You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
373 lines
11 KiB
373 lines
11 KiB
5 months ago
|
import contextlib
|
||
|
import dis
|
||
|
import functools
|
||
|
import logging
|
||
|
import os.path
|
||
|
import random
|
||
|
import re
|
||
|
import sys
|
||
|
import types
|
||
|
import unittest
|
||
|
from typing import List, Optional, Sequence, Union
|
||
|
from unittest.mock import patch
|
||
|
|
||
|
np: Optional[types.ModuleType] = None
|
||
|
try:
|
||
|
import numpy as np
|
||
|
except ModuleNotFoundError:
|
||
|
np = None
|
||
|
|
||
|
import torch
|
||
|
from torch import fx
|
||
|
from torch._dynamo.output_graph import OutputGraph
|
||
|
|
||
|
from . import config, eval_frame, optimize_assert, reset
|
||
|
from .bytecode_transformation import (
|
||
|
create_instruction,
|
||
|
debug_checks,
|
||
|
is_generator,
|
||
|
transform_code_object,
|
||
|
)
|
||
|
from .guards import CheckFunctionManager, GuardedCode
|
||
|
from .utils import same
|
||
|
|
||
|
unsupported = eval_frame.unsupported
|
||
|
three = 3
|
||
|
|
||
|
log = logging.getLogger(__name__)
|
||
|
|
||
|
|
||
|
def clone_me(x):
|
||
|
if x is None:
|
||
|
return None
|
||
|
return x.detach().clone().requires_grad_(x.requires_grad)
|
||
|
|
||
|
|
||
|
def named_parameters_for_optimized_module(mod):
|
||
|
assert isinstance(mod, eval_frame.OptimizedModule)
|
||
|
return mod._orig_mod.named_parameters
|
||
|
|
||
|
|
||
|
def named_buffers_for_optimized_module(mod):
|
||
|
assert isinstance(mod, eval_frame.OptimizedModule)
|
||
|
return mod._orig_mod.named_buffers
|
||
|
|
||
|
|
||
|
def remove_optimized_module_prefix(name) -> str:
|
||
|
return re.sub(r"^_orig_mod[.]", "", name)
|
||
|
|
||
|
|
||
|
def collect_results(model, prediction, loss, example_inputs):
|
||
|
results = []
|
||
|
results.append(prediction)
|
||
|
results.append(loss)
|
||
|
# if isinstance(loss, torch.Tensor) and loss.item() > 1:
|
||
|
# log.warning(
|
||
|
# f"High loss value alert - {loss:.2f}. Can result in unstable gradients."
|
||
|
# )
|
||
|
|
||
|
grads = dict()
|
||
|
params = dict()
|
||
|
for name, param in model.named_parameters():
|
||
|
if isinstance(model, eval_frame.OptimizedModule):
|
||
|
name = remove_optimized_module_prefix(name)
|
||
|
param_copy = param
|
||
|
grad = param.grad
|
||
|
# Treat None and zero grad as same
|
||
|
if param.grad is None:
|
||
|
grad = torch.zeros_like(param)
|
||
|
grads[name + ".grad"] = grad
|
||
|
params[name] = param_copy
|
||
|
results.append(grads)
|
||
|
results.append(params)
|
||
|
buffers = dict()
|
||
|
for name, buffer in model.named_buffers():
|
||
|
if isinstance(model, eval_frame.OptimizedModule):
|
||
|
name = remove_optimized_module_prefix(name)
|
||
|
buffers[name] = buffer
|
||
|
results.append(buffers)
|
||
|
for example in example_inputs:
|
||
|
if isinstance(example, (tuple, list)):
|
||
|
for inp in example:
|
||
|
if isinstance(inp, torch.Tensor):
|
||
|
results.append(inp.grad)
|
||
|
else:
|
||
|
if isinstance(example, torch.Tensor):
|
||
|
results.append(example.grad)
|
||
|
return results
|
||
|
|
||
|
|
||
|
def requires_bwd_pass(out):
|
||
|
if isinstance(out, torch.Tensor):
|
||
|
return out.requires_grad
|
||
|
elif isinstance(out, (list, tuple)):
|
||
|
return any(requires_bwd_pass(x) for x in out)
|
||
|
elif out is None:
|
||
|
return False
|
||
|
elif isinstance(out, int):
|
||
|
return False
|
||
|
raise NotImplementedError("Don't know how to reduce", type(out))
|
||
|
|
||
|
|
||
|
def reduce_to_scalar_loss(out):
|
||
|
"""Reduce the output of a model to get scalar loss"""
|
||
|
if isinstance(out, torch.Tensor):
|
||
|
# Mean does not work on integer tensors
|
||
|
return out.sum() / out.numel()
|
||
|
elif isinstance(out, (list, tuple)):
|
||
|
return sum([reduce_to_scalar_loss(x) for x in out]) / len(out)
|
||
|
elif type(out).__name__ in (
|
||
|
"MaskedLMOutput",
|
||
|
"Seq2SeqLMOutput",
|
||
|
"CausalLMOutputWithCrossAttentions",
|
||
|
):
|
||
|
return reduce_to_scalar_loss(out.logits)
|
||
|
elif type(out).__name__ == "SquashedNormal":
|
||
|
return out.mean.sum()
|
||
|
elif isinstance(out, dict):
|
||
|
return sum([reduce_to_scalar_loss(value) for value in out.values()]) / len(
|
||
|
out.keys()
|
||
|
)
|
||
|
raise NotImplementedError("Don't know how to reduce", type(out))
|
||
|
|
||
|
|
||
|
def debug_dir() -> str:
|
||
|
path = os.path.join(os.path.dirname(__file__), "../debug")
|
||
|
if not os.path.exists(path):
|
||
|
os.mkdir(path)
|
||
|
return path
|
||
|
|
||
|
|
||
|
def debug_dump(name, code: types.CodeType, extra="") -> None:
|
||
|
with open(os.path.join(debug_dir(), name), "w") as fd:
|
||
|
fd.write(
|
||
|
f"{dis.Bytecode(code).info()}\n\n{dis.Bytecode(code).dis()}\n\n{extra}\n"
|
||
|
)
|
||
|
|
||
|
|
||
|
def debug_insert_nops(
|
||
|
frame, cache_size, hooks, _, *, skip: int = 0
|
||
|
) -> Optional[GuardedCode]:
|
||
|
"""used to debug jump updates"""
|
||
|
|
||
|
def insert_nops(instructions, code_options):
|
||
|
instructions.insert(0, create_instruction("NOP"))
|
||
|
instructions.insert(0, create_instruction("NOP"))
|
||
|
|
||
|
if is_generator(frame.f_code):
|
||
|
return None
|
||
|
|
||
|
debug_checks(frame.f_code)
|
||
|
code = transform_code_object(frame.f_code, insert_nops)
|
||
|
graph = OutputGraph(
|
||
|
code_options={},
|
||
|
compiler_fn=None,
|
||
|
root_tx=None,
|
||
|
export=False,
|
||
|
export_constraints=None,
|
||
|
frame_state={"_id": 0},
|
||
|
# TODO: shouldn't this be f_locals/f_globals from frame?
|
||
|
local_scope=locals(),
|
||
|
global_scope=globals(),
|
||
|
f_code=frame.f_code,
|
||
|
)
|
||
|
|
||
|
return GuardedCode(code, CheckFunctionManager(graph).check_fn)
|
||
|
|
||
|
|
||
|
class CompileCounter:
|
||
|
def __init__(self):
|
||
|
self.frame_count = 0
|
||
|
self.op_count = 0
|
||
|
|
||
|
def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
|
||
|
self.frame_count += 1
|
||
|
for node in gm.graph.nodes:
|
||
|
if "call" in node.op:
|
||
|
self.op_count += 1
|
||
|
return gm.forward
|
||
|
|
||
|
def clear(self):
|
||
|
self.frame_count = 0
|
||
|
self.op_count = 0
|
||
|
|
||
|
|
||
|
class CompileCounterWithBackend:
|
||
|
def __init__(self, backend):
|
||
|
self.frame_count = 0
|
||
|
self.op_count = 0
|
||
|
self.backend = backend
|
||
|
self.graphs = []
|
||
|
|
||
|
def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
|
||
|
from .backends.registry import lookup_backend
|
||
|
|
||
|
self.frame_count += 1
|
||
|
for node in gm.graph.nodes:
|
||
|
if "call" in node.op:
|
||
|
self.op_count += 1
|
||
|
self.graphs.append(gm)
|
||
|
return lookup_backend(self.backend)(gm, example_inputs)
|
||
|
|
||
|
|
||
|
# Equivalent to backend="eager", but also records graphs that
|
||
|
# we can assert on
|
||
|
class EagerAndRecordGraphs:
|
||
|
def __init__(self):
|
||
|
self.graphs = []
|
||
|
|
||
|
def __call__(self, gm: torch.fx.GraphModule, example_inputs: List[torch.Tensor]):
|
||
|
self.graphs.append(gm)
|
||
|
return gm
|
||
|
|
||
|
|
||
|
def strip_comment(code) -> str:
|
||
|
code = str(code)
|
||
|
return re.sub(r"(?m)^ *#.*\n?", "", code)
|
||
|
|
||
|
|
||
|
def remove_trailing_space(code) -> str:
|
||
|
return "\n".join([line.rstrip() for line in code.split("\n")])
|
||
|
|
||
|
|
||
|
def normalize_gm(gm_str) -> str:
|
||
|
# strip comments as comments have path to files which may differ from
|
||
|
# system to system.
|
||
|
return remove_trailing_space(strip_comment(gm_str))
|
||
|
|
||
|
|
||
|
def standard_test(
|
||
|
self,
|
||
|
fn,
|
||
|
nargs,
|
||
|
expected_ops=None,
|
||
|
expected_ops_dynamic=None,
|
||
|
expected_frame_count=1,
|
||
|
):
|
||
|
if not config.assume_static_by_default and expected_ops_dynamic is not None:
|
||
|
expected_ops = expected_ops_dynamic
|
||
|
|
||
|
actual = CompileCounter()
|
||
|
|
||
|
args1 = [torch.randn(10, 10) for _ in range(nargs)]
|
||
|
args2 = [torch.randn(10, 10) for _ in range(nargs)]
|
||
|
correct1 = fn(*args1)
|
||
|
correct2 = fn(*args2)
|
||
|
reset()
|
||
|
opt_fn = optimize_assert(actual)(fn)
|
||
|
val1a = opt_fn(*args1)
|
||
|
val2a = opt_fn(*args2)
|
||
|
val1b = opt_fn(*args1)
|
||
|
val2b = opt_fn(*args2)
|
||
|
reset()
|
||
|
self.assertTrue(same(val1a, correct1))
|
||
|
self.assertTrue(same(val1b, correct1))
|
||
|
self.assertTrue(same(val2a, correct2))
|
||
|
self.assertTrue(same(val2b, correct2))
|
||
|
self.assertEqual(actual.frame_count, expected_frame_count)
|
||
|
if expected_ops is not None:
|
||
|
self.assertEqual(actual.op_count, expected_ops)
|
||
|
|
||
|
|
||
|
def dummy_fx_compile(gm: fx.GraphModule, example_inputs):
|
||
|
return gm.forward
|
||
|
|
||
|
|
||
|
def format_speedup(speedup, pvalue, is_correct=True, pvalue_threshold=0.1):
|
||
|
if not is_correct:
|
||
|
return "ERROR"
|
||
|
if pvalue > pvalue_threshold:
|
||
|
return f"{speedup:.3f}x SAME"
|
||
|
return f"{speedup:.3f}x p={pvalue:.2f}"
|
||
|
|
||
|
|
||
|
def rand_strided(
|
||
|
size: Sequence[int],
|
||
|
stride: Sequence[int],
|
||
|
dtype: torch.dtype = torch.float32,
|
||
|
device: Union[str, torch.device] = "cpu",
|
||
|
extra_size: int = 0,
|
||
|
):
|
||
|
needed_size = (
|
||
|
sum((shape - 1) * stride for shape, stride in zip(size, stride))
|
||
|
+ 1
|
||
|
+ extra_size
|
||
|
)
|
||
|
if dtype.is_floating_point:
|
||
|
buffer = torch.randn(needed_size, dtype=dtype, device=device)
|
||
|
else:
|
||
|
buffer = torch.zeros(size=[needed_size], dtype=dtype, device=device)
|
||
|
return torch.as_strided(buffer, size, stride)
|
||
|
|
||
|
|
||
|
def _make_fn_with_patches(fn, *patches):
|
||
|
@functools.wraps(fn)
|
||
|
def _fn(*args, **kwargs):
|
||
|
with contextlib.ExitStack() as stack:
|
||
|
for module, attr, val in patches:
|
||
|
stack.enter_context(patch.object(module, attr, val))
|
||
|
|
||
|
return fn(*args, **kwargs)
|
||
|
|
||
|
return _fn
|
||
|
|
||
|
|
||
|
def make_test_cls_with_patches(cls, cls_prefix, fn_suffix, *patches, xfail_prop=None):
|
||
|
DummyTestClass = type(f"{cls_prefix}{cls.__name__}", cls.__bases__, {})
|
||
|
DummyTestClass.__qualname__ = DummyTestClass.__name__
|
||
|
|
||
|
for name in dir(cls):
|
||
|
if name.startswith("test_"):
|
||
|
fn = getattr(cls, name)
|
||
|
if not callable(fn):
|
||
|
setattr(DummyTestClass, name, getattr(cls, name))
|
||
|
continue
|
||
|
new_name = f"{name}{fn_suffix}"
|
||
|
new_fn = _make_fn_with_patches(fn, *patches)
|
||
|
new_fn.__name__ = new_name
|
||
|
if xfail_prop is not None and hasattr(fn, xfail_prop):
|
||
|
new_fn = unittest.expectedFailure(new_fn)
|
||
|
setattr(DummyTestClass, new_name, new_fn)
|
||
|
# NB: Doesn't handle slots correctly, but whatever
|
||
|
elif not hasattr(DummyTestClass, name):
|
||
|
setattr(DummyTestClass, name, getattr(cls, name))
|
||
|
|
||
|
return DummyTestClass
|
||
|
|
||
|
|
||
|
# test Python 3.11+ specific features
|
||
|
def skipIfNotPy311(fn):
|
||
|
if sys.version_info >= (3, 11):
|
||
|
return fn
|
||
|
return unittest.skip(fn)
|
||
|
|
||
|
|
||
|
# Controls tests generated in test/inductor/test_torchinductor_dynamic_shapes.py
|
||
|
# and test/dynamo/test_dynamic_shapes.py
|
||
|
def expectedFailureDynamic(fn):
|
||
|
fn._expected_failure_dynamic = True
|
||
|
return fn
|
||
|
|
||
|
|
||
|
# Controls tests generated in test/inductor/test_torchinductor_codegen_dynamic_shapes.py
|
||
|
def expectedFailureCodegenDynamic(fn):
|
||
|
fn._expected_failure_codegen_dynamic = True
|
||
|
return fn
|
||
|
|
||
|
|
||
|
# Controls test generated in test/inductor/test_cpp_wrapper.py
|
||
|
def expectedFailureDynamicWrapper(fn):
|
||
|
fn._expected_failure_dynamic_wrapper = True
|
||
|
return fn
|
||
|
|
||
|
|
||
|
def reset_rng_state(use_xla=False):
|
||
|
torch.manual_seed(1337)
|
||
|
random.seed(1337)
|
||
|
if np:
|
||
|
np.random.seed(1337)
|
||
|
if use_xla:
|
||
|
import torch_xla.core.xla_model as xm
|
||
|
|
||
|
xm.set_rng_state(1337, str(xm.xla_device()))
|