
|
# Define _assert
|
||
|
################################################################################
|
||
|
|
||
|
# needs to be before the submodule imports to avoid circular dependencies
|
||
|
def _assert(condition, message):
|
||
|
r"""A wrapper around Python's assert which is symbolically traceable.
|
||
|
"""
|
||
|
from .overrides import has_torch_function, handle_torch_function
|
||
|
|
||
|
if type(condition) is not torch.Tensor and has_torch_function((condition,)):
|
||
|
return handle_torch_function(_assert, (condition,), condition, message)
|
||
|
assert condition, message
|
||
|
|
||
|
################################################################################
|
||
|
# Import most common subpackages
|
||
|
################################################################################
|
||
|
|
||
|
# Use the redundant form so that type checkers know that these are a part of
|
||
|
# the public API. The "regular" import lines are there solely for the runtime
|
||
|
# side effect of adding to the imported module's members for other users.
|
||
|
from torch import cuda as cuda
|
||
|
from torch import cpu as cpu
|
||
|
from torch import mps as mps
|
||
|
from torch import xpu as xpu
|
||
|
from torch import autograd as autograd
|
||
|
from torch.autograd import (
|
||
|
no_grad as no_grad,
|
||
|
enable_grad as enable_grad,
|
||
|
set_grad_enabled as set_grad_enabled,
|
||
|
inference_mode as inference_mode,
|
||
|
)
|
||
|
from torch import fft as fft
|
||
|
from torch import futures as futures
|
||
|
from torch import _awaits as _awaits
|
||
|
from torch import nested as nested
|
||
|
from torch import nn as nn
|
||
|
from torch.signal import windows as windows
|
||
|
from torch import optim as optim
|
||
|
import torch.optim._multi_tensor
|
||
|
from torch import multiprocessing as multiprocessing
|
||
|
from torch import sparse as sparse
|
||
|
from torch import special as special
|
||
|
import torch.utils.backcompat
|
||
|
from torch import jit as jit
|
||
|
from torch import linalg as linalg
|
||
|
from torch import hub as hub
|
||
|
from torch import random as random
|
||
|
from torch import distributions as distributions
|
||
|
from torch import testing as testing
|
||
|
from torch import backends as backends
|
||
|
import torch.utils.data
|
||
|
from torch import __config__ as __config__
|
||
|
from torch import __future__ as __future__
|
||
|
from torch import profiler as profiler
|
||
|
|
||
|
# Quantized, sparse, AO, etc. should be last to get imported, as nothing
|
||
|
# is expected to depend on them.
|
||
|
from torch import ao as ao
|
||
|
# nn.quant* depends on ao -- so should be after those.
|
||
|
import torch.nn.quantizable
|
||
|
import torch.nn.quantized
|
||
|
import torch.nn.qat
|
||
|
import torch.nn.intrinsic
|
||
|
|
||
|
_C._init_names(list(torch._storage_classes))
|
||
|
|
||
|
# attach docstrings to torch and tensor functions
|
||
|
from . import _torch_docs, _tensor_docs, _storage_docs
|
||
|
del _torch_docs, _tensor_docs, _storage_docs
|
||
|
|
||
|
|
||
|
def compiled_with_cxx11_abi() -> builtins.bool:
|
||
|
r"""Returns whether PyTorch was built with _GLIBCXX_USE_CXX11_ABI=1"""
|
||
|
return _C._GLIBCXX_USE_CXX11_ABI
|
||
|
|
||
|
|
||
|
# Import the ops "namespace"
|
||
|
from torch._ops import ops
|
||
|
from torch._classes import classes
|
||
|
import torch._library
|
||
|
|
||
|
# quantization depends on torch.fx
|
||
|
# Import quantization
|
||
|
from torch import quantization as quantization
|
||
|
|
||
|
# Import the quasi random sampler
|
||
|
from torch import quasirandom as quasirandom
|
||
|
|
||
|
# If you are seeing this, it means that this call site was not checked if
|
||
|
# the memory format could be preserved, and it was switched to old default
|
||
|
# behaviour of contiguous
|
||
|
legacy_contiguous_format = contiguous_format
|
||
|
|
||
|
# Register fork handler to initialize OpenMP in child processes (see gh-28389)
|
||
|
from torch.multiprocessing._atfork import register_after_fork
|
||
|
register_after_fork(torch.get_num_threads)
|
||
|
del register_after_fork
|
||
|
|
||
|
# Import tools that require fully imported torch (for applying
|
||
|
# torch.jit.script as a decorator, for instance):
|
||
|
from ._lobpcg import lobpcg as lobpcg
|
||
|
|
||
|
# These were previously defined in native_functions.yaml and appeared on the
|
||
|
# `torch` namespace, but we moved them to c10 dispatch to facilitate custom
|
||
|
# class usage. We add these lines here to preserve backward compatibility.
|
||
|
quantized_lstm = torch.ops.aten.quantized_lstm
|
||
|
quantized_gru = torch.ops.aten.quantized_gru
|
||
|
|
||
|
from torch.utils.dlpack import from_dlpack, to_dlpack
|
||
|
|
||
|
# Import experimental masked operations support. See
|
||
|
# [RFC-0016](https://github.com/pytorch/rfcs/pull/27) for more
|
||
|
# information.
|
||
|
from . import masked
|
||
|
|
||
|
# Import removed ops with error message about removal
|
||
|
from ._linalg_utils import ( # type: ignore[misc]
|
||
|
matrix_rank,
|
||
|
eig,
|
||
|
solve,
|
||
|
lstsq,
|
||
|
)
|
||
|
from ._linalg_utils import _symeig as symeig # type: ignore[misc]
|
||
|
|
||
|
class _TorchCompileInductorWrapper:
|
||
|
compiler_name = "inductor"
|
||
|
|
||
|
def __init__(self, mode, options, dynamic):
|
||
|
self.config: Dict[str, Any] = dict()
|
||
|
self.dynamic = dynamic
|
||
|
self.apply_mode(mode)
|
||
|
self.apply_options(options)
|
||
|
|
||
|
if self.config.get("triton.cudagraphs", False):
|
||
|
os.environ["DISABLE_CUPTI_LAZY_REINIT"] = "1"
|
||
|
# FIXME: CUDA Graph does not work well with CUPTI teardown.
|
||
|
# 1) crashes on 1st lazy CUPTI re-init after teardown (CUDA 11)
|
||
|
# 2) crashes on 2nd non-lazy CUPTI re-init after teardown (CUDA 12)
|
||
|
# Workaround: turn off CUPTI teardown when using CUDA Graphs.
|
||
|
os.environ["TEARDOWN_CUPTI"] = "0"
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return (isinstance(other, _TorchCompileInductorWrapper) and
|
||
|
self.config == other.config and
|
||
|
self.dynamic == other.dynamic)
|
||
|
|
||
|
def apply_mode(self, mode: Optional[str]):
|
||
|
if mode is None or mode == "default":
|
||
|
pass
|
||
|
elif mode in ("reduce-overhead", "max-autotune", "max-autotune-no-cudagraphs"):
|
||
|
from torch._inductor import list_mode_options
|
||
|
self.apply_options(list_mode_options(mode, self.dynamic))
|
||
|
else:
|
||
|
raise RuntimeError(
|
||
|
f"Unrecognized mode={mode}, should be one of: default, reduce-overhead, max-autotune, max-autotune-no-cudagraphs"
|
||
|
)
|
||
|
|
||
|
def apply_options(self, options: Optional[Dict[str, Any]]):
|
||
|
if not options:
|
||
|
return
|
||
|
|
||
|
from torch._inductor import config
|
||
|
current_config: Dict[str, Any] = config.shallow_copy_dict()
|
||
|
|
||
|
for key, val in options.items():
|
||
|
attr_name = key.replace("-", "_")
|
||
|
if attr_name not in current_config:
|
||
|
raise RuntimeError(
|
||
|
f"Unexpected optimization option {key}, known options are {list(current_config.keys())}"
|
||
|
)
|
||
|
if type(val) is not type(current_config[attr_name]):
|
||
|
val_type_str = type(val).__name__
|
||
|
expected_type_str = type(current_config[attr_name]).__name__
|
||
|
raise RuntimeError(
|
||
|
f"Unexpected type of attr {key}, got {val_type_str} should be {expected_type_str}"
|
||
|
)
|
||
|
self.config[attr_name] = val
|
||
|
|
||
|
def __call__(self, model_, inputs_):
|
||
|
from torch._inductor.compile_fx import compile_fx
|
||
|
|
||
|
return compile_fx(model_, inputs_, config_patches=self.config)
|
||
|
|
||
|
def get_compiler_config(self):
|
||
|
from torch._inductor.compile_fx import get_patched_config_dict
|
||
|
return get_patched_config_dict(config_patches=self.config)
|
||
|
|
||
|
def reset(self):
|
||
|
from torch._inductor import config
|
||
|
if "triton.cudagraphs" in self.config or config.triton.cudagraphs:
|
||
|
if self.config.get("triton.cudagraphs", True):
|
||
|
from torch._inductor.cudagraph_trees import reset_cudagraph_trees
|
||
|
reset_cudagraph_trees()
|
||
|
|
||
|
class _TorchCompileWrapper:
|
||
|
def __init__(self, backend, mode, options, dynamic):
|
||
|
from torch._dynamo.backends.registry import lookup_backend
|
||
|
|
||
|
if isinstance(backend, str):
|
||
|
self.compiler_name = backend
|
||
|
elif hasattr(backend, "__name__"):
|
||
|
self.compiler_name = backend.__name__
|
||
|
else:
|
||
|
self.compiler_name = str(backend)
|
||
|
self.dynamic = dynamic
|
||
|
self.compiler_fn = lookup_backend(backend)
|
||
|
self.kwargs = {}
|
||
|
# only pass the args if they non-empty
|
||
|
if mode and mode != "default":
|
||
|
self.kwargs["mode"] = mode
|
||
|
if options:
|
||
|
self.kwargs["options"] = options
|
||
|
|
||
|
def __eq__(self, other):
|
||
|
return (isinstance(other, _TorchCompileWrapper) and
|
||
|
self.compiler_fn == other.compiler_fn and
|
||
|
self.kwargs == other.kwargs and
|
||
|
self.dynamic == other.dynamic)
|
||
|
|
||
|
def __call__(self, model_, inputs_):
|
||
|
return self.compiler_fn(model_, inputs_, **self.kwargs)
|
||
|
|
||
|
def reset(self):
|
||
|
if hasattr(self.compiler_fn, "reset"):
|
||
|
self.compiler_fn.reset()
|
||
|
|
||
|
|
||
|
def compile(model: Optional[Callable] = None, *,
|
||
|
fullgraph: builtins.bool = False,
|
||
|
dynamic: Optional[builtins.bool] = None,
|
||
|
backend: Union[str, Callable] = "inductor",
|
||
|
mode: Union[str, None] = None,
|
||
|
options: Optional[Dict[str, Union[str, builtins.int, builtins.bool]]] = None,
|
||
|
disable: builtins.bool = False) -> Callable:
|
||
|
"""
|
||
|
Optimizes given model/function using TorchDynamo and specified backend.
|
||
|
|
||
|
Concretely, for every frame executed within the compiled region, we will attempt
|
||
|
to compile it and cache the compiled result on the code object for future
|
||
|
use. A single frame may be compiled multiple times if previous compiled
|
||
|
results are not applicable for subsequent calls (this is called a "guard
|
||
|
failure), you can use TORCH_LOGS=guards to debug these situations.
|
||
|
Multiple compiled results can be associated with a frame up to
|
||
|
``torch._dynamo.config.cache_size_limit``, which defaults to 64; at which
|
||
|
point we will fall back to eager. Note that compile caches are per
|
||
|
*code object*, not frame; if you dynamically create multiple copies of a
|
||
|
function, they will all share the same code cache.
|
||
|
|
||
|
Args:
|
||
|
model (Callable): Module/function to optimize
|
||
|
fullgraph (bool): If False (default), torch.compile attempts to discover compileable regions
|
||
|
in the function that it will optimize. If True, then we require that the entire function be
|
||
|
capturable into a single graph. If this is not possible (that is, if there are graph breaks),
|
||
|
then this will raise an error.
|
||
|
dynamic (bool or None): Use dynamic shape tracing. When this is True, we will up-front attempt
|
||
|
to generate a kernel that is as dynamic as possible to avoid recompilations when
|
||
|
sizes change. This may not always work as some operations/optimizations will
|
||
|
force specialization; use TORCH_LOGS=dynamic to debug overspecialization.
|
||
|
When this is False, we will NEVER generate dynamic kernels, we will always specialize.
|
||
|
By default (None), we automatically detect if dynamism has occurred and compile a more
|
||
|
dynamic kernel upon recompile.
|
||
|
backend (str or Callable): backend to be used
|
||
|
|
||
|
- "inductor" is the default backend, which is a good balance between performance and overhead
|
||
|
|
||
|
- Non experimental in-tree backends can be seen with `torch._dynamo.list_backends()`
|
||
|
|
||
|
- Experimental or debug in-tree backends can be seen with `torch._dynamo.list_backends(None)`
|
||
|
|
||
|
- To register an out-of-tree custom backend: https://pytorch.org/docs/main/compile/custom-backends.html
|
||
|
mode (str): Can be either "default", "reduce-overhead", "max-autotune" or "max-autotune-no-cudagraphs"
|
||
|
|
||
|
- "default" is the default mode, which is a good balance between performance and overhead
|
||
|
|
||
|
- "reduce-overhead" is a mode that reduces the overhead of python with CUDA graphs,
|
||
|
useful for small batches. Reduction of overhead can come at the cost of more memory
|
||
|
usage, as we will cache the workspace memory required for the invocation so that we
|
||
|
do not have to reallocate it on subsequent runs. Reduction of overhead is not guaranteed
|
||
|
to work; today, we only reduce overhead for CUDA only graphs which do not mutate inputs.
|
||
|
There are other circumstances where CUDA graphs are not applicable; use TORCH_LOG=perf_hints
|
||
|
to debug.
|
||
|
|
||
|
- "max-autotune" is a mode that leverages Triton based matrix multiplications and convolutions
|
||
|
It enables CUDA graphs by default.
|
||
|
|
||
|
- "max-autotune-no-cudagraphs" is a mode similar to "max-autotune" but without CUDA graphs
|
||
|
|
||
|
- To see the exact configs that each mode sets you can call `torch._inductor.list_mode_options()`
|
||
|
|
||
|
options (dict): A dictionary of options to pass to the backend. Some notable ones to try out are
|
||
|
|
||
|
- `epilogue_fusion` which fuses pointwise ops into templates. Requires `max_autotune` to also be set
|
||
|
|
||
|
- `max_autotune` which will profile to pick the best matmul configuration
|
||
|
|
||
|
- `fallback_random` which is useful when debugging accuracy issues
|
||
|
|
||
|
- `shape_padding` which pads matrix shapes to better align loads on GPUs especially for tensor cores
|
||
|
|
||
|
- `triton.cudagraphs` which will reduce the overhead of python with CUDA graphs
|
||
|
|
||
|
- `trace.enabled` which is the most useful debugging flag to turn on
|
||
|
|
||
|
- `trace.graph_diagram` which will show you a picture of your graph after fusion
|
||
|
|
||
|
- For inductor you can see the full list of configs that it supports by calling `torch._inductor.list_options()`
|
||
|
disable (bool): Turn torch.compile() into a no-op for testing
|
||
|
|
||
|
Example::
|
||
|
|
||
|
@torch.compile(options={"triton.cudagraphs": True}, fullgraph=True)
|
||
|
def foo(x):
|
||
|
return torch.sin(x) + torch.cos(x)
|
||
|
|
||
|
"""
|
||
|
_C._log_api_usage_once("torch.compile")
|
||
|
# Temporary until we get proper support for python 3.12
|
||
|
if sys.version_info >= (3, 12):
|
||
|
raise RuntimeError("Dynamo is not supported on Python 3.12+")
|
||
|
|
||
|
# Decorator mode
|
||
|
if model is None:
|
||
|
def fn(model: Callable):
|
||
|
if model is None:
|
||
|
raise RuntimeError("Model can't be None")
|
||
|
return compile(model,
|
||
|
fullgraph=fullgraph,
|
||
|
dynamic=dynamic,
|
||
|
backend=backend,
|
||
|
mode=mode,
|
||
|
options=options,
|
||
|
disable=disable)
|
||
|
return fn
|
||
|
|
||
|
if mode is not None and options is not None:
|
||
|
raise RuntimeError("Either mode or options can be specified, but both can't be specified at the same time.")
|
||
|
if mode is None and options is None:
|
||
|
mode = "default"
|
||
|
if backend == "inductor":
|
||
|
backend = _TorchCompileInductorWrapper(mode, options, dynamic)
|
||
|
else:
|
||
|
backend = _TorchCompileWrapper(backend, mode, options, dynamic)
|
||
|
|
||
|
return torch._dynamo.optimize(backend=backend, nopython=fullgraph, dynamic=dynamic, disable=disable)(model)
|
||
|
|
||
|
|
||
|
from torch import export as export
|
||
|
|
||
|
from torch._higher_order_ops import cond
|
||
|
|
||
|
def _register_device_module(device_type, module):
|
||
|
r"""Register an external runtime module of the specific :attr:`device_type`
|
||
|
supported by torch.
|
||
|
|
||
|
After the :attr:`module` is registered correctly, the user can refer
|
||
|
the external runtime module as part of torch with attribute torch.xxx.
|
||
|
"""
|
||
|
# Make sure the device_type represent a supported device type for torch.
|
||
|
device_type = torch.device(device_type).type
|
||
|
m = sys.modules[__name__]
|
||
|
if hasattr(m, device_type):
|
||
|
raise RuntimeError(f"The runtime module of '{device_type}' has already "
|
||
|
f"been registered with '{getattr(m, device_type)}'")
|
||
|
setattr(m, device_type, module)
|
||
|
torch_module_name = '.'.join([__name__, device_type])
|
||
|
sys.modules[torch_module_name] = module
|
||
|
|
||
|
# expose return_types
|
||
|
from . import return_types
|
||
|
from . import library
|
||
|
if not TYPE_CHECKING:
|
||
|
from . import _meta_registrations
|
||
|
|
||
|
# Enable CUDA Sanitizer
|
||
|
if 'TORCH_CUDA_SANITIZER' in os.environ:
|
||
|
import torch.cuda._sanitizer as csan
|
||
|
|
||
|
csan.enable_cuda_sanitizer()
|
||
|
|
||
|
# Populate magic methods on SymInt and SymFloat
|
||
|
import torch.fx.experimental.sym_node
|
||
|
|
||
|
from torch import func as func
|
||
|
from torch.func import vmap
|
||
|
|
||
|
|
||
|
# The function _sparse_coo_tensor_unsafe is removed from PyTorch
|
||
|
# Python API (v. 1.13), here we temporarily provide its replacement
|
||
|
# with a deprecation warning.
|
||
|
# TODO: remove the function for PyTorch v 1.15.
|
||
|
def _sparse_coo_tensor_unsafe(*args, **kwargs):
|
||
|
import warnings
|
||
|
warnings.warn('torch._sparse_coo_tensor_unsafe is deprecated, '
|
||
|
'use torch.sparse_coo_tensor(..., check_invariants=False) instead.')
|
||
|
kwargs['check_invariants'] = False
|
||
|
return torch.sparse_coo_tensor(*args, **kwargs)
|
||
|
|
||
|
# Register MPS specific decomps
|
||
|
torch.backends.mps._init()
|
||
|
|
||
|
if not _running_with_deploy():
|
||
|
from torch import compiler as compiler
|
||
|
|
||
|
class _TritonLibrary:
|
||
|
lib = torch.library.Library("triton", "DEF")
|
||
|
ops_table: Dict[Tuple[str, str], Callable] = {}
|
||
|
|
||
|
@classmethod
|
||
|
def registerOp(cls, op_key, full_schema, op_impl, dispatch_key):
|
||
|
if (op_key, dispatch_key) not in cls.ops_table:
|
||
|
cls.lib.define(full_schema)
|
||
|
cls.lib.impl("triton::" + op_key, op_impl, dispatch_key)
|
||
|
cls.ops_table[(op_key, dispatch_key)] = op_impl
|
||
|
|
||
|
return cls.ops_table[(op_key, dispatch_key)]
|
||
|
|
||
|
|
||
|
# Deprecated attributes
|
||
|
_deprecated_attrs = {
|
||
|
"has_mps": torch.backends.mps.is_built,
|
||
|
"has_cuda": torch.backends.cuda.is_built,
|
||
|
"has_cudnn": torch.backends.cudnn.is_available,
|
||
|
"has_mkldnn": torch.backends.mkldnn.is_available,
|
||
|
}
|
||
|
|
||
|
if TYPE_CHECKING:
|
||
|
# Import the following modules during type checking to enable code intelligence features,
|
||
|
# such as auto-completion in tools like pylance, even when these modules are not explicitly
|
||
|
# imported in user code.
|
||
|
from torch import _dynamo as _dynamo
|
||
|
from torch import _inductor as _inductor
|
||
|
from torch import onnx as onnx
|
||
|
|
||
|
else:
|
||
|
_lazy_modules = {
|
||
|
"_dynamo",
|
||
|
"_inductor",
|
||
|
"_export",
|
||
|
# ONNX must be imported after _dynamo, _ops, _subclasses, fx, func and jit
|
||
|
"onnx",
|
||
|
}
|
||
|
|
||
|
def __getattr__(name):
|
||
|
# Deprecated attrs
|
||
|
replacement = _deprecated_attrs.get(name)
|
||
|
if replacement is not None:
|
||
|
import warnings
|
||
|
warnings.warn(f"'{name}' is deprecated, please use '{replacement.__module__}.{replacement.__name__}()'", stacklevel=2)
|
||
|
return replacement()
|
||
|
|
||
|
# Lazy modules
|
||
|
if name in _lazy_modules:
|
||
|
import importlib
|
||
|
return importlib.import_module(f".{name}", __name__)
|
||
|
|
||
|
raise AttributeError(f"module '{__name__}' has no attribute '{name}'")
|
||
|
|
||
|
|
||
|
def _constrain_as_value(symbol, min: Optional[builtins.int] = None, max: Optional[builtins.int] = None):
|
||
|
"""
|
||
|
Add min/max constraint on the intermediate symbol at tracing time. If called in eager mode,
|
||
|
it will still check if the input value is within the specified range.
|
||
|
"""
|
||
|
torch.sym_constrain_range(symbol, min=min, max=max)
|
||
|
|
||
|
|
||
|
def _constrain_as_size(symbol, min: Optional[builtins.int] = None, max: Optional[builtins.int] = None):
|
||
|
"""
|
||
|
This indicates that a given int is size-like, and can be used in any context where a size is expected.
|
||
|
You will typically use this when reading out integers from Tensors, e.g., max.item() or lengths.tolist()
|
||
|
which then need to be used as tensor constructors. Providing these assertions to PyTorch can help resolve
|
||
|
GuardOnDataDependentSymNode errors upon export, since we cannot guard on unbacked SymInts.
|
||
|
|
||
|
This function has unusual semantics which distinguish it from
|
||
|
constrain_as_value. Specifically, in some circumstances in framework
|
||
|
code, we will treat this int as >= 2 (when we do a size-oblivious guard).
|
||
|
This makes it easier to This makes it easier to use the unbacked int in
|
||
|
size contexts, as we will often attempt to guard on a size being zero/one
|
||
|
(e.g., when computing the contiguity of a tensor, or testing if
|
||
|
broadcasting can occur), which will not work on unbacked SymInts.
|
||
|
However, if we conservatively assume that the size is not zero/one, we will
|
||
|
end up with a graph that will still work even if the size is zero/one.
|
||
|
|
||
|
For more details, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit
|
||
|
```
|
||
|
"""
|
||
|
torch.sym_constrain_range_for_size(symbol, min=min, max=max)
|
||
|
|
||
|
|
||
|
from . import _logging
|
||
|
_logging._init_logs()
|