You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

336 lines
10 KiB

5 months ago
import os
import textwrap
from enum import auto, Enum
from traceback import extract_stack, format_exc, format_list, StackSummary
from typing import cast, NoReturn, Optional
import torch._guards
from . import config
from .utils import counters
def exportdb_error_message(case_name):
return (
"For more information about this error, see: "
+ "https://pytorch.org/docs/main/generated/exportdb/index.html#"
+ case_name.replace("_", "-")
)
import logging
log = logging.getLogger(__name__)
graph_breaks_log = torch._logging.getArtifactLogger(__name__, "graph_breaks")
class TorchDynamoException(RuntimeError):
pass
class InternalTorchDynamoError(TorchDynamoException):
pass
class RestartAnalysis(TorchDynamoException):
pass
class SpeculationRestartAnalysis(RestartAnalysis):
pass
class UnspecializeRestartAnalysis(RestartAnalysis):
pass
class SkipFrame(TorchDynamoException):
pass
class TorchRuntimeError(TorchDynamoException):
pass
class InvalidBackend(TorchDynamoException):
def __init__(self, name):
super().__init__(
f"Invalid backend: {name!r}, see `torch._dynamo.list_backends()` for available backends."
)
class ResetRequired(TorchDynamoException):
def __init__(self):
super().__init__(
textwrap.dedent(
"""
Must call `torch._dynamo.reset()` before changing backends. Detected two calls to
`torch.compile()` with a different backend compiler arguments.
"""
)
)
class BackendCompilerFailed(TorchDynamoException):
def __init__(self, backend_fn, inner_exception):
self.backend_name = getattr(backend_fn, "__name__", "?")
self.inner_exception = inner_exception
msg = f"backend={self.backend_name!r} raised:\n{type(inner_exception).__name__}: {inner_exception}"
super().__init__(msg)
class Unsupported(TorchDynamoException):
def __init__(self, msg):
super().__init__(msg)
self.real_stack = torch._guards.TracingContext.extract_stack()
self.msg = msg
self.category: Optional[str] = None
self.add_to_stats()
def remove_from_stats(self):
assert self.category is not None
counters[self.category][self.msg] -= 1
if counters[self.category][self.msg] <= 0:
del counters[self.category][self.msg]
def add_to_stats(self, category="unimplemented"):
self.category = category
counters[category][self.msg] += 1
class RecompileError(TorchDynamoException):
pass
class ArgsMismatchError(Unsupported):
def __init__(self, msg):
super().__init__(msg)
class AttributeMutationError(Unsupported):
def __init__(self, msg):
super().__init__(msg)
class CondOpArgsMismatchError(ArgsMismatchError):
"""
Internal error from cond() due to arguments mismatch.
"""
def __init__(self, msg):
super().__init__(msg)
class UserErrorType(Enum):
DYNAMIC_CONTROL_FLOW = auto()
ANTI_PATTERN = auto()
STANDARD_LIBRARY = auto()
CONSTRAINT_VIOLATION = auto()
DYNAMIC_DIM = auto()
INVALID_INPUT = auto()
INVALID_OUTPUT = auto()
class UserError(Unsupported):
def __init__(self, error_type: UserErrorType, msg, case_name=None):
"""
Type of errors that would be valid in Eager, but not supported in TorchDynamo.
The error message should tell user about next actions.
error_type: Type of user error
msg: Actionable error message
case_name: (Optional) Unique name (snake case) for the usage example in exportdb.
"""
if case_name is not None:
assert isinstance(case_name, str)
if msg.endswith("."):
msg += " "
else:
msg += "\n"
msg += exportdb_error_message(case_name)
super().__init__(msg)
self.error_type = error_type
self.message = msg
class UncapturedHigherOrderOpError(TorchDynamoException):
pass
class IncorrectUsage(Exception):
pass
# These exceptions are ok to fallback to eager/graph_break.
exceptions_allowed_to_be_fallback = (
torch._subclasses.fake_tensor.DataDependentOutputException,
torch._subclasses.fake_tensor.DynamicOutputShapeException,
torch._subclasses.fake_tensor.UnsupportedOperatorException,
torch._subclasses.fake_tensor.UnsupportedFakeTensorException,
)
def unimplemented_with_warning(e: Exception, code, msg: str) -> NoReturn:
# This function calls unimplemented internally and eventually graph breaks
# or falls to eager. unimplemented itself does not print any user warnings,
# i.e., its very silent. This helper function is intended when an error is
# encountered in the torch.compile stack which is worth showing as warning
# to the user. For example, if AOT Autograd backend fails with a fake tensor
# exception, its ok to fallback to eager but not silently. Here, we can use
# this function to log the message and the stack trace.
graph_break_msg = format_error_msg_verbose(e, code)
graph_breaks_log.debug("%s", graph_break_msg)
log.warning(msg)
raise unimplemented(msg) from e
def unimplemented(msg: str) -> NoReturn:
assert msg != os.environ.get("BREAK", False)
raise Unsupported(msg)
def warning(msg: str) -> None:
counters["warnings"][msg] += 1
assert msg != os.environ.get("BREAK", False)
# KeyError has special handling for its args
# see https://github.com/python/cpython/blob/3.11/Objects/exceptions.c#L2534 for details
class KeyErrorMsg:
def __init__(self, value):
self.value = value
def __str__(self):
return str(self.value)
def __repr__(self) -> str:
return self.__str__()
def augment_exc_message(exc: Exception, msg: str = "\n", export: bool = False) -> None:
import traceback
exc.innermost_user_frame_summary = None # type: ignore[attr-defined]
real_stack = get_real_stack(exc)
if real_stack is not None and len(real_stack) > 0:
exc.innermost_user_frame_summary = real_stack[-1] # type: ignore[attr-defined]
msg += f"\nfrom user code:\n {''.join(traceback.format_list(real_stack))}"
if config.replay_record_enabled and hasattr(exc, "record_filename"):
msg += f"\nLast frame execution written to {exc.record_filename}. To run only this frame while debugging, run\
torch._dynamo.replay('{exc.record_filename}').\n"
if not config.verbose and hasattr(exc, "real_stack"):
msg += '\nSet TORCH_LOGS="+dynamo" and TORCHDYNAMO_VERBOSE=1 for more information\n'
if hasattr(exc, "inner_exception") and hasattr(
exc.inner_exception, "minifier_path"
):
if hasattr(exc.inner_exception, "buck_command"):
msg += (
f"\nMinifier script written to {exc.inner_exception.minifier_path}. Run "
f"this buck command to find the smallest traced graph "
f"which reproduces this error: {exc.inner_exception.buck_command}\n"
)
else:
msg += (
f"\nMinifier script written to {exc.inner_exception.minifier_path}. Run "
"this script to find the smallest traced graph which reproduces this error.\n"
)
if not config.suppress_errors and not export:
msg += (
"\n\n"
"You can suppress this exception and fall back to eager by setting:\n"
" import torch._dynamo\n"
" torch._dynamo.config.suppress_errors = True\n"
)
old_msg = "" if len(exc.args) == 0 else str(exc.args[0])
if isinstance(exc, KeyError):
exc.args = (KeyErrorMsg(old_msg + msg),) + exc.args[1:]
else:
new_msg = old_msg + msg
exc.args = (new_msg,) + exc.args[1:]
def get_real_stack(exc: Exception, frame=None) -> Optional[StackSummary]:
real_stack = getattr(exc, "real_stack", None)
if real_stack is None:
return None
# NB: it's possible for real_stack to be []; we still attempt to
# report a stack anyway because the stack_above_dynamo may still
# be useful for debugging
stack_above_dynamo = []
if frame is not None:
# NB: frame is PyInterpreterFrame on Python 3.11 and later,
# not a TRUE frame object. You can't actually feed it
# to traceback because it doesn't have enough information.
# To solve this problem, we technically should just materialize
# the frame, the same way _PyFrame_GetFrameObject would do
# (but we cannot actually do this, because this populates
# frame_obj field, which default eval frame doesn't like).
#
# Fortunately, in this case, we can hack it: there's no need
# to actually use the truly top frame, we can just extract
# from where we are right now and rely on filter_stack to
# get rid of all the dynamo frames. For ease of testing
# we apply this behavior to ALL Python versions
stack_above_dynamo = filter_stack(extract_stack())
return cast(StackSummary, stack_above_dynamo + real_stack)
# filter out all frames after entering dynamo
def filter_stack(stack):
user_stack = []
for frame in stack:
if "convert_frame" in frame.filename:
break
if "eval_frame" in frame.filename or "torch._dynamo.optimize(" in frame.line:
continue
user_stack.append(frame)
return user_stack
def format_error_msg_verbose(
exc: Exception, code, record_filename=None, frame=None
) -> str:
msg = (
f"WON'T CONVERT {code.co_name} {code.co_filename} line {code.co_firstlineno}\n"
)
msg += "=" * 10 + " TorchDynamo Stack Trace " + "=" * 10 + "\n"
msg += format_exc()
real_stack = get_real_stack(exc, frame)
if real_stack is not None:
msg += (
"\n"
+ "=" * 10
+ " The above exception occurred while processing the following code "
+ "=" * 10
+ "\n\n"
)
msg += "".join(format_list(real_stack))
msg += "\n"
msg += "=" * 10
return msg
def format_error_msg(exc: Exception, code, record_filename=None, frame=None) -> str:
msg = os.linesep * 2
if config.verbose:
msg = format_error_msg_verbose(exc, code, record_filename, frame)
else:
msg = f"WON'T CONVERT {code.co_name} {code.co_filename}\
line {code.co_firstlineno} \ndue to: \n{format_exc()}"
return msg