You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

6254 lines
188 KiB

5 months ago
import math
from enum import Enum
from functools import partial
from typing import List, Optional, Sequence, Tuple, Union
import torch
import torch._prims_common as utils
from torch import SymBool, SymFloat, Tensor
from torch._decomp import (
_add_op_to_registry,
_convert_out_params,
global_decomposition_table,
meta_table,
)
from torch._ops import OpOverload
from torch._prims import _prim_elementwise_meta, ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND
from torch._prims_common import (
corresponding_complex_dtype,
corresponding_real_dtype,
elementwise_dtypes,
ELEMENTWISE_TYPE_PROMOTION_KIND,
IntLike,
make_contiguous_strides_for,
TensorLike,
)
from torch._prims_common.wrappers import (
_maybe_convert_to_dtype,
_maybe_resize_out,
_resize_output_check,
_safe_copy_out,
out_wrapper,
)
from torch._refs import _broadcast_shapes, _maybe_broadcast
from torch.utils import _pytree as pytree
aten = torch.ops.aten
_meta_lib_dont_use_me_use_register_meta = torch.library.Library("aten", "IMPL", "Meta")
def register_meta(op):
def wrapper(fn):
fn = _convert_out_params(fn)
def register(op):
_add_op_to_registry(meta_table, op, fn)
pytree.tree_map_(register, op)
return fn
return wrapper
def elementwise_meta(
*args,
type_promotion: ELEMENTWISE_TYPE_PROMOTION_KIND,
):
# Perform type promotion, as this is expected from prim_metafunction
_, result_dtype = utils.elementwise_dtypes(
*args,
type_promotion_kind=type_promotion,
)
args = [_maybe_convert_to_dtype(x, result_dtype) for x in args]
# Broadcast
args = _maybe_broadcast(*args)
# Perform prim checks
return _prim_elementwise_meta(
*args, type_promotion=ELEMENTWISE_PRIM_TYPE_PROMOTION_KIND.DEFAULT
)
def toRealValueType(dtype):
from_complex = {
torch.complex32: torch.half,
torch.cfloat: torch.float,
torch.cdouble: torch.double,
}
return from_complex.get(dtype, dtype)
def check_inplace_broadcast(self_shape, *args_shape):
broadcasted_shape = tuple(_broadcast_shapes(self_shape, *args_shape))
torch._check(
broadcasted_shape == self_shape,
lambda: f"output with shape {self_shape} doesn't match the broadcast shape {broadcasted_shape}",
)
@register_meta([aten.linspace, aten.logspace])
@out_wrapper()
def meta_linspace_logspace(
start,
end,
steps,
base=None,
dtype=None,
device=None,
layout=torch.strided,
pin_memory=False,
requires_grad=False,
):
if isinstance(start, torch.Tensor):
torch._check(
start.dim() == 0,
lambda: "linspace only supports 0-dimensional start and end tensors",
)
if isinstance(end, torch.Tensor):
torch._check(
end.dim() == 0,
lambda: "linspace only supports 0-dimensional start and end tensors",
)
if any(isinstance(arg, complex) for arg in (start, end, steps)):
default_complex_dtype = utils.corresponding_complex_dtype(
torch.get_default_dtype()
)
if dtype is None:
dtype = default_complex_dtype
else:
torch._check(
utils.is_complex_dtype(dtype),
lambda: f"linspace(): inferred dtype {default_complex_dtype} can't be safely cast to passed dtype {dtype}",
)
else:
dtype = dtype or torch.get_default_dtype()
assert isinstance(dtype, torch.dtype)
# steps does not participate in the computation of the dtype
torch._check_type(
isinstance(steps, IntLike),
lambda: f"received an invalid combination of arguments - got \
({type(start).__name__}, {type(end).__name__}, {type(steps).__name__})",
)
assert isinstance(steps, IntLike) # for mypy
torch._check(steps >= 0, lambda: "number of steps must be non-negative")
return torch.empty(
(steps,), # type: ignore[arg-type]
dtype=dtype,
layout=layout,
device="meta",
pin_memory=pin_memory,
requires_grad=requires_grad,
)
@register_meta([aten.take.default, aten.take.out])
@out_wrapper()
def meta_take(self, index):
# Type and device checks
torch._check(
index.dtype == torch.long,
lambda: f"take(): Expected a long tensor for index, but got {index.dtype}",
)
# Index checks
torch._check_index(
not (self.numel() == 0 and index.numel() != 0),
lambda: "take(): tried to take from an empty tensor",
)
return self.new_empty(index.shape)
@register_meta([aten.linalg_cross.default, aten.linalg_cross.out])
@out_wrapper()
def linalg_cross(self, other, *, dim=-1):
x_d = self.ndim
y_d = other.ndim
torch._check(
x_d == y_d,
lambda: "linalg.cross: inputs must have the same number of dimensions.",
)
torch._check(
self.size(dim) == 3 and other.size(dim) == 3,
lambda: (
f"linalg.cross: inputs dimension {dim} must have length 3. "
f"Got {self.size(dim)} and {other.size(dim)}"
),
)
out_shape = _broadcast_shapes(self.shape, other.shape)
return self.new_empty(out_shape)
@register_meta(aten.linalg_matrix_exp)
@out_wrapper()
def linalg_matrix_exp(self):
squareCheckInputs(self, "linalg.matrix_exp")
checkFloatingOrComplex(self, "linalg.matrix_exp")
return torch.empty_like(self, memory_format=torch.contiguous_format)
@register_meta(
[aten.cummax.default, aten.cummax.out, aten.cummin.default, aten.cummin.out]
)
@out_wrapper("values", "indices")
def cummaxmin(self, dim):
values = torch.empty(self.shape, device=self.device, dtype=self.dtype)
indices = torch.empty(self.shape, device=self.device, dtype=torch.int64)
if self.numel() != 0 and self.ndim != 0:
# Checks that dim is within bounds
maybe_wrap_dim(dim, self.ndim)
return values, indices
@register_meta([aten.logcumsumexp.default, aten.logcumsumexp.out])
@out_wrapper()
def logcumsumexp(self, dim):
# Checks that dim is within bounds
maybe_wrap_dim(dim, self.ndim)
return torch.empty_like(self).contiguous()
# Stride-related code from _exec_fft in aten/src/ATen/native/cuda/SpectralOps.cpp
def _exec_fft(out, self, out_sizes, dim, forward):
ndim = self.ndim
signal_ndim = len(dim)
batch_dims = ndim - signal_ndim
# Permute dimensions so batch dimensions come first, and in stride order
dim_permute = list(range(ndim))
is_transformed_dim = [False for _ in range(ndim)]
for d in dim:
is_transformed_dim[d] = True
# std::partition
left, right = [], []
for d in dim_permute:
if not is_transformed_dim[d]:
left.append(d)
else:
right.append(d)
dim_permute = left + right
batch_end = len(left)
self_strides = self.stride()
tmp = dim_permute[:batch_end]
tmp.sort(key=lambda x: self_strides[x], reverse=True)
dim_permute = tmp + dim_permute[batch_end:]
input = self.permute(dim_permute)
# Collapse batch dimensions into a single dimension
batched_sizes = [-1] + list(input.shape[batch_dims:])
input = input.reshape(batched_sizes)
batch_size = input.size(0)
batched_sizes[0] = batch_size
batched_out_sizes = batched_sizes
for i in range(len(dim)):
batched_out_sizes[i + 1] = out_sizes[dim[i]]
out = out.reshape(batched_out_sizes)
# Reshaping to original batch shape and inverting the dimension permutation
out_strides = [0 for _ in range(ndim)]
batch_numel = 1
i = batch_dims - 1
while i >= 0:
out_strides[dim_permute[i]] = batch_numel * out.stride(0)
batch_numel *= out_sizes[dim_permute[i]]
i -= 1
for i in range(batch_dims, ndim):
out_strides[dim_permute[i]] = out.stride(1 + (i - batch_dims))
return out.as_strided(out_sizes, out_strides, out.storage_offset())
# See _fft_c2c_cufft in aten/src/ATen/native/cuda/SpectralOps.cpp
# and _fft_c2c_mkl in aten/src/ATen/native/mkl/SpectralOps.cpp
@register_meta([aten._fft_c2c.default, aten._fft_c2c.out])
@out_wrapper()
def meta_fft_c2c(self, dim, normalization, forward):
assert self.dtype.is_complex
out_sizes = self.shape
output = self.new_empty(out_sizes)
if not dim:
return output
sorted_dims = dim[:]
self_strides = self.stride()
sorted_dims.sort(key=lambda x: self_strides[x], reverse=True)
output = _exec_fft(output, self, out_sizes, sorted_dims, forward)
return output
@register_meta([aten._fft_r2c.default, aten._fft_r2c.out])
@out_wrapper()
def meta_fft_r2c(self, dim, normalization, onesided):
assert self.dtype.is_floating_point
output_sizes = list(self.size())
if onesided:
last_dim = dim[-1]
last_dim_halfsize = (output_sizes[last_dim] // 2) + 1
output_sizes[last_dim] = last_dim_halfsize
return self.new_empty(
output_sizes, dtype=utils.corresponding_complex_dtype(self.dtype)
)
@register_meta(aten.randperm.generator_out)
def meta_randperm(n, *, generator=None, out):
return _maybe_resize_out(out, torch.Size([n]))
@register_meta(aten.randperm.default)
def meta_randperm_default(
n, *, dtype=torch.long, layout=None, device=None, pin_memory=None
):
return torch.empty(
n, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory
)
@register_meta(aten.randint.default)
def meta_randint(
high, size, *, dtype=torch.long, layout=None, device=None, pin_memory=None
):
return torch.empty(
size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory
)
@register_meta(aten.randint.low)
def meta_randint_low(
low,
high,
size,
*,
dtype=torch.long,
layout=None,
device=None,
pin_memory=None,
):
return torch.empty(
size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory
)
@register_meta(aten.rand.default)
def meta_rand_default(size, *, dtype=None, layout=None, device=None, pin_memory=None):
return torch.empty(
size, dtype=dtype, layout=layout, device=device, pin_memory=pin_memory
)
@register_meta([aten._fft_c2r.default, aten._fft_c2r.out])
@out_wrapper()
def meta_fft_c2r(self, dim, normalization, lastdim):
assert self.dtype.is_complex
output_sizes = list(self.size())
output_sizes[dim[-1]] = lastdim
return self.new_empty(output_sizes, dtype=toRealValueType(self.dtype))
@register_meta(aten.copy_.default)
def meta_copy_(self, src, non_blocking=False):
# This code simulates the original decomp from inductor,
# which runs most of the meta checks that we care about.
# In theory, we should make this more robust by carefully
# auditing our C++ copy_() kernel and copying the checks here.
if torch._debug_has_internal_overlap(self) == 1: # 1 == MemOverlap::Yes
raise RuntimeError(
"more than one element of the written-to tensor refers to a single memory location"
)
if isinstance(src, Tensor):
intermediate = src.to(self, non_blocking)
if self.size() != intermediate.size():
aten.expand_copy.default(intermediate, self.size())
return self
def inferUnsqueezeGeometry(tensor, dim):
result_sizes = list(tensor.size())
result_strides = list(tensor.stride())
new_stride = 1 if dim >= tensor.dim() else result_sizes[dim] * result_strides[dim]
result_sizes.insert(dim, 1)
result_strides.insert(dim, new_stride)
return result_sizes, result_strides
@register_meta(aten.unsqueeze_.default)
def meta_unsqueeze_(self, dim):
dim = maybe_wrap_dim(dim, self.dim() + 1)
g_sizes, g_strides = inferUnsqueezeGeometry(self, dim)
self.as_strided_(g_sizes, g_strides)
return self
@register_meta(aten._sparse_semi_structured_linear)
def meta_sparse_structured_linear(
input: Tensor,
weight: Tensor,
_meta: Tensor,
bias: Optional[Tensor] = None,
_activation_opt: Optional[str] = None,
out_dtype: Optional[torch.dtype] = None,
):
output_sizes = list(input.shape)
if bias is not None:
assert weight.size(0) == bias.size(0), "output size mismatch"
assert weight.size(1) == input.size(-1) / 2
output_sizes[-1] = weight.size(0)
# see: https://github.com/pytorch/pytorch/pull/114477#issuecomment-1830121375
# We assume that we have already squashed the inputs into a 2-D tensor
# Then, as the output is transposed, we need to propagate the transposed
# stride information to the output tensor
assert len(input.shape) == 2, "we can only handle the squashed input case"
transposed_strides = (1, input.size(0))
if out_dtype is not None:
assert (
input.dtype == torch.int8 and out_dtype == torch.int32
), "out_dtype is only supported for i8i8->i32 linear operator"
output = input.new_empty(
output_sizes,
dtype=input.dtype if out_dtype is None else out_dtype,
).as_strided(output_sizes, transposed_strides)
return output
@register_meta(aten._cslt_sparse_mm)
def meta__cslt_sparse_mm(
compressed_A: torch.Tensor,
dense_B: torch.Tensor,
bias: Optional[Tensor] = None,
alpha: Optional[Tensor] = None,
out_dtype: Optional[torch.dtype] = None,
transpose_result: bool = False,
):
assert dense_B.dtype in {
torch.float32,
torch.float16,
torch.bfloat16,
torch.int8,
}, "_cslt_sparse_mm only supports fp16, bf16, and int8"
assert compressed_A.dtype == dense_B.dtype, "inputs must have the same dtype"
assert len(dense_B.shape) == 2, "_cslt_sparse_mm only supports 2d inputs"
is_int8_input_type = compressed_A.dtype == torch.int8
compression_factor = 10 if is_int8_input_type else 9
k = dense_B.size(0)
n = dense_B.size(1)
m = (compressed_A.numel() * 16) // (compression_factor * k)
if bias is not None:
assert m == bias.size(0)
if out_dtype is not None:
assert is_int8_input_type and out_dtype in {
torch.float16,
torch.bfloat16,
torch.int32,
}, "out_dtype is only supported for i8i8->fp16, bf16, or i32 matmul"
output_shape = (n, m) if transpose_result else (m, n)
result = dense_B.new_empty(output_shape, dtype=out_dtype)
return result
@register_meta(aten.index_reduce.default)
def meta_index_reduce(
self: Tensor,
dim: int,
index: Tensor,
source: torch.Tensor,
reduce: str,
*,
include_self: bool = True,
) -> Tensor:
return torch.empty_like(self, memory_format=torch.contiguous_format)
@register_meta(aten.index_reduce_.default)
def meta_index_reduce_(
self: Tensor,
dim: int,
index: Tensor,
source: torch.Tensor,
reduce: str,
*,
include_self: bool = True,
) -> Tensor:
return self
# Implementations below are taken from https://github.com/albanD/subclass_zoo/blob/main/python_meta_tensor.py
@out_wrapper()
@register_meta(aten.index_select.default)
def meta_index_select(self, dim, index):
result_size = list(self.size())
if self.dim() > 0:
result_size[dim] = index.numel()
return self.new_empty(result_size)
@register_meta(aten.segment_reduce.default)
def meta_segment_reduce(
data: Tensor,
reduce: str,
*,
lengths: Optional[Tensor] = None,
indices: Optional[Tensor] = None,
offsets: Optional[Tensor] = None,
axis: int = 0,
unsafe: bool = False,
initial=None,
) -> Tensor:
if indices is not None:
raise NotImplementedError(
"segment_reduce(): indices based reduction is not supported yet."
)
def segment_reduce_lengths_tensor(lengths_shape):
return torch.empty(
lengths_shape + data.shape[axis + 1 :],
dtype=data.dtype,
device="meta",
memory_format=torch.contiguous_format,
)
if lengths is not None:
return segment_reduce_lengths_tensor(lengths.shape)
# FIXME should probably check that lengths and offset aren't both set, but
# the ATen implementation neglects this too
if offsets is not None:
# lengths == torch.diff(offsets)
lengths_shape = offsets.shape[:-1] + (offsets.shape[-1] - 1,)
return segment_reduce_lengths_tensor(lengths_shape)
raise RuntimeError("segment_reduce(): Either lengths or offsets must be defined.")
@register_meta([aten.max.default, aten.max.unary_out])
@out_wrapper()
def meta_max(self):
return self.new_empty(())
@register_meta(aten.max.dim)
def meta_max_dim(self, dim, keepdim=False):
dim = utils.reduction_dims(self.shape, (dim,))
output_shape = _compute_reduction_shape(self, dim, keepdim)
return (
self.new_empty(output_shape),
self.new_empty(output_shape, dtype=torch.long),
)
@register_meta([aten.min.default, aten.min.unary_out])
@out_wrapper()
def meta_min(self):
return self.new_empty(())
@register_meta(aten.min.dim)
def meta_min_dim(self, dim, keepdim=False):
dim = utils.reduction_dims(self.shape, (dim,))
output_shape = _compute_reduction_shape(self, dim, keepdim)
return (
self.new_empty(output_shape),
self.new_empty(output_shape, dtype=torch.long),
)
@register_meta(aten.angle.default)
def meta_angle(self):
if self.is_complex():
result_dtype = corresponding_real_dtype(self.dtype)
else:
_, result_dtype = elementwise_dtypes(
self,
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
return torch.empty_like(self, dtype=result_dtype)
@register_meta(aten.angle.out)
def meta_angle_out(self, out):
torch._resize_output_(out, self.size(), self.device)
return out.copy_(torch.angle(self))
@register_meta(aten._assert_async.default)
def assert_async(val):
return
@register_meta(aten._assert_async.msg)
def assert_async_meta(val, assert_msg):
return
@register_meta(aten._print.default)
def print_meta(s):
return
@register_meta(aten._make_dep_token.default)
def make_dep_token(
*,
dtype=None,
layout=None,
device=None,
pin_memory=None,
memory_format=None,
):
return torch.empty([], device="meta")
@register_meta(aten.sym_constrain_range.default)
def sym_constrain_range(size, min=None, max=None):
# Avoid importing sympy at a module level
from torch.fx.experimental.symbolic_shapes import constrain_range
if isinstance(size, (SymFloat, SymBool)):
raise ValueError("Constraining SymFloat or Symbool is nyi")
constrain_range(size, min=min, max=max)
@register_meta(aten._functional_sym_constrain_range.default)
def functional_sym_constrain_range(size, min=None, max=None, dep_token=None):
aten.sym_constrain_range(size, min=min, max=max)
return dep_token
@register_meta(aten.sym_constrain_range_for_size.default)
def sym_constrain_range_for_size(size, min=None, max=None):
# Avoid importing sympy at a module level
from torch.fx.experimental.symbolic_shapes import _constrain_range_for_size
if isinstance(size, (SymFloat, SymBool)):
raise ValueError("Constraining SymFloat or Symbool is nyi")
_constrain_range_for_size(size, min=min, max=max)
@register_meta(aten._functional_sym_constrain_range_for_size.default)
def functional_sym_constrain_range_for_size(size, min, max, dep_token):
aten.sym_constrain_range_for_size(size, min=min, max=max)
return dep_token
@register_meta(aten._functional_assert_async.msg)
def functional_assert_async_meta(val, assert_msg, dep_token):
return dep_token
# From aten/src/ATen/native/LinearAlgebraUtils.h
def squareCheckInputs(self: Tensor, f_name: str):
assert (
self.dim() >= 2
), f"{f_name}: The input tensor must have at least 2 dimensions."
assert self.size(-1) == self.size(
-2
), f"{f_name}: A must be batches of square matrices, but they are {self.size(-2)} by {self.size(-1)} matrices"
# Validates input shapes and devices
# for linear solve methods (solve, cholesky_solve, lu_solve, triangular_solve)
# From aten/src/ATen/native/LinearAlgebraUtils.h
def linearSolveCheckInputs(
self: Tensor,
A: Tensor,
name: str,
):
torch._check(
self.device == A.device,
lambda: (
f"Expected b and A to be on the same device, but found b on "
f"{self.device} and A on {A.device} instead."
),
)
torch._check(
self.dtype == A.dtype,
lambda: (
f"Expected b and A to have the same dtype, but found b of type "
f"{self.dtype} and A of type {A.dtype} instead."
),
)
torch._check(
A.size(-1) == A.size(-2),
lambda: (
f"A must be batches of square matrices, "
f"but they are {A.size(-2)} by {A.size(-1)} matrices"
),
)
torch._check(
A.size(-1) == self.size(-2),
lambda: (
f"Incompatible matrix sizes for {name}: each A "
f"matrix is {A.size(-1)} by {A.size(-1)}"
f" but each b matrix is {self.size(-2)} by {self.size(-1)}"
),
)
# From aten/src/ATen/native/LinearAlgebraUtils.h
def checkFloatingOrComplex(
t: Tensor, f_name: str, allow_low_precision_dtypes: bool = True
):
dtype = t.dtype
torch._check(
t.is_floating_point() or t.is_complex(),
lambda: f"{f_name}: Expected a floating point or complex tensor as input. Got {dtype}",
)
if not allow_low_precision_dtypes:
torch._check(
dtype in (torch.float, torch.double, torch.cfloat, torch.cdouble),
lambda: f"{f_name}: Low precision dtypes not supported. Got {dtype}",
)
# From aten/src/ATen/native/LinearAlgebraUtils.h
def checkIsMatrix(A: Tensor, f_name: str, arg_name: str = "A"):
torch._check(
A.dim() >= 2,
lambda: f"{f_name}: The input tensor {arg_name} must have at least 2 dimensions.",
)
def checkInputsSolver(
A: Tensor,
B: Tensor,
left: bool,
f_name: str,
):
squareCheckInputs(A, f_name)
checkIsMatrix(B, f_name)
torch._check(
A.size(-2) == B.size(-2) if left else A.size(-1) == B.size(-1),
lambda: (
f"{f_name}: Incompatible shapes of A and B for the equation "
f"{'AX = B' if left else 'XA = B'}"
f" ({A.size(-2)}x{A.size(-1)} and {B.size(-2)}x{B.size(-1)})"
),
)
def checkSameDevice(
fn_name: str, result: Tensor, input: Tensor, result_name: str = "result"
):
torch._check(
result.device == input.device,
lambda: (
f"{fn_name}: Expected {result_name} and input tensors to be on the same device, but got "
f"{result_name} on {result.device} and input on {input.device}"
),
)
def checkUplo(UPLO: str):
UPLO_uppercase = UPLO.upper()
torch._check(
len(UPLO) == 1 and (UPLO_uppercase == "U" or UPLO_uppercase == "L"),
lambda: f"Expected UPLO argument to be 'L' or 'U', but got {UPLO}",
)
@register_meta([aten._linalg_eigh.default, aten._linalg_eigh.eigenvalues])
@out_wrapper("eigenvalues", "eigenvectors")
def meta__linalg_eigh(
A: Tensor,
UPLO: str = "L",
compute_v: bool = True,
):
squareCheckInputs(A, "linalg.eigh")
checkUplo(UPLO)
shape = list(A.shape)
if compute_v:
vecs = A.new_empty(shape)
vecs.as_strided_(shape, make_contiguous_strides_for(shape, row_major=False))
else:
vecs = A.new_empty([0])
shape.pop()
vals = A.new_empty(shape, dtype=toRealValueType(A.dtype))
return vals, vecs
@register_meta([aten._linalg_eigvals.default, aten.linalg_eigvals.out])
@out_wrapper()
def meta__linalg_eigvals(input: Tensor) -> Tensor:
squareCheckInputs(input, "linalg.eigvals")
complex_dtype = (
input.dtype
if utils.is_complex_dtype(input.dtype)
else utils.corresponding_complex_dtype(input.dtype)
)
return input.new_empty(input.shape[:-1], dtype=complex_dtype)
@register_meta([aten.linalg_eig])
@out_wrapper("eigenvalues", "eigenvectors")
def meta_linalg_eig(input: Tensor):
squareCheckInputs(input, "linalg.eig")
complex_dtype = (
input.dtype
if utils.is_complex_dtype(input.dtype)
else utils.corresponding_complex_dtype(input.dtype)
)
values = input.new_empty(input.shape[:-1], dtype=complex_dtype)
vectors = input.new_empty(input.shape, dtype=complex_dtype)
return values, vectors
def cloneBatchedColumnMajor(src: Tensor) -> Tensor:
return src.mT.clone(memory_format=torch.contiguous_format).transpose(-2, -1)
@register_meta(aten._cholesky_solve_helper)
@out_wrapper()
def _cholesky_solve_helper(self: Tensor, A: Tensor, upper: bool) -> Tensor:
return cloneBatchedColumnMajor(self)
@register_meta(aten.cholesky_solve)
@out_wrapper()
def cholesky_solve(self: Tensor, A: Tensor, upper: bool = False) -> Tensor:
torch._check(
self.ndim >= 2,
lambda: f"b should have at least 2 dimensions, but has {self.ndim} dimensions instead",
)
torch._check(
A.ndim >= 2,
lambda: f"u should have at least 2 dimensions, but has {A.ndim} dimensions instead",
)
self_broadcasted, A_broadcasted = _linalg_broadcast_batch_dims_name(
self, A, "cholesky_solve"
)
return _cholesky_solve_helper(self_broadcasted, A_broadcasted, upper)
@register_meta(aten.cholesky)
@out_wrapper()
def cholesky(self: Tensor, upper: bool = False) -> Tensor:
if self.numel() == 0:
return torch.empty_like(self, memory_format=torch.legacy_contiguous_format)
squareCheckInputs(self, "cholesky")
return cloneBatchedColumnMajor(self)
@register_meta(aten.cholesky_inverse)
@out_wrapper()
def cholesky_inverse(self: Tensor, upper: bool = False) -> Tensor:
squareCheckInputs(self, "cholesky_inverse")
return cloneBatchedColumnMajor(self)
# From aten/src/ATen/native/BatchLinearAlgebra.cpp
@register_meta(aten.linalg_cholesky_ex.default)
def linalg_cholesky_ex(A: Tensor, upper: bool = False, check_errors: bool = False):
squareCheckInputs(A, "linalg.cholesky")
checkFloatingOrComplex(A, "linalg.cholesky")
A_shape = A.shape
ndim = len(A_shape)
# L
L_strides = make_contiguous_strides_for(A_shape, False)
L = A.new_empty(A_shape)
L.as_strided_(A_shape, L_strides)
# infos
infos = A.new_empty(A_shape[0 : ndim - 2], dtype=torch.int32)
return L, infos
@register_meta(
[aten.linalg_householder_product.default, aten.linalg_householder_product.out]
)
@out_wrapper()
def linalg_householder_product(input: Tensor, tau: Tensor) -> Tensor:
torch._check(
input.ndim >= 2,
lambda: "torch.linalg.householder_product: input must have at least 2 dimensions.",
)
torch._check(
input.size(-2) >= input.size(-1),
lambda: "torch.linalg.householder_product: input.shape[-2] must be greater than or equal to input.shape[-1]",
)
torch._check(
input.size(-1) >= tau.size(-1),
lambda: "torch.linalg.householder_product: input.shape[-1] must be greater than or equal to tau.shape[-1]",
)
torch._check(
input.ndim - tau.ndim == 1,
lambda: (
f"torch.linalg.householder_product: Expected tau to have one dimension less than input, "
f"but got tau.ndim equal to {tau.ndim} and input.ndim is equal to {input.ndim}"
),
)
if input.ndim > 2:
expected_batch_tau_shape = input.shape[:-2]
actual_batch_tau_shape = tau.shape[:-1]
torch._check(
actual_batch_tau_shape == expected_batch_tau_shape,
lambda: (
f"torch.linalg.householder_product: Expected batch dimensions of tau to be "
f"equal to input.shape[:-2], but got {actual_batch_tau_shape}"
),
)
torch._check(
tau.dtype == input.dtype,
lambda: (
f"torch.linalg.householder_product: tau dtype {tau.dtype}"
f" does not match input dtype {input.dtype}"
),
)
checkSameDevice("torch.linalg.householder_product", tau, input, "tau")
return torch.empty_strided(
size=input.shape,
stride=make_contiguous_strides_for(input.shape, row_major=False),
dtype=input.dtype,
device=input.device,
)
# From aten/src/ATen/native/BatchLinearAlgebra.cpp
@register_meta(aten.linalg_inv_ex.default)
def linalg_inv_ex_meta(A: Tensor, check_errors: bool = False):
squareCheckInputs(A, "linalg.inv_ex")
checkFloatingOrComplex(A, "linalg.inv_ex", allow_low_precision_dtypes=False)
L = A.new_empty(A.shape)
L.as_strided_(A.shape, make_contiguous_strides_for(A.shape, row_major=False))
infos = A.new_empty(A.shape[:-2], dtype=torch.int32)
return L, infos
@register_meta([aten.linalg_ldl_factor_ex.default, aten.linalg_ldl_factor_ex.out])
@out_wrapper("LD", "pivots", "info")
def linalg_ldl_factor_ex_meta(
self: Tensor,
*,
hermitian: bool = False,
check_errors: bool = False,
) -> Tuple[Tensor, Tensor, Tensor]:
squareCheckInputs(self, "torch.linalg.ldl_factor_ex")
checkFloatingOrComplex(self, "torch.linalg.ldl_factor_ex")
LD = torch.empty_strided(
size=self.shape,
stride=make_contiguous_strides_for(self.shape, row_major=False),
dtype=self.dtype,
device=self.device,
)
pivots = self.new_empty(self.shape[:-1], dtype=torch.int)
info = self.new_empty(self.shape[:-2], dtype=torch.int)
return LD, pivots, info
@register_meta([aten.linalg_ldl_solve.default, aten.linalg_ldl_solve.out])
@out_wrapper()
def linalg_ldl_solve_meta(
LD: Tensor, pivots: Tensor, B: Tensor, *, hermitian: bool = False
) -> Tensor:
squareCheckInputs(LD, "torch.linalg.ldl_solve")
checkFloatingOrComplex(LD, "torch.linalg.ldl_solve")
linearSolveCheckInputs(B, LD, "torch.linalg.ldl_solve")
torch._check(
B.ndim >= 2,
lambda: (
f"torch.linalg.ldl_solve: Expected B to have at least 2 dimensions, "
f"but it has {B.ndim} dimensions instead"
),
)
expected_pivots_shape = LD.shape[:-1]
torch._check(
expected_pivots_shape == pivots.shape,
lambda: (
f"torch.linalg.ldl_solve: Expected LD.shape[:-1] and pivots.shape to be the same, "
f"but got pivots with shape {pivots.shape} instead"
),
)
torch._check(
utils.is_integer_dtype(pivots.dtype),
lambda: f"torch.linalg.ldl_solve: Expected pivots to be integers. Got {pivots.dtype}",
)
torch._check(
LD.dtype == B.dtype,
lambda: f"torch.linalg.ldl_solve: LD dtype {LD.dtype} does not match b dtype {B.dtype}",
)
B_broadcast_size, _ = _linalg_broadcast_batch_dims(B, LD)
return torch.empty_strided(
size=B_broadcast_size,
stride=make_contiguous_strides_for(B_broadcast_size, row_major=False),
dtype=B.dtype,
device=B.device,
)
@register_meta([aten.linalg_lu.default, aten.linalg_lu.out])
@out_wrapper("P", "L", "U")
def linalg_lu_meta(A: Tensor, *, pivot: bool = True) -> Tuple[Tensor, Tensor, Tensor]:
torch._check(
A.ndim >= 2,
lambda: f"linalg.lu: Expected tensor with 2 or more dimensions. Got size: {A.shape} instead",
)
sizes = list(A.shape)
m = sizes[-2]
n = sizes[-1]
k = min(m, n)
sizes[-1] = m
if pivot:
P = A.new_empty(sizes)
else:
P = A.new_empty([0])
sizes[-1] = k
L = A.new_empty(sizes)
sizes[-2] = k
sizes[-1] = n
U = A.new_empty(sizes)
return P, L, U
@register_meta([aten.linalg_lu_factor_ex.default, aten.linalg_lu_factor_ex.out])
@out_wrapper("LU", "pivots", "info")
def linalg_lu_factor_ex_meta(
A: Tensor, *, pivot: bool = True, check_errors: bool = False
) -> Tuple[Tensor, Tensor, Tensor]:
torch._check(
A.ndim >= 2,
lambda: f"torch.lu_factor: Expected tensor with 2 or more dimensions. Got size: {A.shape} instead",
)
sizes = list(A.shape)
m = sizes[-2]
n = sizes[-1]
LU = torch.empty_strided(
size=sizes,
stride=make_contiguous_strides_for(sizes, row_major=False),
dtype=A.dtype,
device=A.device,
)
# Sets sizes to the size of pivots
sizes.pop()
sizes[-1] = min(m, n)
pivots = A.new_empty(sizes, dtype=torch.int)
# Sets sizes to the size of info
sizes.pop()
info = A.new_empty(sizes, dtype=torch.int)
return LU, pivots, info
@register_meta([aten.linalg_lu_solve.default, aten.linalg_lu_solve.out])
@out_wrapper()
def linalg_lu_solve_meta(
LU: Tensor,
pivots: Tensor,
B: Tensor,
*,
left: bool = True,
adjoint: bool = False,
) -> Tensor:
# dtype
checkFloatingOrComplex(LU, "torch.linalg.lu_solve")
torch._check(
LU.dtype == B.dtype,
lambda: (
f"linalg.lu_solve: Expected LU and B to have the same dtype, "
f"but found LU of type {LU.dtype} and B of type {B.dtype} instead"
),
)
torch._check(
pivots.dtype == torch.int,
lambda: "linalg.lu_solve: pivots should be a Tensor of scalar type torch.int32",
)
# matrix shapes
squareCheckInputs(LU, "torch.linalg.lu_solve")
checkInputsSolver(LU, B, left, "linalg.lu_solve")
torch._check(
LU.size(-1) == pivots.size(-1),
lambda: "linalg.lu_solve: Number of pivots per batch should be same as the dimension of the matrix",
)
# batches
torch._check(
LU.shape[:-1] == pivots.shape,
lambda: (
f"linalg.lu_solve: Expected LU.shape[:-1] and pivots.shape to be the same, "
f"but got pivots with shape {pivots.shape} instead"
),
)
B_broadcast_size, _ = _linalg_broadcast_batch_dims(B, LU)
result = torch.empty_strided(
size=B_broadcast_size,
stride=make_contiguous_strides_for(B_broadcast_size, row_major=not left),
dtype=B.dtype,
device=B.device,
)
if result.numel() != 0 and not left:
if result.is_complex():
result = result.conj()
return result
@register_meta(aten.lu_unpack)
@out_wrapper("P", "L", "U")
def lu_unpack_meta(
LU: Tensor,
pivots: Tensor,
unpack_data: bool = True,
unpack_pivots: bool = True,
) -> Tuple[Tensor, Tensor, Tensor]:
torch._check(
LU.ndim >= 2,
lambda: f"torch.lu_unpack: Expected tensor with 2 or more dimensions. Got size: {LU.shape} instead",
)
if unpack_pivots:
torch._check(
pivots.dtype == torch.int32,
lambda: (
"torch.lu_unpack: LU_pivots is expected to be a contiguous tensor of torch.int32 dtype.\n"
"Note: this function is intended to be used with the output produced by torch.linalg.lu_factor"
),
)
sizes = list(LU.shape)
m = sizes[-2]
n = sizes[-1]
k = min(m, n)
sizes[-1] = m
if unpack_pivots:
P = LU.new_empty(sizes)
else:
P = LU.new_empty([0])
if unpack_data:
sizes[-1] = k
L = LU.new_empty(sizes)
sizes[-2] = k
sizes[-1] = n
U = LU.new_empty(sizes)
else:
L = LU.new_empty([0])
U = LU.new_empty([0])
return P, L, U
# parse the "mode" param in linalg_qr: return a tuple of bools (compute_q, reduced)
def _parse_qr_mode(mode: str) -> Tuple[bool, bool]:
if mode == "reduced":
compute_q = True
reduced = True
elif mode == "complete":
compute_q = True
reduced = False
elif mode == "r":
compute_q = False
reduced = True # this is actually irrelevant in this mode
else:
torch._check(
False,
lambda: (
f"qr received unrecognized mode '{mode}' "
f"but expected one of 'reduced' (default), 'r', or 'complete'"
),
)
return compute_q, reduced # type: ignore[possibly-undefined]
@register_meta([aten.linalg_qr.default, aten.linalg_qr.out])
@out_wrapper("Q", "R")
def linalg_qr_meta(
A: Tensor,
mode: str = "reduced",
) -> Tuple[Tensor, Tensor]:
checkIsMatrix(A, "linalg.qr")
checkFloatingOrComplex(A, "linalg.qr")
compute_q, reduced_mode = _parse_qr_mode(mode)
m = A.shape[-2]
n = A.shape[-1]
k = min(m, n)
if compute_q:
Q_shape = list(A.shape)
Q_shape[-1] = k if reduced_mode else m
Q = A.new_empty(Q_shape)
Q.as_strided_(Q_shape, make_contiguous_strides_for(Q_shape, row_major=False))
else:
Q = A.new_empty([0])
# For readability
R_shape = list(A.shape)
R_shape[-2] = k if reduced_mode or not compute_q else m
R = A.new_empty(R_shape)
R.as_strided_(R_shape, make_contiguous_strides_for(R_shape, row_major=False))
return Q, R
@register_meta([aten._linalg_slogdet.default, aten._linalg_slogdet.sign])
@out_wrapper("sign", "logabsdet", "LU", "pivots")
def _linalg_slogdet(A: Tensor) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
squareCheckInputs(A, "linalg.slogdet")
checkFloatingOrComplex(A, "linalg.slogdet", False)
shape = A.shape
sign = A.new_empty(shape[:-2])
logabsdet = A.new_empty(shape[:-2], dtype=toRealValueType(A.dtype))
LU = torch.empty_strided(
size=shape,
stride=make_contiguous_strides_for(shape, False),
dtype=A.dtype,
device=A.device,
)
pivots = A.new_empty(shape[:-1], dtype=torch.int32)
return sign, logabsdet, LU, pivots
# From aten/src/ATen/native/BatchLinearAlgebra.cpp
# NOTE: matching defaults in aten/src/ATen/native/native_functions.yaml
@register_meta(aten._linalg_svd.default)
def _linalg_svd_meta(
A: Tensor,
full_matrices: bool = False,
compute_uv: bool = True,
driver: Optional[str] = None,
):
checkIsMatrix(A, "linalg.svd")
checkFloatingOrComplex(A, "linalg.svd")
batch_dims = list(A.shape[:-2])
m = A.shape[-2]
n = A.shape[-1]
k = min(m, n)
if compute_uv:
U_shape = batch_dims + [m, m if full_matrices else k]
U = A.new_empty(U_shape)
U.as_strided_(U_shape, make_contiguous_strides_for(U_shape, row_major=False))
V_shape = batch_dims + [n if full_matrices else k, n]
V = A.new_empty(V_shape)
# NB: This checks for CUDA since there is no way to check for cuSolver.
# Also, this might not work correctly on CPU when fake_device is not
# available as device_hint just defaults to CUDA in that case. See
# _linalg_svd meta in core.
is_cuda = device_hint(A) == "cuda"
V.as_strided_(V_shape, make_contiguous_strides_for(V_shape, row_major=is_cuda))
else:
# doesn't matter
U = A.new_empty([0])
V = A.new_empty([0])
# S is always real, even when A is complex.
S = A.new_empty(batch_dims + [k], dtype=toRealValueType(A.dtype))
return U, S, V
def _linalg_broadcast_batch_dims(
arg1: Tensor, arg2: Tensor
) -> Tuple[List[int], List[int]]:
# broadcast the batch dimensions of arg1 and arg2.
arg1_batch_sizes = arg1.shape[:-2]
arg2_batch_sizes = arg2.shape[:-2]
expand_batch_portion = _broadcast_shapes(arg1_batch_sizes, arg2_batch_sizes)
arg1_expand_size = list(expand_batch_portion)
arg1_expand_size += [arg1.size(-2), arg1.size(-1)]
arg2_expand_size = list(expand_batch_portion)
arg2_expand_size += [arg2.size(-2), arg2.size(-1)]
return arg1_expand_size, arg2_expand_size
def _linalg_broadcast_batch_dims_name(
arg1: Tensor, arg2: Tensor, name: Optional[str]
) -> Tuple[Tensor, Tensor]:
# If there's no name we assume we don't want to check the errors
if name:
linearSolveCheckInputs(arg1, arg2, name)
arg1_expand_size, arg2_expand_size = _linalg_broadcast_batch_dims(arg1, arg2)
arg1_broadcasted = (
arg1 if arg1_expand_size == arg1.shape else arg1.expand(arg1_expand_size)
)
arg2_broadcasted = (
arg2 if arg2_expand_size == arg2.shape else arg2.expand(arg2_expand_size)
)
return arg1_broadcasted, arg2_broadcasted
def linalg_solve_is_vector_rhs(input: Tensor, other: Tensor) -> bool:
expected_batched_rhs_shape = input.shape[:-1]
vector_case = other.ndim == 1 or (
input.ndim - 1 == other.ndim and other.shape == expected_batched_rhs_shape
)
return vector_case
@register_meta(aten._linalg_solve_ex)
def _linalg_solve_ex(
A: Tensor,
B: Tensor,
*,
left: bool = True,
check_errors: bool = False,
result: Optional[Tensor] = None,
LU: Optional[Tensor] = None,
pivots: Optional[Tensor] = None,
info: Optional[Tensor] = None,
) -> Tuple[Tensor, Tensor, Tensor, Tensor]:
checkFloatingOrComplex(A, "linalg.solve")
torch._check(
A.dtype == B.dtype,
lambda: (
f"linalg.solve: Expected A and B to have the same dtype, but found A of type "
f"{A.dtype} and B of type {B.dtype} instead"
),
)
vector_case = linalg_solve_is_vector_rhs(A, B)
B_ = B.unsqueeze(-1) if vector_case else B
checkInputsSolver(A, B_, left, "linalg.solve")
B_broad_shape, _ = _linalg_broadcast_batch_dims(B_, A)
torch._check(
left or not vector_case,
lambda: (
"linalg.solve: Vector broadcasting of the left hand side is not supported for left=False. "
"In this case linalg.solve is equivalent to B / A.squeeze(-1)"
),
)
result_shape = B_broad_shape[:-1] if vector_case else B_broad_shape
result_ = torch.empty_strided(
size=result_shape,
stride=make_contiguous_strides_for(result_shape, not left),
dtype=B.dtype,
device=B.device,
)
shape = A.shape
ndim = A.ndim
LU_ = torch.empty_strided(
size=shape,
stride=make_contiguous_strides_for(shape, False),
dtype=A.dtype,
device=A.device,
)
pivots_ = A.new_empty(shape[:-1], dtype=torch.int32)
info_ = A.new_empty(shape[:-2], dtype=torch.int32)
out = (result, LU, pivots, info)
res = (result_, LU_, pivots_, info_)
if all(x is not None for x in out):
for r, o in zip(res, out):
# resize and copy operations are done in-place
_maybe_resize_out(o, r.shape) # type: ignore[arg-type]
# strides are not copied in out_wrapper
o.as_strided_(r.shape, r.stride()) # type: ignore[union-attr]
_safe_copy_out(copy_from=r, copy_to=o, exact_dtype=False) # type: ignore[arg-type]
return res
@register_meta([aten.linalg_solve_triangular.default, aten.linalg_solve_triangular.out])
def linalg_solve_triangular_meta(
A: Tensor,
B: Tensor,
*,
upper: bool,
left: bool = True,
unitriangular: bool = False,
out: Optional[Tensor] = None,
) -> Tensor:
if out is None:
out = A.new_empty([0])
assert isinstance(out, TensorLike)
checkInputsSolver(A, B, left, "linalg.solve_triangular")
B_, A_ = _linalg_broadcast_batch_dims_name(B, A, None)
avoid_copy_A = A_.transpose(-2, -1).is_contiguous() and A_.is_conj()
if avoid_copy_A:
out = _maybe_resize_out(out, B_.shape)
else:
# reimplementation of resize_output with result F-contig
if _resize_output_check(out, B_.shape):
out.resize_(B_.transpose(-2, -1).shape)
out.transpose_(-2, -1)
return out # type: ignore[return-value]
@register_meta(aten.triangular_solve)
@out_wrapper("solution", "cloned_coefficient")
def triangular_solve_meta(
self: Tensor,
A: Tensor,
upper: bool = True,
transpose: bool = False,
unitriangular: bool = False,
) -> Tuple[Tensor, Tensor]:
torch._check(
self.ndim >= 2,
lambda: (
f"torch.triangular_solve: Expected b to have at least 2 dimensions, "
f"but it has {self.ndim} dimensions instead"
),
)
torch._check(
A.ndim >= 2,
lambda: (
f"torch.triangular_solve: Expected A to have at least 2 dimensions, "
f"but it has {A.ndim} dimensions instead"
),
)
linearSolveCheckInputs(self, A, "triangular_solve")
if A.layout == torch.strided:
self_broadcast_size, A_broadcast_size = _linalg_broadcast_batch_dims(self, A)
solution = torch.empty_strided(
size=self_broadcast_size,
stride=make_contiguous_strides_for(self_broadcast_size, row_major=False),
dtype=self.dtype,
device=self.device,
)
cloned_coefficient = torch.empty_strided(
size=A_broadcast_size,
stride=make_contiguous_strides_for(A_broadcast_size, row_major=False),
dtype=A.dtype,
device=A.device,
)
elif A.layout == torch.sparse_csr or A.layout == torch.sparse_bsr:
solution = torch.empty_like(self)
cloned_coefficient = self.new_empty([0])
else:
torch._check(False, lambda: "triangular_solve: Got an unexpected layout.")
return solution, cloned_coefficient # type: ignore[possibly-undefined]
# From aten/src/ATen/native/LinearAlgebra.cpp
@register_meta(aten._linalg_det.default)
def _linalg_det_meta(A):
squareCheckInputs(A, "linalg.det")
checkFloatingOrComplex(A, "linalg.det")
det = A.new_empty(A.shape[:-2])
LU = A.new_empty(A.shape)
LU.as_strided_(A.shape, make_contiguous_strides_for(A.shape, row_major=False))
pivots = A.new_empty(A.shape[:-1], dtype=torch.int32)
return det, LU, pivots
@register_meta(aten.ormqr)
@out_wrapper()
def ormqr(
input: Tensor,
tau: Tensor,
other: Tensor,
left: bool = True,
transpose: bool = False,
) -> Tensor:
torch._check(
input.ndim >= 2, lambda: "torch.ormqr: input must have at least 2 dimensions."
)
torch._check(
other.ndim >= 2, lambda: "torch.ormqr: other must have at least 2 dimensions."
)
left_size_condition = -2 if left else -1
torch._check(
other.shape[left_size_condition] >= tau.shape[-1],
lambda: f"torch.ormqr: other.shape[{left_size_condition}] must be greater than or equal to tau.shape[-1]",
)
torch._check(
other.shape[left_size_condition] == input.shape[-2],
lambda: f"torch.ormqr: other.shape[{left_size_condition}] must be equal to input.shape[-2]",
)
torch._check(
tau.shape[-1] <= input.shape[-1],
lambda: "torch.ormqr: tau.shape[-1] must be less than or equal to input.shape[-1]",
)
torch._check(
input.ndim - tau.ndim == 1,
lambda: (
f"torch.ormqr: Expected tau to have one dimension less than input, "
f"but got tau.ndim equal to {tau.ndim} and input.ndim is equal to {input.ndim}"
),
)
torch._check(
input.ndim == other.ndim,
lambda: (
f"torch.ormqr: Expected other to have the same number of dimensions as input, "
f"but got other.ndim equal to {other.ndim} and input.ndim is equal to {input.ndim}"
),
)
if input.ndim > 2:
expected_batch_shape = input.shape[:-2]
actual_batch_tau_shape = tau.shape[:-1]
torch._check(
actual_batch_tau_shape == expected_batch_shape,
lambda: (
f"torch.ormqr: Expected batch dimensions of tau to be "
f"equal to input.shape[:-2], but got {actual_batch_tau_shape}"
),
)
actual_batch_other_shape = other.shape[:-2]
torch._check(
actual_batch_other_shape == expected_batch_shape,
lambda: (
f"torch.ormqr: Expected batch dimensions of other to be "
f"equal to input.shape[:-2], but got {actual_batch_other_shape}"
),
)
torch._check(
tau.dtype == input.dtype,
lambda: (
f"torch.ormqr: Expected input and tau to have the same dtype, "
f"but input has dtype {input.dtype} and tau has dtype {tau.dtype}"
),
)
torch._check(
other.dtype == input.dtype,
lambda: (
f"torch.ormqr: Expected input and other to have the same dtype, "
f"but input has dtype {input.dtype} and other has dtype {other.dtype}"
),
)
checkSameDevice("torch.ormqr", tau, input, "tau")
checkSameDevice("torch.ormqr", other, input, "other")
return torch.empty_strided(
size=other.shape,
stride=make_contiguous_strides_for(other.shape, row_major=False),
dtype=other.dtype,
device=other.device,
)
def _padding_check_valid_input(input, padding, *, dim):
torch._check(
len(padding) == 2 * dim,
lambda: f"padding size is expected to be {2 * dim}, but got: {len(padding)}",
)
input_dim = input.ndim
is_batch_mode = input_dim == (dim + 2)
valid_batch_mode = is_batch_mode
valid_non_batch_mode = not is_batch_mode
if is_batch_mode:
# allow batch size of 0-dim.
for d in range(1, input_dim):
valid_batch_mode = valid_batch_mode and input.size(d) != 0
else:
for d in range(0, input_dim):
valid_non_batch_mode = valid_non_batch_mode and input.size(d) != 0
# allow empty batch size but not other dimensions.
torch._check(
valid_batch_mode or valid_non_batch_mode,
lambda: (
f"Expected {dim + 1}D or {dim + 2}D (batch mode) tensor with possibly 0 batch size "
f"and other non-zero dimensions for input, but got: {input.shape}"
),
)
def _pad1d_common(input, padding, *, is_reflection):
dim_plane = 0
dim_w = 1
nbatch = 1
if input.ndim == 3:
nbatch = input.size(0)
dim_w += 1
dim_plane += 1
_padding_check_valid_input(input, padding, dim=1)
pad_l, pad_r = padding
nplane = input.size(dim_plane)
input_w = input.size(dim_w)
output_w = input_w + pad_l + pad_r
if is_reflection:
torch._check(
pad_l < input_w and pad_r < input_w,
lambda: (
f"Argument #4: Padding size should be less than the corresponding input dimension, "
f"but got: padding ({pad_l}, {pad_r}) at dimension {dim_w} of input {input.shape}"
),
)
torch._check(
output_w >= 1,
lambda: f"input (W: {input_w}) is too small. Calculated output W: {output_w}",
)
if input.ndim == 2:
return input.new_empty((nplane, output_w))
else:
return input.new_empty((nbatch, nplane, output_w))
@register_meta(aten.reflection_pad1d)
@out_wrapper()
def meta_reflection_pad1d(input, padding):
return _pad1d_common(input, padding, is_reflection=True)
@register_meta(aten.replication_pad1d)
@out_wrapper()
def meta_replication_pad1d(input, padding):
return _pad1d_common(input, padding, is_reflection=False)
def _pad1d_backward_common(grad_output, input, padding, *, is_reflection):
dim_w = 1
if not is_reflection:
torch._check(len(padding) == 2, lambda: "padding size is expected to be 2")
if input.ndim == 3:
dim_w += 1
pad_l, pad_r = padding
input_w = input.size(dim_w)
output_w = input_w + pad_l + pad_r
if is_reflection:
torch._check(
pad_l < input_w and pad_r < input_w,
lambda: (
f"Argument #4: Padding size should be less than the corresponding input dimension, "
f"but got: padding ({pad_l}, {pad_r}) at dimension {dim_w} of input {input.shape}"
),
)
torch._check(
output_w == grad_output.size(dim_w),
lambda: f"grad_output width unexpected. Expected: {output_w}, Got: {grad_output.size(dim_w)}",
)
return input.new_empty(input.shape)
@register_meta(aten.reflection_pad1d_backward)
@out_wrapper("grad_input")
def meta_reflection_pad1d_backward(grad_output, input, padding):
return _pad1d_backward_common(grad_output, input, padding, is_reflection=True)
@register_meta(aten.replication_pad1d_backward)
@out_wrapper("grad_input")
def meta_replication_pad1d_backward(grad_output, input, padding):
return _pad1d_backward_common(grad_output, input, padding, is_reflection=False)
def _pad2d_common(input, padding, *, is_reflection):
dim_w = 2
dim_h = 1
dim_slices = 0
nbatch = 1
_padding_check_valid_input(input, padding, dim=2)
ndim = input.ndim
if ndim == 4:
nbatch = input.size(0)
dim_w += 1
dim_h += 1
dim_slices += 1
pad_l, pad_r, pad_t, pad_b = padding
nplane = input.size(dim_slices)
input_h = input.size(dim_h)
input_w = input.size(dim_w)
output_h = input_h + pad_t + pad_b
output_w = input_w + pad_l + pad_r
if is_reflection:
torch._check(
pad_l < input_w and pad_r < input_w,
lambda: (
f"Argument #4: Padding size should be less than the corresponding input dimension, "
f"but got: padding ({pad_l}, {pad_r}) at dimension {dim_w} of input {input.shape}"
),
)
torch._check(
pad_t < input_h and pad_b < input_h,
lambda: (
f"Argument #6: Padding size should be less than the corresponding input dimension, "
f"but got: padding ({pad_t}, {pad_b}) at dimension {dim_h} of input {input.shape}"
),
)
torch._check(
output_w >= 1 or output_h >= 1,
lambda: (
f"input (H: {input_h} W: {input_w}) is too small. "
f"Calculated output H: {output_h} W: {output_w}"
),
)
if input.ndim == 3:
return input.new_empty((nplane, output_h, output_w))
else:
return input.new_empty((nbatch, nplane, output_h, output_w))
@register_meta(aten.reflection_pad2d)
@out_wrapper()
def meta_reflection_pad2d(input, padding):
return _pad2d_common(input, padding, is_reflection=True)
@register_meta(aten.replication_pad2d)
@out_wrapper()
def meta_replication_pad2d(input, padding):
return _pad2d_common(input, padding, is_reflection=False)
@register_meta(
[
aten.reflection_pad2d_backward.default,
aten.reflection_pad2d_backward.grad_input,
aten.replication_pad2d_backward.default,
aten.replication_pad2d_backward.grad_input,
]
)
@out_wrapper("grad_input")
def meta_pad2d_backward(grad_output, self, padding):
dim_w = 2
dim_h = 1
dim_plane = 0
nbatch = 1
self_shape = self.shape
if self.dim() == 4:
nbatch = self_shape[0]
dim_w += 1
dim_h += 1
dim_plane += 1
pad_l, pad_r, pad_t, pad_b = padding
nplane = self_shape[dim_plane]
input_h = self_shape[dim_h]
input_w = self_shape[dim_w]
output_h = input_h + pad_t + pad_b
output_w = input_w + pad_l + pad_r
torch._check(
output_w == grad_output.size(dim_w),
lambda: f"grad_output width unexpected. Expected: {output_w}, Got: {grad_output.size(dim_w)}",
)
torch._check(
output_h == grad_output.size(dim_h),
lambda: f"grad_output height unexpected. Expected: {output_h}, Got: {grad_output.size(dim_h)}",
)
return self.new_empty(self.shape)
def _pad3d_common(input, padding, *, is_reflection):
dim_w = 3
dim_h = 2
dim_d = 1
dim_plane = 0
_padding_check_valid_input(input, padding, dim=3)
batch_mode = input.ndim == 5
if batch_mode:
nbatch = input.size(0)
dim_w += 1
dim_h += 1
dim_d += 1
dim_plane += 1
pad_l, pad_r, pad_t, pad_b, pad_f, pad_bk = padding
nplane = input.size(dim_plane)
input_d = input.size(dim_d)
input_h = input.size(dim_h)
input_w = input.size(dim_w)
output_d = input_d + pad_f + pad_bk
output_h = input_h + pad_t + pad_b
output_w = input_w + pad_l + pad_r
if is_reflection:
torch._check(
pad_l < input_w and pad_r < input_w,
lambda: (
f"Argument #4: Padding size should be less than the corresponding input dimension, "
f"but got: padding ({pad_l}, {pad_r}) at dimension {dim_w} of input {input.shape}"
),
)
torch._check(
pad_t < input_h and pad_b < input_h,
lambda: (
f"Argument #6: Padding size should be less than the corresponding input dimension, "
f"but got: padding ({pad_t}, {pad_b}) at dimension {dim_h} of input {input.shape}"
),
)
torch._check(
pad_f < input_d and pad_bk < input_d,
lambda: (
f"Argument #8: Padding size should be less than the corresponding input dimension, "
f"but got: padding ({pad_f}, {pad_bk}) at dimension {dim_d} of input {input.shape}"
),
)
torch._check(
output_w >= 1 or output_h >= 1 or output_d >= 1,
lambda: (
f"input (D: {input_d} H: {input_h} W: {input_w}) is too small. "
f"Calculated output D: {output_d} H: {output_h} W: {output_w}"
),
)
if batch_mode:
return input.new_empty((nbatch, nplane, output_d, output_h, output_w)) # type: ignore[possibly-undefined]
else:
return input.new_empty((nplane, output_d, output_h, output_w))
@register_meta(aten.reflection_pad3d)
@out_wrapper()
def meta_reflection_pad3d(input, padding):
return _pad3d_common(input, padding, is_reflection=True)
@register_meta(aten.replication_pad3d)
@out_wrapper()
def meta_replication_pad3d(input, padding):
return _pad3d_common(input, padding, is_reflection=False)
@register_meta(
[
aten.reflection_pad3d_backward.default,
aten.reflection_pad3d_backward.grad_input,
aten.replication_pad3d_backward.default,
aten.replication_pad3d_backward.grad_input,
]
)
@out_wrapper("grad_input")
def meta_pad3d_backward(grad_output, input, padding):
torch._check(len(padding) == 6, lambda: "padding size is expected to be 6")
assert input.ndim > 3
assert grad_output.ndim == input.ndim
dim_w = 3
dim_h = 2
dim_d = 1
if input.ndim == 5:
dim_w += 1
dim_h += 1
dim_d += 1
pad_l, pad_r, pad_t, pad_b, pad_f, pad_bk = padding
input_d = input.size(dim_d)
input_h = input.size(dim_h)
input_w = input.size(dim_w)
output_d = input_d + pad_f + pad_bk
output_h = input_h + pad_t + pad_b
output_w = input_w + pad_l + pad_r
torch._check(
output_w == grad_output.size(dim_w),
lambda: f"grad_output width unexpected. Expected: {output_w}, Got: {grad_output.size(dim_w)}",
)
torch._check(
output_h == grad_output.size(dim_h),
lambda: f"grad_output height unexpected. Expected: {output_h}, Got: {grad_output.size(dim_h)}",
)
torch._check(
output_d == grad_output.size(dim_d),
lambda: f"grad_output depth unexpected. Expected: {output_d}, Got: {grad_output.size(dim_d)}",
)
return input.new_empty(input.shape)
@register_meta(aten._pdist_forward)
@out_wrapper()
def meta__pdist_forward(self: Tensor, p: float = 2) -> Tensor:
torch._check(
self.is_contiguous(), lambda: "_pdist_forward requires contiguous input"
)
n = self.size(0)
if n <= 1:
return self.new_empty([0]).to(memory_format=torch.legacy_contiguous_format) # type: ignore[call-overload]
else:
return self.new_empty((n * (n - 1) // 2,)).to(
memory_format=torch.legacy_contiguous_format
) # type: ignore[call-overload]
@register_meta(aten._pdist_backward)
@out_wrapper()
def meta__pdist_backward(grad: Tensor, self: Tensor, p: float, pdist: Tensor) -> Tensor:
torch._check(
self.is_contiguous(), lambda: "_pdist_backward requires self to be contiguous"
)
torch._check(
pdist.is_contiguous(), lambda: "_pdist_backward requires pdist to be contiguous"
)
return torch.empty_like(self, memory_format=torch.legacy_contiguous_format)
@register_meta([aten.baddbmm.default, aten.baddbmm.out])
@out_wrapper()
def meta_baddbmm(self, batch1, batch2, *, beta=1, alpha=1):
dim1 = batch1.size(0)
dim2 = batch1.size(1)
dim3 = batch2.size(2)
self = self.expand((dim1, dim2, dim3))
torch._check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor")
torch._check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor")
torch._check(
self.dtype == batch1.dtype == batch2.dtype,
lambda: f"Input dtypes must be the same, got: input: {self.dtype}, batch1: {batch1.dtype}, batch2: {batch2.dtype}",
)
batch1_sizes = batch1.shape
batch2_sizes = batch2.shape
bs = batch1_sizes[0]
contraction_size = batch1_sizes[2]
torch._check(
batch2_sizes[0] == bs and batch2_sizes[1] == contraction_size,
lambda: (
f"Expected size for first two dimensions of batch2 tensor to be: "
f"[{bs}, {contraction_size}] but got: [{batch2_sizes[0]}, {batch2_sizes[1]}]."
),
)
return self.new_empty(self.size())
@register_meta([aten.bernoulli.default, aten.bernoulli.out])
@out_wrapper()
def meta_bernoulli(self, *, generator=None):
# https://github.com/pytorch/pytorch/issues/88612
return torch.empty_like(self).contiguous()
@register_meta(aten.bernoulli_.float)
def meta_bernoulli_(self, p=0.5, generator=None):
return self
@register_meta(aten.bernoulli.p)
def meta_bernoulli_p(self, p=0.5, generator=None):
# https://github.com/pytorch/pytorch/issues/88612
return torch.empty_like(self).contiguous()
@register_meta(aten._fused_moving_avg_obs_fq_helper.default)
def meta__fused_moving_avg_obs_fq_helper(
self,
observer_on,
fake_quant_on,
running_min,
running_max,
scale,
zero_point,
averaging_const,
quant_min,
quant_max,
ch_axis,
per_row_fake_quant=False,
symmetric_quant=False,
):
torch._check(
ch_axis < self.dim(),
lambda: "Error in fused_moving_avg_obs_fake_quant_cpu: ch_axis must be < self.dim()",
)
mask = torch.empty_like(self, dtype=torch.bool)
return (torch.empty_like(self), mask)
@register_meta(aten.mm)
@out_wrapper()
def meta_mm(a, b):
torch._check(a.dim() == 2, lambda: "a must be 2D")
torch._check(b.dim() == 2, lambda: "b must be 2D")
N, M1 = a.shape
M2, P = b.shape
torch._check(
M1 == M2,
lambda: f"a and b must have same reduction dim, but got [{N}, {M1}] X [{M2}, {P}].",
)
return a.new_empty(N, P)
def _compute_reduction_shape(self, dims, keepdim):
if keepdim:
return tuple(self.shape[i] if i not in dims else 1 for i in range(self.ndim))
return utils.compute_reduction_output_shape(self.shape, dims)
# FakeTensors (meta tensors with a device) will report device as meta
# when running meta kernels. Here, access the "fake device" of FakeTensor if it
# exists so meta kernels which have diverge per device will be more
# accurate when run with FakeTensors
def device_hint(tensor) -> "str":
if isinstance(tensor, torch._subclasses.FakeTensor):
return tensor.fake_device.type
else:
return "cuda" # default to cuda
def calc_conv_nd_return_shape(
input_tensor: torch.Tensor,
weight: torch.Tensor,
stride: Union[List[int], int],
padding: Union[List[int], int],
dilation: Union[List[int], int],
is_transposed: bool,
groups: int,
output_padding: Optional[Union[List[int], int]] = None,
):
def _formula(ln: int, p: int, d: int, k: int, s: int) -> int:
"""
Formula to apply to calculate the length of some dimension of the output
See: https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html
Args:
ln: length of the dimension
p: padding in that dim
d: dilation in that dim
k: kernel size in that dim
s: stride in that dim
Returns:
The output length
"""
return (ln + 2 * p - d * (k - 1) - 1) // s + 1
def _formula_transposed(ln: int, p: int, d: int, k: int, s: int, op: int) -> int:
"""
Formula to apply to calculate the length of some dimension of the output
if transposed convolution is used.
See: https://pytorch.org/docs/stable/generated/torch.nn.ConvTranspose2d.html
Args:
ln: length of the dimension
p: padding in that dim
d: dilation in that dim
k: kernel size in that dim
s: stride in that dim
op: output padding in that dim
Returns:
The output length
"""
return (ln - 1) * s - 2 * p + d * (k - 1) + op + 1
kernel_size = weight.shape[2:]
dims = input_tensor.shape[2:]
if is_transposed:
out_channels = groups * weight.shape[1]
else:
out_channels = weight.shape[0]
if weight.shape[1] * groups != input_tensor.shape[1]:
raise RuntimeError("Invalid channel dimensions")
ret_shape = [input_tensor.shape[0], out_channels]
if isinstance(stride, IntLike):
stride = [stride] * len(dims)
elif len(stride) == 1:
stride = [stride[0]] * len(dims)
if isinstance(padding, IntLike):
padding = [padding] * len(dims)
elif len(padding) == 1:
padding = [padding[0]] * len(dims)
if isinstance(dilation, IntLike):
dilation = [dilation] * len(dims)
elif len(dilation) == 1:
dilation = [dilation[0]] * len(dims)
output_padding_list: Optional[List[int]] = None
if output_padding:
if isinstance(output_padding, IntLike):
output_padding_list = [output_padding] * len(dims)
elif len(output_padding) == 1:
output_padding_list = [output_padding[0]] * len(dims)
else:
output_padding_list = output_padding
for i in range(len(dims)):
# If output_padding is present, we are dealing with a transposed convolution
if output_padding_list:
ret_shape.append(
_formula_transposed(
dims[i],
padding[i],
dilation[i],
kernel_size[i],
stride[i],
output_padding_list[i],
)
)
else:
ret_shape.append(
_formula(dims[i], padding[i], dilation[i], kernel_size[i], stride[i])
)
return ret_shape
def is_channels_last(ten):
return torch._prims_common.suggest_memory_format(ten) == torch.channels_last
@register_meta(aten.convolution.default)
def meta_conv(
input_tensor: torch.Tensor,
weight: torch.Tensor,
bias: torch.Tensor,
stride: List[int],
padding: List[int],
dilation: List[int],
is_transposed: bool,
output_padding: List[int],
groups: int,
):
def pick_memory_format():
if device_hint(input_tensor) == "cuda":
if is_channels_last(input_tensor) or is_channels_last(weight):
return torch.channels_last
else:
if is_channels_last(input_tensor):
return torch.channels_last
if input_tensor.is_contiguous(memory_format=torch.contiguous_format):
return torch.contiguous_format
elif input_tensor.is_contiguous(memory_format=torch.preserve_format):
return torch.preserve_format
shape_out = calc_conv_nd_return_shape(
input_tensor,
weight,
stride,
padding,
dilation,
is_transposed,
groups,
output_padding if is_transposed else None,
)
input_channels_dim = 1
output_channels_dim = 1
if input_tensor.size(input_channels_dim) == 0:
shape_out[output_channels_dim] = 0
out = input_tensor.new_empty(shape_out)
out = out.to(memory_format=pick_memory_format()) # type: ignore[call-overload]
return out
if torch._C._has_mkldnn:
_meta_lib_dont_use_me_use_register_meta_for_mkldnn = torch.library.Library(
"mkldnn", "IMPL", "Meta"
)
@register_meta(torch.ops.mkldnn._convolution_pointwise.default)
def meta_mkldnn_convolution_default(
input_tensor,
weight,
bias,
padding,
stride,
dilation,
groups,
attr,
scalars,
algorithm,
):
shape_out = calc_conv_nd_return_shape(
input_tensor, weight, stride, padding, dilation, False, groups, []
)
out = input_tensor.new_empty(shape_out)
out_memory_format = torch.channels_last
out = out.to(memory_format=out_memory_format) # type: ignore[call-overload]
return out
@register_meta(torch.ops.mkldnn._linear_pointwise.default)
def meta_linear_pointwise_default(
input_tensor, weight, bias, attr, scalars, algorithm
):
return input_tensor.new_empty((*input_tensor.shape[:-1], weight.shape[0]))
if torch._C.has_mkl:
_meta_lib_dont_use_me_use_register_meta_for_mkl = torch.library.Library(
"mkl", "IMPL", "Meta"
)
@register_meta(torch.ops.mkl._mkl_linear)
def meta_mkl_linear(
input_tensor,
packed_weight,
orig_weight,
bias,
batch_size,
):
return input_tensor.new_empty(
(*input_tensor.shape[:-1], orig_weight.shape[0])
)
_meta_lib_dont_use_me_use_register_meta_for_onednn = torch.library.Library(
"onednn", "IMPL", "Meta"
)
@register_meta(torch.ops.onednn.qconv2d_pointwise.default)
def meta_qconv2d_pointwise(
x,
x_scale,
x_zp,
w, # prepacked_weight
w_scale,
w_zp,
bias,
stride,
padding,
dilation,
groups,
output_scale,
output_zero_point,
output_dtype,
attr,
scalars,
algorithm,
):
shape_out = calc_conv_nd_return_shape(
x,
w,
stride,
padding,
dilation,
False,
groups,
None,
)
assert output_dtype in [torch.float32, torch.bfloat16]
out = x.new_empty(shape_out, dtype=output_dtype)
out = out.to(memory_format=torch.channels_last)
return out
@register_meta(torch.ops.onednn.qlinear_pointwise.default)
@register_meta(torch.ops.onednn.qlinear_pointwise.tensor)
def meta_qlinear_pointwise(
x,
x_scale,
x_zp,
w,
w_scale,
w_zp,
bias,
output_scale,
output_zero_point,
output_dtype,
post_op_name,
post_op_args,
post_op_algorithm,
):
output_shape = list(x.shape)
# The weight has been transposed during the qlinear weight prepack process.
output_shape[-1] = w.shape[1]
assert output_dtype in [torch.float32, torch.bfloat16]
out = x.new_empty(output_shape, dtype=output_dtype)
return out
_meta_lib_dont_use_me_use_register_meta_for_quantized = torch.library.Library(
"quantized", "IMPL", "Meta"
)
@register_meta(torch.ops.quantized.max_pool2d)
def meta_quantized_max_pool2d(
input,
kernel_size,
stride=(),
padding=(0,),
dilation=(1,),
ceil_mode=False,
):
(
nInputPlane,
outputHeight,
outputWidth,
) = max_pool2d_checks_and_compute_shape(
input, kernel_size, stride, padding, dilation, ceil_mode
)
nbatch = input.size(-4) if input.dim() == 4 else 1
memory_format = torch.channels_last
if input.dim() == 3:
size = [nInputPlane, outputHeight, outputWidth]
else:
size = [nbatch, nInputPlane, outputHeight, outputWidth]
return torch.empty(
size,
dtype=input.dtype,
device=input.device,
memory_format=memory_format,
)
# from check_dim_size() in aten/src/ATen/TensorUtils.cpp.
def check_dim_size(tensor, dim, dim_size, size):
torch._check(
tensor.dim() == dim and tensor.shape[dim_size] == size,
lambda: f"Expected a tensor of dimension {dim} and tensor.size[{dim_size}] == {size}, "
+ f"but got : dimension {tensor.dim()} and tensor.size[{dim_size}] = {tensor.shape[dim_size]}",
)
@register_meta(aten.avg_pool2d.default)
def meta_avg_pool2d(
input,
kernel_size,
stride=(),
padding=(0,),
ceil_mode=False,
count_include_pad=True,
divisor_override=None,
):
def unpack(name, val):
torch._check(
len(val) in [1, 2],
lambda: f"avg_pool2d: {name} must either be a single int, or a tuple of two ints",
)
H = val[0]
W = H if len(val) == 1 else val[1]
return H, W
kH, kW = unpack("kernel_size", kernel_size)
torch._check(
len(stride) in [0, 1, 2],
lambda: "avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints",
)
if len(stride) == 0:
dH, dW = kH, kW
elif len(stride) == 1:
dH, dW = stride[0], stride[0]
else:
dH, dW = unpack("stride", stride)
padH, padW = unpack("padding", padding)
torch._check(
divisor_override is None or divisor_override != 0,
lambda: "divisor must be not zero",
)
nbatch = input.size(-4) if input.dim() == 4 else 1
nInputPlane = input.size(-3)
inputHeight = input.size(-2)
inputWidth = input.size(-1)
outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, 1, ceil_mode)
outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, 1, ceil_mode)
memory_format = utils.suggest_memory_format(input)
pool2d_shape_check(
input,
kH,
kW,
dH,
dW,
padH,
padW,
1,
1,
nInputPlane,
inputHeight,
inputWidth,
outputHeight,
outputWidth,
memory_format,
)
if input.dim() == 3:
size = [nInputPlane, outputHeight, outputWidth]
else:
size = [nbatch, nInputPlane, outputHeight, outputWidth]
return torch.empty(
size,
dtype=input.dtype,
device=input.device,
memory_format=memory_format,
)
# from avg_pool2d_backward_shape_check() in aten/src/ATen/native/Pool.h.
def avg_pool2d_backward_shape_check(
input,
gradOutput,
nbatch,
kH,
kW,
dH,
dW,
padH,
padW,
nInputPlane,
inputHeight,
inputWidth,
outputHeight,
outputWidth,
mem_format,
):
pool2d_shape_check(
input,
kH,
kW,
dH,
dW,
padH,
padW,
1,
1,
nInputPlane,
inputHeight,
inputWidth,
outputHeight,
outputWidth,
mem_format,
)
ndim = input.dim()
nOutputPlane = nInputPlane
check_dim_size(gradOutput, ndim, ndim - 3, nOutputPlane)
check_dim_size(gradOutput, ndim, ndim - 2, outputHeight)
check_dim_size(gradOutput, ndim, ndim - 1, outputWidth)
# Don't override the C++ registration.
@register_meta(aten.avg_pool2d_backward.default)
def meta_avg_pool2d_backward(
gradOutput_,
input,
kernel_size,
stride,
padding,
ceil_mode,
count_include_pad,
divisor_override,
):
# From aten/src/ATen/native/AveragePool2d.cpp structured kernel meta func.
torch._check(
len(kernel_size) == 1 or len(kernel_size) == 2,
lambda: "avg_pool2d: kernel_size must either be a single int, or a tuple of two ints",
)
kH = kernel_size[0]
kW = kH if len(kernel_size) == 1 else kernel_size[1]
torch._check(
len(stride) == 0 or len(stride) == 1 or len(stride) == 2,
lambda: "avg_pool2d: stride must either be omitted, a single int, or a tuple of two ints",
)
dH = kH if len(stride) == 0 else stride[0]
dW = kW if len(stride) == 0 else dH if len(stride) == 1 else stride[1]
torch._check(
len(padding) == 1 or len(padding) == 2,
lambda: "avg_pool2d: padding must either be a single int, or a tuple of two ints",
)
padH = padding[0]
padW = padH if len(padding) == 1 else padding[1]
torch._check(
divisor_override is None or divisor_override != 0,
lambda: "divisor must be not zero",
)
input_size = input.shape
nbatch = input_size[-4] if input.dim() == 4 else 1
nInputPlane = input_size[-3]
inputHeight = input_size[-2]
inputWidth = input_size[-1]
outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, 1, ceil_mode)
outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, 1, ceil_mode)
mem_format = utils.suggest_memory_format(input)
avg_pool2d_backward_shape_check(
input,
gradOutput_,
nbatch,
kH,
kW,
dH,
dW,
padH,
padW,
nInputPlane,
inputHeight,
inputWidth,
outputHeight,
outputWidth,
mem_format,
)
return torch.empty(
input_size,
dtype=input.dtype,
device=input.device,
memory_format=mem_format,
)
@register_meta(aten.avg_pool3d)
@out_wrapper()
def meta_avg_pool3d(
input,
kernel_size,
stride=(),
padding=(0,),
ceil_mode=False,
count_include_pad=True,
divisor_override=None,
):
torch._check(
len(kernel_size) in (1, 3),
lambda: "avg_pool3d: kernel_size must be a single int, or a tuple of three ints",
)
kT = kernel_size[0]
kH = kT if len(kernel_size) == 1 else kernel_size[1]
kW = kT if len(kernel_size) == 1 else kernel_size[2]
torch._check(
not stride or len(stride) in (1, 3),
lambda: "avg_pool3d: stride must be omitted, a single int, or a tuple of three ints",
)
dT = kT if not stride else stride[0]
dH = kH if not stride else (dT if len(stride) == 1 else stride[1])
dW = kW if not stride else (dT if len(stride) == 1 else stride[2])
torch._check(
len(padding) in (1, 3),
lambda: "avg_pool3d: padding must be a single int, or a tuple of three ints",
)
padT = padding[0]
padH = padT if len(padding) == 1 else padding[1]
padW = padT if len(padding) == 1 else padding[2]
torch._check(
input.ndim in (4, 5),
lambda: "non-empty 4D or 5D (batch mode) tensor expected for input",
)
torch._check(
not divisor_override or divisor_override != 0,
lambda: "divisor must be not zero",
)
nbatch = input.size(0)
nslices = input.size(-4)
itime = input.size(-3)
iheight = input.size(-2)
iwidth = input.size(-1)
otime = pooling_output_shape(itime, kT, padT, dT, 1, ceil_mode)
oheight = pooling_output_shape(iheight, kH, padH, dH, 1, ceil_mode)
owidth = pooling_output_shape(iwidth, kW, padW, dW, 1, ceil_mode)
pool3d_shape_check(
input,
nslices,
kT,
kH,
kW,
dT,
dH,
dW,
padT,
padH,
padW,
1,
1,
1,
itime,
iheight,
iwidth,
otime,
oheight,
owidth,
"avg_pool3d()",
check_input_size=True,
)
if input.ndim == 4:
return input.new_empty((nslices, otime, oheight, owidth))
else:
return input.new_empty((nbatch, nslices, otime, oheight, owidth))
@register_meta(aten.avg_pool3d_backward)
@out_wrapper("grad_input")
def meta_avg_pool3d_backward(
grad_output,
input,
kernel_size,
stride,
padding,
ceil_mode,
count_include_pad,
divisor_override,
):
torch._check(
len(kernel_size) in (1, 3),
lambda: "avg_pool3d: kernel_size must be a single int, or a tuple of three ints",
)
kT = kernel_size[0]
kH = kT if len(kernel_size) == 1 else kernel_size[1]
kW = kT if len(kernel_size) == 1 else kernel_size[2]
torch._check(
not stride or len(stride) in (1, 3),
lambda: "avg_pool3d: stride must be omitted, a single int, or a tuple of three ints",
)
dT = kT if not stride else stride[0]
dH = kH if not stride else (dT if len(stride) == 1 else stride[1])
dW = kW if not stride else (dT if len(stride) == 1 else stride[2])
torch._check(
len(padding) in (1, 3),
lambda: "avg_pool3d: padding must be a single int, or a tuple of three ints",
)
padT = padding[0]
padH = padT if len(padding) == 1 else padding[1]
padW = padT if len(padding) == 1 else padding[2]
torch._check(
input.ndim in (4, 5),
lambda: "non-empty 4D or 5D (batch mode) tensor expected for input",
)
torch._check(
not divisor_override or divisor_override != 0,
lambda: "divisor must be not zero",
)
nslices = input.size(-4)
itime = input.size(-3)
iheight = input.size(-2)
iwidth = input.size(-1)
otime_for_shape_check = pooling_output_shape(itime, kT, padT, dT, 1, ceil_mode)
oheight_for_shape_check = pooling_output_shape(iheight, kH, padH, dH, 1, ceil_mode)
owidth_for_shape_check = pooling_output_shape(iwidth, kW, padW, dW, 1, ceil_mode)
avg_pool3d_backward_shape_check(
input,
grad_output,
nslices,
kT,
kH,
kW,
dT,
dH,
dW,
padT,
padH,
padW,
itime,
iheight,
iwidth,
otime_for_shape_check,
oheight_for_shape_check,
owidth_for_shape_check,
"avg_pool3d_backward()",
)
return input.new_empty(input.shape)
@register_meta(aten._adaptive_avg_pool2d.default)
def meta_adaptive_avg_pool2d(self, output_size):
torch._check(
self.ndim == 3 or self.ndim == 4,
lambda: f"Expected 3D or 4D tensor, but got {self.shape}",
)
output_shape = self.shape[:-2] + tuple(output_size)
memory_format = utils.suggest_memory_format(self)
# need to set memory_format to preserve the memory format of the input
# channel last input should have channel last output
return torch.empty(
output_shape,
dtype=self.dtype,
device=self.device,
memory_format=memory_format,
)
@register_meta(aten._adaptive_avg_pool3d.default)
def meta_adaptive_avg_pool3d(self, output_size):
torch._check(
self.ndim == 4 or self.ndim == 5,
lambda: f"Expected 4D or 5D tensor, but got {self.shape}",
)
return self.new_empty(self.shape[:-3] + tuple(output_size))
@register_meta(aten._adaptive_avg_pool2d_backward.default)
def meta__adaptive_avg_pool2d_backward(grad_out, self):
ndim = grad_out.ndim
for i in range(1, ndim):
torch._check(
grad_out.size(i) > 0,
lambda: f"adaptive_avg_pool2d_backward(): Expected grad_output to have non-zero \
size for non-batch dimensions, {grad_out.shape} with dimension {i} being empty",
)
torch._check(
ndim == 3 or ndim == 4,
lambda: f"adaptive_avg_pool2d_backward(): Expected 3D or 4D tensor, but got {self.shape}",
)
torch._check(
self.dtype == grad_out.dtype,
lambda: f"expected dtype {self.dtype} for `grad_output` but got dtype {grad_out.dtype}",
)
memory_format = torch.contiguous_format
if is_channels_last(self):
memory_format = torch.channels_last
return self.new_empty(self.shape).to(memory_format=memory_format)
@register_meta(aten._adaptive_avg_pool3d_backward)
@out_wrapper("grad_input")
def meta__adaptive_avg_pool3d_backward(grad_output, self):
_adaptive_pool_empty_output_check(grad_output, "adaptive_avg_pool3d_backward")
return torch.empty_like(self, memory_format=torch.legacy_contiguous_format)
def _adaptive_pool_empty_output_check(grad_output: Tensor, arg_name: str):
ndim = grad_output.ndim
for i in range(1, ndim):
torch._check(
grad_output.size(i) > 0,
lambda: (
f"{arg_name}(): Expected grad_output to have non-zero size for non-batch dimensions, "
f"but grad_output has sizes {grad_output.shape} with dimension {i} being empty"
),
)
@register_meta(aten.adaptive_max_pool2d)
@out_wrapper("out", "indices")
def meta_adaptive_max_pool2d(input, output_size):
ndim = input.ndim
torch._check(
ndim in (3, 4),
lambda: f"adaptive_max_pool2d(): Expected 3D or 4D tensor, but got: {input.shape}",
)
for i in range(1, ndim):
torch._check(
input.size(i) > 0,
lambda: (
f"adaptive_max_pool2d(): Expected input to have non-zero size for non-batch dimensions, "
f"but input has sizes {input.shape} with dimension {i} being empty"
),
)
torch._check(
len(output_size) == 2,
lambda: "adaptive_max_pool2d(): internal error: output_size.size() must be 2",
)
dimH = 1
sizeB = 1
sizeD = 0
if input.ndim == 4:
sizeB = input.size(0)
dimH += 1
sizeD = input.size(dimH - 1)
osizeH, osizeW = output_size
if input.ndim == 3:
out_shape = (sizeD, osizeH, osizeW)
out = input.new_empty(out_shape)
indices = input.new_empty(out_shape, dtype=torch.int64)
return out, indices
else:
out_shape = (sizeB, sizeD, osizeH, osizeW) # type: ignore[assignment]
memory_format = utils.suggest_memory_format(input)
out = input.new_empty(out_shape).to(memory_format=memory_format)
indices = input.new_empty(out_shape, dtype=torch.int64).to(
memory_format=memory_format
)
return out, indices
@register_meta(aten.adaptive_max_pool2d_backward)
@out_wrapper("grad_input")
def meta_adaptive_max_pool2d_backward(grad_output, input, indices):
ndim = grad_output.ndim
torch._check(
ndim in (3, 4),
lambda: f"adaptive_max_pooling2d_backward(): Expected 3D or 4D grad_output, but got: {grad_output.shape}",
)
_adaptive_pool_empty_output_check(grad_output, "adaptive_max_pool2d_backward")
torch._check(
input.dtype == grad_output.dtype,
lambda: f"expected dtype {input.dtype} for `grad_output` but got dtype {grad_output.dtype}",
)
memory_format = utils.suggest_memory_format(input)
return input.new_empty(input.shape).to(memory_format=memory_format)
@register_meta(aten.adaptive_max_pool3d)
@out_wrapper("out", "indices")
def meta_adaptive_max_pool3d(input, output_size):
ndim = input.ndim
torch._check(
ndim in (4, 5),
lambda: f"adaptive_max_pool3d(): Expected 4D or 5D tensor, but got: {input.shape}",
)
for i in range(1, ndim):
torch._check(
input.size(i) > 0,
lambda: (
f"adaptive_max_pool3d(): Expected input to have non-zero size for non-batch dimensions, "
f"but input has sizes {input.shape} with dimension {i} being empty"
),
)
torch._check(
len(output_size) == 3,
lambda: "adaptive_max_pool3d(): internal error: output_size.size() must be 3",
)
dimD = 0
sizeB = 1
sizeD = 0
if ndim == 5:
sizeB = input.size(0)
dimD += 1
sizeD = input.size(dimD)
osizeT, osizeH, osizeW = output_size
if ndim == 4:
out_shape = (sizeD, osizeT, osizeH, osizeW)
else:
out_shape = (sizeB, sizeD, osizeT, osizeH, osizeW) # type: ignore[assignment]
out = input.new_empty(out_shape)
indices = input.new_empty(out_shape, dtype=torch.int64)
return out, indices
@register_meta(aten.adaptive_max_pool3d_backward)
@out_wrapper("grad_input")
def meta_adaptive_max_pool3d_backward(grad_output, input, indices):
_adaptive_pool_empty_output_check(grad_output, "adaptive_max_pool3d_backward")
return input.new_empty(input.shape)
@register_meta(aten.repeat_interleave.Tensor)
def meta_repeat_interleave_Tensor(repeats, output_size=None):
if output_size is None:
raise RuntimeError("cannot repeat_interleave a meta tensor without output_size")
return repeats.new_empty(output_size)
@register_meta([aten.complex.default, aten.complex.out])
@out_wrapper()
def meta_complex(real, imag):
assert real.dtype.is_floating_point
assert imag.dtype.is_floating_point
out_shape = _broadcast_shapes(real.shape, imag.shape)
return real.new_empty(out_shape, dtype=corresponding_complex_dtype(real.dtype))
@register_meta([aten.nonzero_static.default, aten.nonzero_static.out])
@out_wrapper()
def nonzero_static(self, *, size: int, fill_value: int = -1):
return self.new_empty((size, self.dim()), dtype=torch.long)
@register_meta([aten.index.Tensor, aten._unsafe_index.Tensor])
def meta_index_Tensor(self, indices):
torch._check(bool(indices), lambda: "at least one index must be provided")
# aten::index is the internal advanced indexing implementation
# checkIndexTensorTypes and expandTensors
result: List[Optional[Tensor]] = []
for i, index in enumerate(indices):
if index is not None:
torch._check(
index.dtype in [torch.long, torch.int, torch.int8, torch.bool],
lambda: "tensors used as indices must be long, int, byte or bool tensors",
)
if index.dtype in [torch.int8, torch.bool]:
nonzero = index.nonzero()
k = len(result)
torch._check_index(
k + index.ndim <= self.ndim,
lambda: f"too many indices for tensor of dimension {self.ndim}",
)
for j in range(index.ndim):
torch._check_index(
index.shape[j] == self.shape[k + j],
lambda: f"The shape of the mask {index.shape} at index {i} "
f"does not match the shape of the indexed tensor {self.shape} at index {k + j}",
)
result.append(nonzero.select(1, j))
else:
result.append(index)
else:
result.append(index)
indices = result
torch._check(
len(indices) <= self.ndim,
lambda: f"too many indices for tensor of dimension {self.ndim} (got {len(indices)})",
)
# expand_outplace
import torch._refs as refs # avoid import cycle in mypy
indices = list(refs._maybe_broadcast(*indices))
# add missing null tensors
while len(indices) < self.ndim:
indices.append(None)
# hasContiguousSubspace
# true if all non-null tensors are adjacent
# See:
# https://numpy.org/doc/stable/user/basics.indexing.html#combining-advanced-and-basic-indexing
# https://stackoverflow.com/questions/53841497/why-does-numpy-mixed-basic-advanced-indexing-depend-on-slice-adjacency
state = 0
has_contiguous_subspace = False
for index in indices:
if state == 0:
if index is not None:
state = 1
elif state == 1:
if index is None:
state = 2
else:
if index is not None:
break
else:
has_contiguous_subspace = True
# transposeToFront
# This is the logic that causes the newly inserted dimensions to show up
# at the beginning of the tensor, if they're not contiguous
if not has_contiguous_subspace:
dims = []
transposed_indices = []
for i, index in enumerate(indices):
if index is not None:
dims.append(i)
transposed_indices.append(index)
for i, index in enumerate(indices):
if index is None:
dims.append(i)
transposed_indices.append(index)
self = self.permute(dims)
indices = transposed_indices
# AdvancedIndex::AdvancedIndex
# Now we can assume the indices have contiguous subspace
# This is simplified from AdvancedIndex which goes to more effort
# to put the input and indices in a form so that TensorIterator can
# take them. If we write a ref for this, probably that logic should
# get implemented
before_shape: List[int] = []
after_shape: List[int] = []
replacement_shape: List[int] = []
for dim, index in enumerate(indices):
if index is None:
if replacement_shape:
after_shape.append(self.shape[dim])
else:
before_shape.append(self.shape[dim])
else:
replacement_shape = list(index.shape)
return self.new_empty(before_shape + replacement_shape + after_shape)
@register_meta([aten.convolution_backward.default])
def meta_convolution_backward(
grad_output_,
input_,
weight_,
bias_sizes_opt,
stride,
padding,
dilation,
transposed,
output_padding,
groups,
output_mask,
):
# High level logic taken from slow_conv3d_backward_cpu which should
# be representative of all convolution_backward impls
backend_grad_input = None
backend_grad_weight = None
backend_grad_bias = None
if output_mask[0]:
backend_grad_input = grad_output_.new_empty(input_.size())
if output_mask[1]:
backend_grad_weight = grad_output_.new_empty(weight_.size())
if output_mask[2]:
backend_grad_bias = grad_output_.new_empty(bias_sizes_opt)
return (backend_grad_input, backend_grad_weight, backend_grad_bias)
@register_meta([aten.addbmm.default, aten.addbmm.out])
@out_wrapper()
def meta_addbmm(self, batch1, batch2, *, beta=1, alpha=1):
dim1 = batch1.size(1)
dim2 = batch2.size(2)
self = self.expand((dim1, dim2))
torch._check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor")
torch._check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor")
torch._check(
batch1.size(0) == batch2.size(0),
lambda: f"batch1 and batch2 must have same number of batches, got {batch1.size(0)} and {batch2.size(0)}",
)
torch._check(
batch1.size(2) == batch2.size(1),
lambda: (
f"Incompatible matrix sizes for bmm ({batch1.size(1)}x{batch1.size(2)} "
f"and {batch2.size(1)}x{batch2.size(2)})"
),
)
torch._check(
self.size(0) == dim1 and self.size(1) == dim2,
lambda: "self tensor does not match matmul output shape",
)
return self.new_empty(self.size())
def register_meta_foreach(ops):
def wrapper(fn):
def register(op):
op_name = str(op).split(".")[1]
scalar_op = getattr(aten, op_name.replace("_foreach_", ""))
_add_op_to_registry(
meta_table,
op,
partial(
fn,
_scalar_op=scalar_op,
),
)
pytree.tree_map_(register, ops)
return fn
return wrapper
@register_meta_foreach(
[
aten._foreach_abs,
aten._foreach_acos,
aten._foreach_asin,
aten._foreach_atan,
aten._foreach_ceil,
aten._foreach_cos,
aten._foreach_cosh,
aten._foreach_erf,
aten._foreach_erfc,
aten._foreach_exp,
aten._foreach_expm1,
aten._foreach_frac,
aten._foreach_floor,
aten._foreach_lgamma,
aten._foreach_log,
aten._foreach_log10,
aten._foreach_log1p,
aten._foreach_log2,
aten._foreach_neg,
aten._foreach_norm,
aten._foreach_reciprocal,
aten._foreach_round,
aten._foreach_sigmoid,
aten._foreach_sign,
aten._foreach_sin,
aten._foreach_sinh,
aten._foreach_sqrt,
aten._foreach_tan,
aten._foreach_tanh,
aten._foreach_trunc,
aten._foreach_zero,
aten._foreach_add,
aten._foreach_sub,
aten._foreach_mul,
aten._foreach_div,
aten._foreach_clamp_min,
aten._foreach_clamp_max,
aten._foreach_lerp,
],
)
def _meta_foreach_out_of_place(*args, _scalar_op=None, **kwargs):
torch._check(
isinstance(args[0], list),
lambda: (f"The first argument must be List[Tensor], but got {type(args[0])}."),
)
nelem = len(args[0])
torch._check(
nelem > 0,
lambda: ("Tensor list must have at least one tensor."),
)
nlists = 1
for iarg, arg in enumerate(args[1:]):
if isinstance(arg, list):
nlists += 1
torch._check(
len(arg) == nelem,
lambda: (
f"self and argument-{iarg+2} must match in length, "
f"but got {nelem} and {len(arg)}."
),
)
elif isinstance(arg, Tensor):
torch._check(
arg.dim() == 0 and arg.numel() == 1,
lambda: (
"scalar tensor expected to be 0 dim but it has "
f"{arg.dim()} dimensions and {arg.numel()} elements."
),
)
else:
break
result = []
for elem in range(nelem):
each_args = [args[i][elem] for i in range(nlists)]
result.append(_scalar_op(*each_args, *args[nlists:], **kwargs))
return result
@register_meta_foreach(
[
aten._foreach_abs_,
aten._foreach_acos_,
aten._foreach_asin_,
aten._foreach_atan_,
aten._foreach_ceil_,
aten._foreach_cos_,
aten._foreach_cosh_,
aten._foreach_erf_,
aten._foreach_erfc_,
aten._foreach_exp_,
aten._foreach_expm1_,
aten._foreach_frac_,
aten._foreach_floor_,
aten._foreach_lgamma_,
aten._foreach_log_,
aten._foreach_log10_,
aten._foreach_log1p_,
aten._foreach_log2_,
aten._foreach_neg_,
aten._foreach_reciprocal_,
aten._foreach_round_,
aten._foreach_sigmoid_,
aten._foreach_sign_,
aten._foreach_sin_,
aten._foreach_sinh_,
aten._foreach_sqrt_,
aten._foreach_tan_,
aten._foreach_tanh_,
aten._foreach_trunc_,
aten._foreach_zero_,
aten._foreach_add_,
aten._foreach_sub_,
aten._foreach_mul_,
aten._foreach_div_,
aten._foreach_clamp_min_,
aten._foreach_clamp_max_,
aten._foreach_lerp_,
aten._foreach_copy_,
]
)
def _meta_foreach_inplace(*args, _scalar_op=None, **kwargs):
_meta_foreach_out_of_place(*args, _scalar_op=_scalar_op, **kwargs)
return
@register_meta([aten._foreach_pow.ScalarAndTensor])
def meta__foreach_pow_scalar_and_tensor(self, exponent):
# Only foreach_pow has a ScalarAndTensor method and needs special
# handling because it does not work with _meta_foreach_out_of_place.
torch._check(
isinstance(exponent, List),
lambda: f"exponent must be a tensor list but got {type(exponent)}",
)
return [torch.empty_like(e) for e in exponent]
def _check_foreach_binop_tensor_lists(self, other):
torch._check(
isinstance(self, List) and isinstance(other, List),
lambda: (
"The first two arguments of must be List[Tensor], "
f"but got {type(self)} and {type(other)}."
),
)
torch._check(
len(self) > 0 and len(self) == len(other),
lambda: (
"self and other must be non-empty and match in length, "
f"but got {len(self)} and {len(other)}."
),
)
@register_meta(
[
aten._foreach_maximum,
aten._foreach_minimum,
]
)
def meta__foreach_binop_scalar(*args):
# aten.maximum(Tensor, Scalar) does not exist.
return _meta_foreach_out_of_place(*args, _scalar_op=aten.clamp_min)
@register_meta(
[
aten._foreach_maximum_,
aten._foreach_minimum_,
]
)
def meta__foreach_binop__scalar(*args):
# aten.maximum(Tensor, Scalar) does not exist
_meta_foreach_inplace(*args, _scalar_op=aten.clamp_min_)
return
@register_meta(
[
aten._foreach_addcdiv.Scalar,
aten._foreach_addcmul.Scalar,
]
)
def meta__foreach_addcop_scalar(self, tensor1, tensor2, scalar=1):
# forach_addcdiv and addcdiv have different signatures and
# cannot use _meta_foreach_out_of_place.
torch._check(
all(isinstance(l, List) for l in [self, tensor1, tensor2]),
lambda: (
"All arguments must be List[Tensor], "
f"but got {type(self)}, {type(tensor1)}, and {type(tensor2)}"
),
)
torch._check(len(self) > 0, lambda: "input tensor list must not be empty.")
torch._check(
len(self) == len(tensor1) and len(self) == len(tensor2),
lambda: "All input tensor lists must have the same length",
)
return [torch.empty_like(s) for s in self]
@register_meta([aten._foreach_addcdiv_.Tensor, aten._foreach_addcmul_.Tensor])
def meta__foreach_addcop_tensor(self, tensor1, tensor2, scalars):
torch._check(
all(isinstance(l, List) for l in [self, tensor1, tensor2])
and isinstance(scalars, torch.Tensor),
lambda: (
"_foreach_addc*_ op expects arguments of type: List[Tensor], List[Tensor], List[Tensor], tensor, "
f"but got: {type(self)}, {type(tensor1)}, {type(tensor2)}, and {type(scalars)}"
),
)
torch._check(len(self) > 0, lambda: "input tensor list must not be empty.")
torch._check(
len(self) == len(tensor1) and len(self) == len(tensor2),
lambda: "All input tensor lists must have the same length",
)
@register_meta(
[
aten._foreach_addcdiv_.Scalar,
aten._foreach_addcmul_.Scalar,
]
)
def meta__foreach_addcop__scalar(self, tensor1, tensor2, scalar=1):
torch._check(
all(isinstance(l, List) for l in [self, tensor1, tensor2]),
lambda: (
"All arguments of _foreach_addc*_ must be List[Tensor], "
f"but got {type(self)}, {type(tensor1)}, and {type(tensor2)}"
),
)
torch._check(len(self) > 0, lambda: "input tensor list must not be empty.")
torch._check(
len(self) == len(tensor1) and len(self) == len(tensor2),
lambda: "All input tensor lists must have the same length",
)
@register_meta([aten._fused_adam_.default])
def meta__fused_adam_(
self,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
*,
lr,
beta1,
beta2,
weight_decay,
eps,
amsgrad,
maximize,
grad_scale=None,
found_inf=None,
):
for l in [self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps]:
torch._check(
isinstance(l, List),
lambda: f"exponent must be a tensor list but got {type(l)}",
)
@register_meta([aten._fused_adam.default])
def meta__fused_adam(
self,
grads,
exp_avgs,
exp_avg_sqs,
max_exp_avg_sqs,
state_steps,
*,
lr,
beta1,
beta2,
weight_decay,
eps,
amsgrad,
maximize,
grad_scale=None,
found_inf=None,
):
for l in [self, grads, exp_avgs, exp_avg_sqs, max_exp_avg_sqs, state_steps]:
torch._check(
isinstance(l, List),
lambda: f"exponent must be a tensor list but got {type(l)}",
)
def empty_like_list(tensor_list):
return [torch.empty_like(t) for t in tensor_list]
return (
empty_like_list(self),
empty_like_list(grads),
empty_like_list(exp_avgs),
empty_like_list(exp_avg_sqs),
empty_like_list(max_exp_avg_sqs),
)
@register_meta([aten._int_mm])
@out_wrapper()
def meta__int_mm(a, b):
torch._check(a.dim() == 2, lambda: "a must be a 2D tensor")
torch._check(b.dim() == 2, lambda: "b must be a 2D tensor")
torch._check(
a.dtype is torch.int8,
lambda: f"expected self to be int8, got {a.dtype}",
)
torch._check(
b.dtype is torch.int8,
lambda: f"expected mat2 to be int8, got {b.dtype}",
)
torch._check(
a.size(1) == b.size(0),
lambda: (
f"Incompatible matrix sizes for _int_mm ({a.size(0)}x{a.size(1)} "
f"and {b.size(0)}x{b.size(1)})"
),
)
return a.new_empty((a.size(0), b.size(1)), dtype=torch.int32)
@register_meta([aten._convert_weight_to_int4pack])
def meta__convert_weight_to_int4pack(w, inner_k_tiles):
torch._check(w.dim() == 2, lambda: "w must be a 2D tensor")
torch._check(
w.dtype is torch.int32,
lambda: f"expected w to be int32, got {w.dtype}",
)
n = w.size(0)
k = w.size(1)
return w.new_empty(
(
n // 8,
k // (inner_k_tiles * 16),
32,
inner_k_tiles // 2,
),
dtype=torch.int32,
)
@register_meta([aten._weight_int4pack_mm])
def meta__weight_int4pack_mm(x, w, q_group_size, q_scale_and_zeros):
torch._check(x.dim() == 2, lambda: "x must be a 2D tensor")
torch._check(w.dim() == 4, lambda: "w must be a 4D tensor")
torch._check(
x.dtype is torch.bfloat16,
lambda: f"expected x to be bf16, got {x.dtype}",
)
torch._check(
w.dtype is torch.int32,
lambda: f"expected w to be int32, got {w.dtype}",
)
return x.new_empty(x.size(0), w.size(0) * 8, dtype=x.dtype)
@register_meta([aten._weight_int8pack_mm])
def meta__weight_int8pack_mm(x, w, q_scales):
torch._check(x.dim() == 2, lambda: "x must be a 2D tensor")
torch._check(
x.dtype is torch.bfloat16,
lambda: f"expected x to be bf16, got {x.dtype}",
)
torch._check(w.dim() == 2, lambda: "w must be a 2D tensor")
torch._check(
w.dtype is torch.int8,
lambda: f"expected w to be int8, got {w.dtype}",
)
return x.new_empty(x.size(0), w.size(0), dtype=x.dtype)
@register_meta(aten._cdist_forward.default)
def meta_cdist_forward(x1, x2, p, compute_mode):
torch._check(
x1.dim() >= 2,
lambda: f"cdist only supports at least 2D tensors, X1 got: {x1.dim()}D",
)
torch._check(
x2.dim() >= 2,
lambda: f"cdist only supports at least 2D tensors, X2 got: {x2.dim()}D",
)
torch._check(
x1.size(-1) == x2.size(-1),
lambda: f"X1 and X2 must have the same number of columns. X1: {x1.size(-1)} X2: {x2.size(-1)}",
)
torch._check(
utils.is_float_dtype(x1.dtype),
lambda: "cdist only supports floating-point dtypes, X1 got: {x1.dtype}",
)
torch._check(
utils.is_float_dtype(x2.dtype),
lambda: "cdist only supports floating-point dtypes, X2 got: {x2.dtype}",
)
torch._check(p >= 0, lambda: "cdist only supports non-negative p values")
torch._check(
compute_mode in (None, 1, 2),
lambda: f"possible modes: None, 1, 2, but was: {compute_mode}",
)
r1 = x1.size(-2)
r2 = x2.size(-2)
batch_tensor1 = x1.shape[:-2]
batch_tensor2 = x2.shape[:-2]
output_shape = list(torch.broadcast_shapes(batch_tensor1, batch_tensor2))
output_shape.extend([r1, r2])
return x1.new_empty(output_shape)
@register_meta(aten._cdist_backward)
@out_wrapper()
def meta_cdist_backward(grad, x1, x2, p, cdist):
c1 = x1.shape[-1]
r1 = x1.shape[-2]
r2 = x2.shape[-2]
batch_tensor1 = x1.shape[:-2]
batch_tensor2 = x2.shape[:-2]
expand_batch_portion = list(torch.broadcast_shapes(batch_tensor1, batch_tensor2))
tensor1_expand_size = expand_batch_portion.copy()
tensor1_expand_size.extend([r1, c1])
batch_product = math.prod(expand_batch_portion)
if r1 == 0 or r2 == 0 or c1 == 0 or batch_product == 0:
return torch.zeros_like(x1)
if tensor1_expand_size != list(x1.shape):
x1 = x1.expand(tensor1_expand_size)
return torch.empty_like(x1, memory_format=torch.contiguous_format)
# NB: This meta function accepts non-meta arguments! When this behavior
# was originally introduced this was accidental, but it is now load bearing
# as people are using this so that they can conveniently test code involving
# embeddings (feeding CPU tensor inputs with meta device EmbeddingBag module)
@register_meta(aten._embedding_bag.default)
def meta_embedding_bag(
weight,
indices,
offsets,
scale_grad_by_freq=False,
mode=0,
sparse=False,
per_sample_weights=None,
include_last_offset=False,
padding_idx=-1,
):
torch._check(
indices.dtype in (torch.long, torch.int),
lambda: f"expected indices to be long or int, got {indices.dtype}",
)
torch._check(
offsets.dtype in (torch.long, torch.int),
lambda: f"expected offsets to be long or int, got {offsets.dtype}",
)
torch._check(
utils.is_float_dtype(weight.dtype),
lambda: f"expected weight to be floating point type, got {weight.dtype}",
)
num_bags = offsets.size(0)
if include_last_offset:
torch._check(
num_bags >= 1,
lambda: "include_last_offset: numBags should be at least 1",
)
num_bags -= 1
output = weight.new_empty(num_bags, weight.size(1))
MODE_SUM, MODE_MEAN, MODE_MAX = range(3)
if per_sample_weights is not None:
torch._check(
mode == MODE_SUM,
lambda: "embedding_bag: per_sample_weights only supported with mode='sum'",
)
torch._check(
per_sample_weights.dtype == weight.dtype,
lambda: f"expected weight ({weight.dtype}) and per_sample_weights ({per_sample_weights.dtype}) to have same dtype",
)
torch._check(
per_sample_weights.ndim == 1,
lambda: f"expected per_sample_weights to be 1D tensor, got {per_sample_weights.ndim}D",
)
torch._check(
per_sample_weights.numel() == indices.numel(),
lambda: (
f"expected per_sample_weights.numel() ({per_sample_weights.numel()} "
f"to be the same as indices.numel() ({indices.numel()})"
),
)
def is_fast_path_index_select_scale(src, scale, output, padding_idx):
return (
is_fast_path_index_select(src, output, padding_idx) and scale.stride(0) == 1
)
def is_fast_path_index_select(src, output, padding_idx):
return (
(src.dtype == torch.float or src.dtype == torch.half)
and src.stride(1) == 1
and output.stride(1) == 1
and padding_idx < 0
)
def is_fast_path(src, scale, output, padding_idx):
if scale is not None:
return is_fast_path_index_select_scale(src, scale, output, padding_idx)
else:
return is_fast_path_index_select(src, output, padding_idx)
if device_hint(offsets) != "cpu":
offset2bag = indices.new_empty(indices.size(0))
bag_size = indices.new_empty(offsets.size())
if mode == MODE_MAX:
max_indices = indices.new_empty(num_bags, weight.size(1))
else:
max_indices = indices.new_empty(0)
else:
fast_path_sum = is_fast_path(weight, per_sample_weights, output, padding_idx)
if mode in (MODE_MEAN, MODE_MAX) or not fast_path_sum:
offset2bag = offsets.new_empty(indices.size(0))
else:
offset2bag = offsets.new_empty(0)
bag_size = offsets.new_empty(num_bags)
# This part of the logic comes from make_max_indices_out in EmbeddingBag.cpp
numBags = offsets.shape[0]
if mode == MODE_MAX:
if include_last_offset:
torch._check(
numBags >= 1,
lambda: "include_last_offset: numBags should be at least 1",
)
numBags -= 1
max_indices = offsets.new_empty(numBags, weight.shape[1])
else:
max_indices = offsets.new_empty(bag_size.size())
return output, offset2bag, bag_size, max_indices
@register_meta(aten._embedding_bag_forward_only.default)
def meta_embedding_bag_forward_only(weight, indices, offsets, *args):
output, offset2bag, bag_size, max_indices = meta_embedding_bag(
weight, indices, offsets, *args
)
if device_hint(offsets) == "cpu":
bag_size = offsets.new_empty(offsets.size())
return output, offset2bag, bag_size, max_indices
def _get_reduction_dtype(input, dtype, promote_int_to_long=True):
# if specified, dtype takes precedence
if dtype:
return dtype
if input.dtype.is_floating_point or input.dtype.is_complex:
return input.dtype
elif promote_int_to_long:
return torch.long
return input.dtype
@register_meta([aten.nansum.default, aten.nansum.out])
@out_wrapper()
def meta_nansum(input, dims=None, keepdim=False, *, dtype=None):
output_dtype = _get_reduction_dtype(input, dtype, promote_int_to_long=True)
dims = utils.reduction_dims(input.shape, dims)
output_shape = _compute_reduction_shape(input, dims, keepdim)
return input.new_empty(output_shape, dtype=output_dtype)
@register_meta([aten.median.default, aten.nanmedian.default])
def meta_median(input):
output_shape = utils.compute_reduction_output_shape(
input.shape, tuple(range(input.dim()))
)
return input.new_empty(output_shape)
@register_meta(
[
aten.median.dim,
aten.median.dim_values,
aten.nanmedian.dim,
aten.nanmedian.dim_values,
aten.mode.default,
aten.mode.values,
]
)
@out_wrapper("values", "indices")
def meta_median_mode_dim(input, dim=-1, keepdim=False):
if device_hint(input) == "cuda":
utils.alert_not_deterministic("median CUDA with indices output")
dim = utils.reduction_dims(input.shape, (dim,))
output_shape = _compute_reduction_shape(input, dim, keepdim)
return (
input.new_empty(output_shape),
input.new_empty(output_shape, dtype=torch.long),
)
@register_meta(aten.logical_not_.default)
def meta_logical_not_(self):
return self
@register_meta(aten.repeat.default)
def meta_repeat(self, repeats):
torch._check(
len(repeats) >= self.dim(),
lambda: "Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor",
)
# Add new leading dimensions to the tensor if the
# number of target dimensions is larger than the
# number of source dimensions.
num_new_dimensions = len(repeats) - self.dim()
padded_size = (1,) * num_new_dimensions + tuple(self.shape)
target_size = [padded_size[i] * repeats[i] for i in range(len(repeats))]
return self.new_empty(target_size)
@register_meta(aten.zero_.default)
def meta_zero_(self):
return self
@register_meta(
[
aten.mul_.Scalar,
aten.div_.Scalar,
aten.mul_.Tensor,
aten.div_.Tensor,
aten.logical_and_.default,
aten.logical_or_.default,
aten.logical_xor_.default,
],
)
def meta_binop_inplace(self, other):
if isinstance(other, torch.Tensor):
check_inplace_broadcast(self.shape, other.shape)
return self
@register_meta(
[
aten.add_.Scalar,
aten.sub_.Scalar,
aten.add_.Tensor,
aten.sub_.Tensor,
],
)
def meta_binop_inplace_alpha(self, other, alpha=1):
if isinstance(other, torch.Tensor):
check_inplace_broadcast(self.shape, other.shape)
return self
@register_meta([aten.round.default, aten.round.decimals])
def meta_round(self, **kwargs):
return elementwise_meta(
self, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
)
def shift_dtype_check(fn_name, self, val):
torch._check(
utils.is_integer_dtype(self.dtype),
lambda: f"{fn_name}: Expected input tensor to have an integral dtype. Got {self.dtype}",
)
if isinstance(val, torch.Tensor):
torch._check(
utils.is_integer_dtype(val.dtype),
lambda: f"{fn_name}: Expected shift value to have an integral dtype. Got {val.dtype}",
)
else:
torch._check(
isinstance(val, IntLike),
lambda: f"{fn_name}: Expected shift value to be an int. Got {val}",
)
@register_meta([aten.__rshift__.Tensor, aten.__rshift__.Scalar])
def meta_rshifts(self, other):
shift_dtype_check("rshift", self, other)
return elementwise_meta(
self, other, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
)
@register_meta([aten.__lshift__.Tensor, aten.__lshift__.Scalar])
def meta_lshifts(self, other):
shift_dtype_check("lshift", self, other)
return elementwise_meta(
self, other, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.DEFAULT
)
@register_meta(aten.zero.default)
def meta_zero(self):
return self.new_empty(self.shape)
@register_meta([aten.fill_.Tensor, aten.fill_.Scalar])
def meta_fill_(self, val):
return self
@register_meta([aten.fill.Tensor, aten.fill.Scalar])
def meta_fill(self, val):
return torch.empty_like(self)
@register_meta(aten.relu_.default)
def meta_relu_(self):
return self
@register_meta([aten.index_put.default, aten._unsafe_index_put.default])
def meta_index_put(self, indices, values, accumulate=False):
return torch.empty_like(self)
@register_meta(aten.masked_fill_.Scalar)
def meta_masked_fill_(self, mask, value):
check_inplace_broadcast(self.shape, mask.shape)
return self
@register_meta(aten.masked_scatter_)
def meta_masked_scatter_(self, mask, source):
torch._check(
mask.dtype in (torch.bool, torch.uint8), lambda: "Mask must be bool or uint8"
)
torch._check(
self.dtype == source.dtype,
lambda: "masked_scatter: expected self and source to have same "
"dtypes but got {self.dtype} and {source.dtype}",
)
return self
@register_meta(aten.masked_scatter)
@out_wrapper()
def meta_masked_scatter(self, mask, source):
self, mask = _maybe_broadcast(self, mask)
output = torch.empty_like(self, memory_format=torch.contiguous_format)
return meta_masked_scatter_(output, mask, source)
@register_meta(aten.masked_scatter_backward)
def meta_masked_scatter_backward(self, mask, sizes):
return self.new_empty(sizes)
@register_meta(aten.index_put_.default)
def meta_index_put_(self, indices, values, accumulate=False):
return self
@register_meta(aten.alias.default)
def meta_alias(self):
return self.view(self.shape)
def common_meta_baddbmm_bmm(batch1, batch2, is_bmm, self_baddbmm=None):
torch._check(batch1.dim() == 3, lambda: "batch1 must be a 3D tensor")
torch._check(batch2.dim() == 3, lambda: "batch2 must be a 3D tensor")
batch1_sizes = batch1.size()
batch2_sizes = batch2.size()
bs = batch1_sizes[0]
contraction_size = batch1_sizes[2]
res_rows = batch1_sizes[1]
res_cols = batch2_sizes[2]
output_size = (bs, res_rows, res_cols)
torch._check(
batch2_sizes[0] == bs and batch2_sizes[1] == contraction_size,
lambda: f"Expected size for first two dimensions of batch2 tensor to be: [{bs}"
f", {contraction_size}] but got: [{batch2_sizes[0]}, {batch2_sizes[1]}].",
)
# TODO: handle out
output = batch2.new_empty(output_size)
if not is_bmm and self_baddbmm is not None:
torch._check(self_baddbmm.dim() == 3, lambda: "self must be a 3D tensor")
torch._check(
self_baddbmm.size() == output_size,
lambda: f"Expected an input tensor shape with shape {output_size} but got shape: {self_baddbmm.size()}",
)
return output
@register_meta(aten.bmm.default)
def meta_bmm(self, mat2):
return common_meta_baddbmm_bmm(self, mat2, True)
def div_rtn(x, y):
q = x // y
r = x % y
# WARNING: explicit bool conversion here is necessary;
# would be fixed by SymBool
if r != 0 and (bool(r < 0) != bool(y < 0)):
q -= 1
return q
def pooling_output_shape_pad_lr(
inputSize, kernelSize, pad_l, pad_r, stride, dilation, ceil_mode
):
outputSize = (
div_rtn(
inputSize
+ pad_l
+ pad_r
- dilation * (kernelSize - 1)
- 1
+ (stride - 1 if ceil_mode else 0),
stride,
)
+ 1
)
if ceil_mode:
if (outputSize - 1) * stride >= inputSize + pad_l:
outputSize -= 1
return outputSize
def pooling_output_shape(inputSize, kernelSize, pad, stride, dilation, ceil_mode):
torch._check(stride != 0, lambda: "stride should not be zero")
torch._check(pad >= 0, lambda: f"pad must be non-negative, but got pad: {pad}")
torch._check(
pad <= ((kernelSize - 1) * dilation + 1) // 2,
lambda: (
f"pad should be at most half of effective kernel size, but got pad={pad}, "
f"kernel_size={kernelSize} and dilation={dilation}"
),
)
return pooling_output_shape_pad_lr(
inputSize, kernelSize, pad, pad, stride, dilation, ceil_mode
)
def pool2d_shape_check(
input,
kH,
kW,
dH,
dW,
padH,
padW,
dilationH,
dilationW,
nInputPlane,
inputHeight,
inputWidth,
outputHeight,
outputWidth,
memory_format,
):
ndim = input.dim()
nOutputPlane = nInputPlane
torch._check(
kW > 0 and kH > 0,
lambda: "kernel size should be greater than zero, but got kH: {kH}, kW: {kW}",
)
torch._check(
dW > 0 and dH > 0,
lambda: "stride should be greater than zero, but got dH: {dH}, dW: {dW}",
)
torch._check(
dilationH > 0 and dilationW > 0,
lambda: "dilation should be greater than zero, but got dilationH: {dilationH}, dilationW: {dilationW}",
)
valid_dims = input.size(1) != 0 and input.size(2) != 0
if memory_format == torch.channels_last:
torch._check(
ndim == 4 and valid_dims and input.size(3) != 0,
lambda: "Expected 4D (batch mode) tensor expected for input with channels_last layout"
" with optional 0 dim batch size for input, but got: {input.size()}",
)
else:
torch._check(
(ndim == 3 and input.size(0) != 0 and valid_dims)
or (ndim == 4 and valid_dims and input.size(3) != 0),
lambda: f"Expected 3D or 4D (batch mode) tensor with optional 0 dim batch size for input, but got: {input.size()}",
)
torch._check(
kW // 2 >= padW and kH // 2 >= padH,
lambda: "pad should be smaller than or equal to half of kernel size, but got "
f"padW = {padW}, padH = {padH}, kW = {kW}, kH = {kH}",
)
torch._check(
outputWidth >= 1 and outputHeight >= 1,
lambda: f"Given input size: ({nInputPlane}x{inputHeight}x{inputWidth}). "
f"Calculated output size: ({nOutputPlane}x{outputHeight}x{outputWidth}). "
"Output size is too small",
)
def pool3d_shape_check(
input: Tensor,
nslices: int,
kT: int,
kH: int,
kW: int,
dT: int,
dH: int,
dW: int,
pT: int,
pH: int,
pW: int,
dilationT: int,
dilationH: int,
dilationW: int,
itime: int,
iheight: int,
iwidth: int,
otime: int,
oheight: int,
owidth: int,
fn_name: str,
check_input_size: bool = False,
):
ndim = input.ndim
torch._check(
kT > 0 and kW > 0 and kH > 0,
lambda: (
f"kernel size should be greater than zero, but got "
f"kT: {kT}, kH: {kH}, kW: {kW}"
),
)
torch._check(
dT > 0 and dW > 0 and dH > 0,
lambda: (
f"stride should be greater than zero, but got "
f"dT: {dT}, dH: {dH}, dW: {dW}"
),
)
torch._check(
dilationT > 0 and dilationW > 0 and dilationH > 0,
lambda: (
f"dilation should be greater than zero, but got "
f"dilationT: {dilationT}, dilationH: {dilationH}, dilationW: {dilationW}"
),
)
torch._check(
ndim in (4, 5),
lambda: f"{fn_name}: Expected 4D or 5D tensor for input, but got: {input.shape}",
)
for i in range(ndim):
if ndim == 5 and i == 0:
# size of batch-dim can be 0.
continue
torch._check(
input.size(i) > 0,
lambda: (
f"{fn_name}: Expected input's non-batch dimensions to have positive length,"
f" but input has a shape of {input.shape}"
f" and non-batch dimension {input.size(i)} has length zero!"
),
)
if check_input_size: # AveragePool3d
torch._check(
itime >= kT and iheight >= kH and iwidth >= kW,
lambda: (
f"input image (T: {itime} H: {iheight} W: {iwidth}) smaller than "
f"kernel size (kT: {kT} kH: {kH} kW: {kW})"
),
)
torch._check(
kT / 2 >= pT and kW / 2 >= pW and kH / 2 >= pH,
lambda: (
f"pad should be smaller than or equal to half of kernel size, but got "
f"kT: {kT} kW: {kW} kH: {kH} padT: {pT} padW: {pW} padH: {pH}"
),
)
torch._check(
otime >= 1 and owidth >= 1 and oheight >= 1,
lambda: (
f"Given input size: ({nslices}x{itime}x{iheight}x{iwidth}). "
f"Calculated output size: ({nslices}x{otime}x{oheight}x{owidth}). "
f"Output size is too small"
),
)
def max_pool3d_backward_shape_check(
input,
grad_output,
indices,
nslices,
kT,
kH,
kW,
dT,
dH,
dW,
pT,
pH,
pW,
dilationT,
dilationH,
dilationW,
itime,
iheight,
iwidth,
otime,
oheight,
owidth,
fn_name,
):
ndim = input.ndim
pool3d_shape_check(
input,
nslices,
kT,
kH,
kW,
dT,
dH,
dW,
pT,
pH,
pW,
dilationT,
dilationH,
dilationW,
itime,
iheight,
iwidth,
otime,
oheight,
owidth,
fn_name,
)
check_dim_size(grad_output, ndim, ndim - 4, nslices)
check_dim_size(grad_output, ndim, ndim - 3, otime)
check_dim_size(grad_output, ndim, ndim - 2, oheight)
check_dim_size(grad_output, ndim, ndim - 1, owidth)
check_dim_size(indices, ndim, ndim - 4, nslices)
check_dim_size(indices, ndim, ndim - 3, otime)
check_dim_size(indices, ndim, ndim - 2, oheight)
check_dim_size(indices, ndim, ndim - 1, owidth)
def avg_pool3d_backward_shape_check(
input: Tensor,
grad_output: Tensor,
nslices: int,
kT: int,
kH: int,
kW: int,
dT: int,
dH: int,
dW: int,
pT: int,
pH: int,
pW: int,
itime: int,
iheight: int,
iwidth: int,
otime: int,
oheight: int,
owidth: int,
fn_name: str,
):
ndim = input.ndim
pool3d_shape_check(
input,
nslices,
kT,
kH,
kW,
dT,
dH,
dW,
pT,
pH,
pW,
1,
1,
1,
itime,
iheight,
iwidth,
otime,
oheight,
owidth,
fn_name,
True,
)
check_dim_size(grad_output, ndim, ndim - 4, nslices)
check_dim_size(grad_output, ndim, ndim - 3, otime)
check_dim_size(grad_output, ndim, ndim - 2, oheight)
check_dim_size(grad_output, ndim, ndim - 1, owidth)
def max_pool2d_checks_and_compute_shape(
input, kernel_size, stride, padding, dilation, ceil_mode
):
# Reference: aten/src/ATen/native/DilatedMaxPool2d.cpp
def unpack(name, val):
torch._check(
len(val) in [1, 2],
lambda: f"max_pool2d: {name} must either be a single int, or a tuple of two ints",
)
H = val[0]
W = H if len(val) == 1 else val[1]
return H, W
kH, kW = unpack("kernel_size", kernel_size)
torch._check(
len(stride) in [0, 1, 2],
lambda: "max_pool2d: stride must either be omitted, a single int, or a tuple of two ints",
)
if len(stride) == 0:
dH, dW = kH, kW
else:
dH, dW = unpack("stride", stride)
padH, padW = unpack("padding", padding)
dilationH, dilationW = unpack("dilation", dilation)
nInputPlane = input.size(-3)
inputHeight = input.size(-2)
inputWidth = input.size(-1)
memory_format = utils.suggest_memory_format(input)
if memory_format == torch.channels_last:
torch._check(
input.dim() == 4,
lambda: "non-empty 4D (batch mode) tensor expected for input with channels_last layout",
)
elif memory_format == torch.contiguous_format:
torch._check(
input.dim() in [3, 4],
lambda: "non-empty 3D or 4D (batch mode) tensor expected for input",
)
else:
torch._check(
False,
lambda: "Unsupport memory format. Supports only ChannelsLast, Contiguous",
)
outputHeight = pooling_output_shape(inputHeight, kH, padH, dH, dilationH, ceil_mode)
outputWidth = pooling_output_shape(inputWidth, kW, padW, dW, dilationW, ceil_mode)
pool2d_shape_check(
input,
kH,
kW,
dH,
dW,
padH,
padW,
dilationH,
dilationW,
nInputPlane,
inputHeight,
inputWidth,
outputHeight,
outputWidth,
memory_format,
)
return nInputPlane, outputHeight, outputWidth
@register_meta(aten.max_pool2d_with_indices_backward.default)
def meta_max_pool2d_with_indices_backward(
grad_output,
self,
kernel_size,
stride,
padding,
dilation,
ceil_mode,
indices,
):
(
nInputPlane,
outputHeight,
outputWidth,
) = max_pool2d_checks_and_compute_shape(
self, kernel_size, stride, padding, dilation, ceil_mode
)
torch._check(
self.dtype == grad_output.dtype,
lambda: f"Expected dtype {self.dtype} for `gradOutput` but got dtype {grad_output.dtype}",
)
nOutputPlane = nInputPlane
ndim = self.ndim
def _check_dim_size(t):
check_dim_size(t, ndim, ndim - 3, nOutputPlane)
check_dim_size(t, ndim, ndim - 2, outputHeight)
check_dim_size(t, ndim, ndim - 1, outputWidth)
_check_dim_size(grad_output)
_check_dim_size(indices)
memory_format = utils.suggest_memory_format(self)
return torch.empty(
self.shape,
dtype=self.dtype,
device=self.device,
memory_format=memory_format,
)
@register_meta(aten.max_pool2d_with_indices.default)
def meta_max_pool2d_with_indices(
input, kernel_size, stride=(), padding=(0,), dilation=(1,), ceil_mode=False
):
(
nInputPlane,
outputHeight,
outputWidth,
) = max_pool2d_checks_and_compute_shape(
input, kernel_size, stride, padding, dilation, ceil_mode
)
nbatch = input.size(-4) if input.dim() == 4 else 1
memory_format = utils.suggest_memory_format(input)
if input.dim() == 3:
size = [nInputPlane, outputHeight, outputWidth]
else:
size = [nbatch, nInputPlane, outputHeight, outputWidth]
return (
torch.empty(
size,
dtype=input.dtype,
device=input.device,
memory_format=memory_format,
),
torch.empty(
size,
dtype=torch.int64,
device=input.device,
memory_format=memory_format,
),
)
@register_meta(aten.fractional_max_pool2d.default)
def meta_fractional_max_pool2d(self_, kernel_size, output_size, random_samples):
torch._check(
self_.ndim in (3, 4),
lambda: f"fractional_max_pool2d: Expected 3D or 4D tensor, but got: {self_.ndim}",
)
ndim = self_.ndim
for d in range(ndim - 3, ndim):
torch._check(
self_.size(d) > 0,
f"fractional_max_pool2d: Expected input to have non-zero "
f" size for non-batch dimenions, but got {self_.size()} with dimension {d} empty",
)
# the check and message are out of sync, but this matches the structured meta
torch._check(
len(kernel_size) == 2,
lambda: "fractional_max_pool2d: kernel_size must"
"either be a single int or tuple of Ints",
)
torch._check(
len(output_size) == 2,
lambda: "fractional_max_pool2d: output_size must "
"either be a single int or tuple of Ints",
)
input_channels = self_.size(-3)
input_height = self_.size(-2)
input_width = self_.size(-1)
if ndim == 4:
input_batch = self_.size(0)
else:
input_batch = 1
torch._check(
self_.dtype == random_samples.dtype,
lambda: "Expect _random_samples to have the same dtype as input",
)
torch._check(
random_samples.ndim == 3,
lambda: f"Expect _random samples to have 3 dimensions got, {random_samples.ndim}",
)
n = random_samples.size(0)
c = random_samples.size(1)
d = random_samples.size(2)
torch._check(
n >= input_batch,
"Expect _random_samples.size(0) no less then input batch size.",
)
torch._check(
c == input_channels,
lambda: "Expect _random_samples.size(1) equals to input channel size.",
)
torch._check(d == 2, lambda: f"Expect _random_samples.size(2) equals to 2 got {d}.")
torch._check(
output_size[0] + kernel_size[0] - 1 <= input_height,
lambda: f"fractional_max_pool2d: kernel height {kernel_size[0]} is too large relative to input height {input_height}",
)
torch._check(
output_size[1] + kernel_size[1] - 1 <= input_width,
lambda: f"fractional_max_pool2d: kernel width {kernel_size[1]} is too large relative to input width {input_width}",
)
if self_.dim() == 4:
size = [input_batch, input_channels, output_size[0], output_size[1]]
else:
size = [input_channels, output_size[0], output_size[1]]
return (
torch.empty(
size,
dtype=self_.dtype,
device=self_.device,
),
torch.empty(
size,
dtype=torch.int64,
device=self_.device,
),
)
@register_meta(aten.max_unpool2d)
@out_wrapper()
def meta_max_unpool2d(self_, indices, output_size):
utils.alert_not_deterministic("max_unpooling2d_forward_out")
torch._check(
indices.dtype == torch.int64,
lambda: f"elements in indices should be type int64 but got: {indices.dtype}",
)
torch._check(
len(output_size) == 2,
lambda: (
f"There should be exactly two elements (height, width) in output_size, "
f"but got {len(output_size)} elements."
),
)
oheight, owidth = output_size
torch._check(
self_.ndim in (3, 4),
lambda: (
f"Input to max_unpooling2d should be a 3d or 4d Tensor, "
f"but got a tensor with {self_.ndim} dimensions."
),
)
torch._check(
self_.shape == indices.shape,
lambda: (
f"Expected shape of indices to be same as that of the input tensor ({self_.shape}) "
f"but got indices tensor with shape: {indices.shape}"
),
)
for i in range(1, self_.ndim):
torch._check(
self_.size(i) > 0,
lambda: (
f"max_unpooling2d(): "
f"Expected input to have non-zero size for non-batch dimensions, "
f"but got {self_.shape} with dimension {i} being empty."
),
)
self = self_.contiguous()
if self_.ndim == 3:
nchannels = self.size(0)
result = self.new_empty((nchannels, oheight, owidth))
else:
nbatch = self.size(0)
nchannels = self.size(1)
result = self.new_empty((nbatch, nchannels, oheight, owidth))
return result
def _max_unpooling3d_shape_check(input, indices, output_size, stride, padding, fn_name):
torch._check(
indices.dtype == torch.int64, lambda: "elements in indices should be type int64"
)
torch._check(
input.ndim in (4, 5),
lambda: f"Input to max_unpooling3d should be a 4d or 5d Tensor, but got a tensor with {input.ndim} dimensions.",
)
torch._check(
len(output_size) == 3,
lambda: (
f"There should be exactly three elements (depth, height, width) in output_size, "
f"but got {len(output_size)} elements."
),
)
torch._check(
len(stride) == 3,
lambda: f"There should be exactly three elements (depth, height, width) in stride, but got: {len(stride)} elements.",
)
torch._check(
len(padding) == 3,
lambda: f"There should be exactly three elements (depth, height, width) in padding, but got: {len(padding)} elements.",
)
torch._check(
input.shape == indices.shape,
lambda: (
f"Expected shape of indices to be same as that of the input tensor ({input.shape}) "
f"but got indices tensor with shape: {indices.shape}"
),
)
for i in range(1, input.ndim):
torch._check(
input.size(i) > 0,
lambda: (
f"{fn_name}: "
f"Expected input to have non-zero size for non-batch dimensions, "
f"but got {input.shape} with dimension {i} being empty."
),
)
torch._check(
stride[0] > 0 and stride[1] > 0 and stride[2] > 0,
lambda: f"strides should be greater than zero, but got stride: {stride}",
)
@register_meta(aten.max_unpool3d)
@out_wrapper()
def meta_max_unpool3d(self_, indices, output_size, stride, padding):
utils.alert_not_deterministic("max_unpooling3d_forward_out")
_max_unpooling3d_shape_check(
self_, indices, output_size, stride, padding, "max_unpooling3d()"
)
self = self_.contiguous()
odepth, oheight, owidth = output_size
if self_.ndim == 4:
nchannels = self.size(0)
result = self.new_empty((nchannels, odepth, oheight, owidth))
else:
nbatch = self.size(0)
nchannels = self.size(1)
result = self.new_empty((nbatch, nchannels, odepth, oheight, owidth))
return result
@register_meta(aten.max_pool3d_with_indices)
@out_wrapper("out", "indices")
def meta_max_pool3d_with_indices(
input,
kernel_size,
stride=(),
padding=(0,),
dilation=(1,),
ceil_mode=False,
):
torch._check(
len(kernel_size) in (1, 3),
lambda: "max_pool3d: kernel_size must either be a single int, or a tuple of three ints",
)
kT = kernel_size[0]
kH = kT if len(kernel_size) == 1 else kernel_size[1]
kW = kT if len(kernel_size) == 1 else kernel_size[2]
torch._check(
not stride or len(stride) in (1, 3),
lambda: "max_pool3d: stride must either be omitted, a single int, or a tuple of three ints",
)
dT = kT if not stride else stride[0]
dH = kH if not stride else (dT if len(stride) == 1 else stride[1])
dW = kW if not stride else (dT if len(stride) == 1 else stride[2])
torch._check(
len(padding) in (1, 3),
lambda: "max_pool3d: padding must either be a single int, or a tuple of three ints",
)
pT = padding[0]
pH = pT if len(padding) == 1 else padding[1]
pW = pT if len(padding) == 1 else padding[2]
torch._check(
len(dilation) in (1, 3),
lambda: "max_pool3d: dilation must be either a single int, or a tuple of three ints",
)
dilationT = dilation[0]
dilationH = dilationT if len(dilation) == 1 else dilation[1]
dilationW = dilationT if len(dilation) == 1 else dilation[2]
torch._check(
input.ndim in (4, 5),
lambda: "non-empty 4D or 5D (batch mode) tensor expected for input",
)
nbatch = input.size(-5) if input.ndim == 5 else 1
nslices = input.size(-4)
itime = input.size(-3)
iheight = input.size(-2)
iwidth = input.size(-1)
otime = pooling_output_shape(itime, kT, pT, dT, dilationT, ceil_mode)
oheight = pooling_output_shape(iheight, kH, pH, dH, dilationH, ceil_mode)
owidth = pooling_output_shape(iwidth, kW, pW, dW, dilationW, ceil_mode)
pool3d_shape_check(
input,
nslices,
kT,
kH,
kW,
dT,
dH,
dW,
pT,
pH,
pW,
dilationT,
dilationH,
dilationW,
itime,
iheight,
iwidth,
otime,
oheight,
owidth,
"max_pool3d_with_indices()",
)
channels_last = (
input.ndim == 5 and utils.suggest_memory_format(input) == torch.channels_last_3d
)
if input.ndim == 4:
input_channels_last_check = input.unsqueeze(0)
channels_last = (
not input_channels_last_check.is_contiguous()
) and input_channels_last_check.is_contiguous(
memory_format=torch.channels_last_3d
)
out_shape = (nslices, otime, oheight, owidth)
else:
out_shape = (nbatch, nslices, otime, oheight, owidth) # type: ignore[assignment]
out = input.new_empty(out_shape)
indices = input.new_empty(out_shape, dtype=torch.int64)
if channels_last:
out = out.to(memory_format=torch.channels_last_3d)
indices = indices.to(memory_format=torch.channels_last_3d)
return out, indices
@register_meta(aten.max_pool3d_with_indices_backward)
@out_wrapper("grad_input")
def meta_max_pool3d_with_indices_backward(
grad_output,
input,
kernel_size,
stride,
padding,
dilation,
ceil_mode,
indices,
):
torch._check(
len(kernel_size) in (1, 3),
lambda: "max_pool3d: kernel_size must either be a single int, or a tuple of three ints",
)
kT = kernel_size[0]
kH = kT if len(kernel_size) == 1 else kernel_size[1]
kW = kT if len(kernel_size) == 1 else kernel_size[2]
torch._check(
not stride or len(stride) in (1, 3),
lambda: "max_pool3d: stride must either be omitted, a single int, or a tuple of three ints",
)
dT = kT if not stride else stride[0]
dH = kH if not stride else (dT if len(stride) == 1 else stride[1])
dW = kW if not stride else (dT if len(stride) == 1 else stride[2])
torch._check(
len(padding) in (1, 3),
lambda: "max_pool3d: padding must either be a single int, or a tuple of three ints",
)
pT = padding[0]
pH = pT if len(padding) == 1 else padding[1]
pW = pT if len(padding) == 1 else padding[2]
torch._check(
len(dilation) in (1, 3),
lambda: "max_pool3d: dilation must be either a single int, or a tuple of three ints",
)
dilationT = dilation[0]
dilationH = dilationT if len(dilation) == 1 else dilation[1]
dilationW = dilationT if len(dilation) == 1 else dilation[2]
torch._check(
input.ndim in (4, 5),
lambda: "non-empty 4D or 5D (batch mode) tensor expected for input",
)
nslices = input.size(-4)
itime = input.size(-3)
iheight = input.size(-2)
iwidth = input.size(-1)
otime = grad_output.size(-3)
oheight = grad_output.size(-2)
owidth = grad_output.size(-1)
max_pool3d_backward_shape_check(
input,
grad_output,
indices,
nslices,
kT,
kH,
kW,
dT,
dH,
dW,
pT,
pH,
pW,
dilationT,
dilationH,
dilationW,
itime,
iheight,
iwidth,
otime,
oheight,
owidth,
"max_pool3d_with_indices_backward()",
)
channels_last = (
input.ndim == 5 and utils.suggest_memory_format(input) == torch.channels_last_3d
)
if input.ndim == 4:
input_channels_last_check = input.unsqueeze(0)
channels_last = (
not input_channels_last_check.is_contiguous()
) and input_channels_last_check.is_contiguous(
memory_format=torch.channels_last_3d
)
grad_input = input.new_empty(input.shape)
if channels_last:
grad_input = grad_input.to(memory_format=torch.channels_last_3d)
return grad_input
def check_grid_sampler_common(input: Tensor, grid: Tensor):
torch._check(
input.device == grid.device,
lambda: (
f"grid_sampler(): expected input and grid to be on same device, but input "
f"is on {input.device} and grid is on {grid.device}"
),
)
torch._check(
input.layout == torch.strided and grid.layout == torch.strided,
lambda: (
f"grid_sampler(): expected input and grid to have torch.strided layout, but "
f"input has {input.layout} and grid has {grid.layout}"
),
)
torch._check(
input.shape[0] == grid.shape[0],
lambda: (
f"grid_sampler(): expected grid and input to have same batch size, but got "
f"input with sizes {input.shape} and grid with sizes {grid.shape}"
),
)
torch._check(
grid.shape[-1] == input.ndim - 2,
lambda: (
f"grid_sampler(): expected grid to have size {input.ndim - 2} in last "
f"dimension, but got grid with sizes {grid.shape}"
),
)
for i in range(2, input.ndim):
torch._check(
input.shape[i] > 0,
lambda: (
f"grid_sampler(): expected input to have non-empty spatial dimensions, "
f"but input has sizes {input.shape} with dimension {i} being empty"
),
)
class GridSamplerInterpolation(Enum):
BILINEAR = 0
NEAREST = 1
BICUBIC = 2
def check_grid_sampler_3d(input: Tensor, grid: Tensor, interpolation_mode: int):
torch._check(
input.ndim == 5 and input.ndim == grid.ndim,
lambda: (
f"grid_sampler(): expected 5D input and grid with same number of "
f"dimensions, but got input with sizes {input.shape}"
f" and grid with sizes {grid.shape}"
),
)
torch._check(
not (
input.ndim == 5
and interpolation_mode == GridSamplerInterpolation.BICUBIC.value
),
lambda: "grid_sampler(): bicubic interpolation only supports 4D input",
)
@register_meta(aten.grid_sampler_2d_backward.default)
def grid_sampler_2d_backward_meta(
grad_output,
input,
grid,
interpolation_mode,
padding_mode,
align_corners,
output_mask,
):
input_requires_grad = output_mask[0]
if input_requires_grad:
grad_input = torch.zeros_like(input, memory_format=torch.contiguous_format)
else:
grad_input = None
grad_grid = torch.empty_like(grid, memory_format=torch.contiguous_format)
return (grad_input, grad_grid)
@register_meta(aten.grid_sampler_3d)
@out_wrapper()
def grid_sampler_3d(
input,
grid,
interpolation_mode,
padding_mode,
align_corners,
):
check_grid_sampler_common(input, grid)
check_grid_sampler_3d(input, grid, interpolation_mode)
N = input.shape[0]
C = input.shape[1]
out_D = grid.shape[1]
out_H = grid.shape[2]
out_W = grid.shape[3]
return input.new_empty((N, C, out_D, out_H, out_W))
@register_meta(aten.grid_sampler_3d_backward)
@out_wrapper("grad_input", "grad_grid")
def grid_sampler_3d_backward(
grad_output,
input,
grid,
interpolation_mode,
padding_mode,
align_corners,
output_mask,
):
check_grid_sampler_common(input, grid)
check_grid_sampler_3d(input, grid, interpolation_mode)
input_requires_grad = output_mask[0]
if input_requires_grad:
grad_input = torch.zeros_like(
input, memory_format=torch.legacy_contiguous_format
)
else:
grad_input = None
grad_grid = torch.empty_like(grid, memory_format=torch.legacy_contiguous_format)
return grad_input, grad_grid
@register_meta([aten.full.default])
def full(size, fill_value, *args, **kwargs):
dtype = kwargs.get("dtype", None)
if not dtype:
dtype = utils.get_dtype(fill_value)
kwargs["dtype"] = dtype
return torch.empty(size, *args, **kwargs)
# zeros_like is special cased to work for sparse
@register_meta(aten.zeros_like.default)
def zeros_like(
self,
dtype=None,
layout=None,
device=None,
pin_memory=None,
memory_format=None,
):
if layout == torch.sparse_coo:
torch._check(
memory_format is None,
lambda: "memory format option is only supported by strided tensors",
)
res = torch.empty(
0,
dtype=self.dtype if dtype is None else dtype,
layout=layout,
device=self.device if device is None else device,
pin_memory=pin_memory,
)
if self.is_sparse:
res.sparse_resize_and_clear_(
self.size(), self.sparse_dim(), self.dense_dim()
)
else:
res.sparse_resize_and_clear_(self.size(), self.dim(), 0)
res._coalesced_(True)
return res
res = aten.empty_like.default(
self,
dtype=dtype,
layout=layout,
device=device,
pin_memory=pin_memory,
memory_format=memory_format,
)
# device can be not "meta"
res.fill_(0)
return res
@register_meta(aten.select.int)
def meta_select(self, dim, index):
ndim = self.dim()
torch._check_index(
ndim != 0,
lambda: "select() cannot be applied to a 0-dim tensor.",
)
dim = dim if dim >= 0 else dim + ndim
size = self.size(dim)
torch._check_index(
not (-index > size or index >= size),
lambda: f"select(): index {index} out of range for tensor of size "
f"{self.size()} at dimension {dim}",
)
index = index if index >= 0 else index + size
new_size = list(self.size())
new_stride = list(self.stride())
new_storage_offset = self.storage_offset() + index * new_stride[dim]
del new_size[dim]
del new_stride[dim]
return self.as_strided(new_size, new_stride, new_storage_offset)
@register_meta(aten.select_scatter.default)
def meta_select_scatter(self, src, dim, index):
return utils.clone_preserve_strides(self)
@register_meta(aten.slice_scatter.default)
def meta_slice_scatter(self, src, dim=0, start=None, end=None, step=1):
return utils.clone_preserve_strides(self)
# TODO: Deduplicate this with canonicalize_dim
def maybe_wrap_dim(dim: int, dim_post_expr: int, wrap_scalar: bool = True):
if dim_post_expr <= 0:
assert wrap_scalar
dim_post_expr = 1
min = -dim_post_expr
max = dim_post_expr - 1
assert not (dim < min or dim > max), f"dim {dim} out of bounds ({min}, {max})"
if dim < 0:
dim += dim_post_expr
return dim
def ensure_nonempty_size(t, dim):
return 1 if t.dim() == 0 else t.shape[dim]
# From aten/src/ATen/native/ScatterGatherChecks.h
def gather_shape_check(self, dim, index):
self_dims = max(self.dim(), 1)
index_dims = max(index.dim(), 1)
torch._check(
self_dims == index_dims,
lambda: "Index tensor must have the same number of dimensions as input tensor",
)
for i in range(self_dims):
if i != dim:
torch._check(
ensure_nonempty_size(index, i) <= ensure_nonempty_size(self, i),
lambda: f"Size does not match at dimension {i} expected index {index.shape}"
+ f" to be smaller than self {self.shape} apart from dimension {dim}",
)
@register_meta(aten.gather.default)
def meta_gather(self, dim, index, sparse_grad=False):
wrapped_dim = maybe_wrap_dim(dim, self.dim())
is_index_empty = index.numel() == 0
if not is_index_empty:
torch._check(
index.dtype == torch.long,
lambda: f"gather(): Expected dtype int64 for index, but got {index.dtype}",
)
gather_shape_check(self, wrapped_dim, index)
return self.new_empty(index.shape)
# From aten/src/ATen/native/TensorAdvancedIndexing.cpp
def get_operator_enum(reduce_, use_new_options=False):
if use_new_options:
if reduce_ == "sum":
return "REDUCE_ADD"
elif reduce_ == "prod":
return "REDUCE_MULTIPLY"
elif reduce_ == "mean":
return "REDUCE_MEAN"
elif reduce_ == "amax":
return "REDUCE_MAXIMUM"
elif reduce_ == "amin":
return "REDUCE_MINIMUM"
torch._check(
False,
lambda: "reduce argument must be either sum, prod, mean, amax or amin.",
)
return
else:
if reduce_ == "add":
return "REDUCE_ADD"
elif reduce_ == "multiply":
return "REDUCE_MULTIPLY"
torch._check(False, lambda: "reduce argument must be either add or multiply.")
return
# From aten/src/ATen/native/ScatterGatherChecks.h
def scatter_gather_dtype_check(method_name, self, index, src_opt=None):
if index.numel() != 0:
torch._check(
index.dtype == torch.long,
lambda: f"{method_name}(): Expected dtype int64 for index",
)
if src_opt is not None:
torch._check(
self.dtype == src_opt.dtype,
lambda: f"{method_name}(): Expected self.dtype to be equal to src.dtype",
)
def ensure_nonempty_dim(dim):
return max(dim, 1)
# From aten/src/ATen/native/ScatterGatherChecks.h
def scatter_shape_check(self, dim, index, src_opt=None):
if index.numel() == 0:
return
torch._check(
ensure_nonempty_dim(self.dim()) == ensure_nonempty_dim(index.dim()),
lambda: "Index tensor must have the same number of dimensions as self tensor",
)
is_wrong_shape = False
self_dims = ensure_nonempty_dim(self.dim())
# Check: index.size(d) <= self.size(d) for all d != dim
for d in range(self_dims):
index_d_size = ensure_nonempty_size(index, d)
if d == dim:
continue
if index_d_size > ensure_nonempty_size(self, d):
is_wrong_shape = True
break
# Check: index.size(d) <= src.size(d) for all d if src is Tensor
if not is_wrong_shape and src_opt is not None:
for d in range(self_dims):
index_d_size = ensure_nonempty_size(index, d)
if index_d_size > ensure_nonempty_size(src_opt, d):
is_wrong_shape = True
break
if src_opt is not None:
torch._check(
ensure_nonempty_dim(self.dim()) == ensure_nonempty_dim(index.dim()),
lambda: "Index tensor must have the same number of dimensions as self tensor",
)
torch._check(
not is_wrong_shape,
lambda: f"Expected index {index.shape} to be smaller than self {self.shape}"
+ f" apart from dimension {dim} and to be smaller than src {src_opt.shape}",
)
else:
torch._check(
not is_wrong_shape,
lambda: f"Expected index {index.shape} to be smaller than self {self.shape}"
+ f" apart from dimension {dim}",
)
# From aten/src/ATen/native/TensorAdvancedIndexing.cpp
def scatter_meta_impl(self, dim, index, src=None, reduce_=None, use_new_options=False):
wrapped_dim = maybe_wrap_dim(dim, self.dim())
scatter_gather_dtype_check("scatter", self, index, src)
scatter_shape_check(self, wrapped_dim, index, src)
if reduce_ is not None:
# Check if we have a valid reduce operator.
get_operator_enum(reduce_, use_new_options)
@register_meta(aten.scatter_add.default)
def meta_scatter_add(self, dim, index, src):
scatter_meta_impl(self, dim, index, src, "add")
return self.new_empty(self.shape)
@register_meta(aten.scatter_add_)
def meta_scatter_add_(self, dim, index, src):
scatter_meta_impl(self, dim, index, src, "add")
return self
@register_meta(
[
aten.scatter.src,
aten.scatter.value,
aten.scatter.reduce,
aten.scatter.value_reduce,
]
)
@out_wrapper()
def meta_scatter(self, dim, index, src_or_value, reduce=None):
src = src_or_value if isinstance(src_or_value, torch.Tensor) else None
scatter_meta_impl(self, dim, index, src, reduce)
return self.new_empty(self.shape)
@register_meta(
[
aten.scatter_.src,
aten.scatter_.value,
aten.scatter_.reduce,
aten.scatter_.value_reduce,
]
)
def meta_scatter_(self, dim, index, src_or_value, reduce=None):
src = src_or_value if isinstance(src_or_value, torch.Tensor) else None
scatter_meta_impl(self, dim, index, src, reduce)
return self
@register_meta(
[
aten._scaled_dot_product_flash_attention_backward,
]
)
def meta__scaled_dot_product_flash_backward(
grad_out: Tensor,
query: Tensor,
key: Tensor,
value: Tensor,
out: Tensor,
logsumexp: Tensor,
cum_seq_q: Tensor,
cum_seq_k: Tensor,
max_q: int,
max_k: int,
dropout_p: float,
is_causal: bool,
philox_seed: Tensor,
philox_offset: Tensor,
scale: Optional[float] = None,
):
grad_q = torch.empty_like(query.transpose(1, 2)).transpose(1, 2)
grad_k = torch.empty_like(key.transpose(1, 2)).transpose(1, 2)
grad_v = torch.empty_like(value.transpose(1, 2)).transpose(1, 2)
return grad_q, grad_k, grad_v
@register_meta(
[
aten._scaled_dot_product_flash_attention_for_cpu,
]
)
def meta__scaled_dot_product_flash_attention_for_cpu(
query: Tensor,
key: Tensor,
value: Tensor,
dropout_p: float = 0.0,
is_causal: bool = False,
attn_mask: Optional[Tensor] = None,
scale: Optional[float] = None,
):
batch_size = query.size(0)
num_heads = query.size(1)
max_seqlen_batch_q = query.size(2)
head_dim = query.size(3)
attention = torch.empty(
(batch_size, max_seqlen_batch_q, num_heads, head_dim),
dtype=query.dtype,
device=query.device,
).transpose(1, 2)
logsumexp = torch.empty(
(
batch_size,
max_seqlen_batch_q,
num_heads,
),
dtype=torch.float,
device=query.device,
).transpose(1, 2)
return (
attention,
logsumexp,
)
@register_meta(
[
aten._scaled_dot_product_flash_attention_for_cpu_backward,
]
)
def meta__scaled_dot_product_flash_attention_for_cpu_backward(
grad_out: Tensor,
query: Tensor,
key: Tensor,
value: Tensor,
out: Tensor,
logsumexp: Tensor,
dropout_p: float,
is_causal: bool,
attn_mask: Optional[Tensor] = None,
scale: Optional[float] = None,
):
# cpus's grad layout is different from cuda's,
# i.e. (batch_size, seq_lennum_heads, head_dim
batch_size = query.size(0)
num_heads = query.size(1)
head_dim = query.size(3)
len_q = query.size(2)
len_k = key.size(2)
grad_q = torch.empty_permuted(
(batch_size, num_heads, len_q, head_dim),
(0, 2, 1, 3),
dtype=query.dtype,
device=query.device,
)
grad_k = torch.empty_permuted(
(batch_size, num_heads, len_k, head_dim),
(0, 2, 1, 3),
dtype=key.dtype,
device=key.device,
)
grad_v = torch.empty_permuted(
(batch_size, num_heads, len_k, head_dim),
(0, 2, 1, 3),
dtype=value.dtype,
device=value.device,
)
return grad_q, grad_k, grad_v
@register_meta(
[
aten._scaled_dot_product_efficient_attention_backward,
]
)
def meta__scaled_dot_product_efficient_backward(
grad_out: Tensor,
query: Tensor,
key: Tensor,
value: Tensor,
attn_bias: Optional[Tensor],
out: Tensor,
logsumexp: Tensor,
philox_seed: Tensor,
philox_offset: Tensor,
dropout_p: float,
grad_input_mask: List[bool],
is_causal: bool = False,
scale: Optional[float] = None,
):
batch_size = query.size(0)
num_heads = query.size(1)
max_q = query.size(2)
head_dim = query.size(3)
head_dim_v = value.size(3)
max_k = key.size(2)
grad_q = torch.empty_permuted(
(batch_size, num_heads, max_q, head_dim),
(0, 2, 1, 3),
dtype=query.dtype,
device=query.device,
)
grad_k = torch.empty_permuted(
(batch_size, num_heads, max_k, head_dim),
(0, 2, 1, 3),
dtype=key.dtype,
device=key.device,
)
grad_v = torch.empty_permuted(
(batch_size, num_heads, max_k, head_dim_v),
(0, 2, 1, 3),
dtype=value.dtype,
device=value.device,
)
grad_bias = None
if attn_bias is not None and grad_input_mask[3]:
lastDim = attn_bias.size(-1)
lastDimAligned = lastDim if lastDim % 16 == 0 else lastDim + 16 - lastDim % 16
new_sizes = list(attn_bias.size())
new_sizes[-1] = lastDimAligned
grad_bias = torch.empty(
new_sizes, dtype=attn_bias.dtype, device=attn_bias.device
)
grad_bias = grad_bias[..., :lastDim]
return grad_q, grad_k, grad_v, grad_bias
@register_meta(
[
aten._flash_attention_backward,
]
)
def meta__flash_attention_backward(
grad_out: Tensor,
query: Tensor,
key: Tensor,
value: Tensor,
out: Tensor,
logsumexp: Tensor,
cum_seq_q: Tensor,
cum_seq_k: Tensor,
max_q: int,
max_k: int,
dropout_p: float,
is_causal: bool,
philox_seed: Tensor,
philox_offset: Tensor,
scale: Optional[float] = None,
):
grad_query = torch.empty_like(query)
grad_key = torch.empty_like(key)
grad_value = torch.empty_like(value)
return grad_query, grad_key, grad_value
@register_meta(
[
aten._efficient_attention_backward,
]
)
def meta__efficient_attention_backward(
grad_out: Tensor,
query: Tensor,
key: Tensor,
value: Tensor,
bias: Optional[Tensor],
cu_seqlens_q: Optional[Tensor],
cu_seqlens_k: Optional[Tensor],
max_seqlen_q: int,
max_seqlen_k: int,
logsumexp: Tensor,
dropout_p: float,
philox_seed: Tensor,
philox_offset: Tensor,
custom_mask_type: int,
bias_requires_grad: bool,
scale: Optional[float] = None,
num_splits_key: Optional[int] = None,
):
grad_query = torch.empty_like(query)
grad_key = torch.empty_like(key)
grad_value = torch.empty_like(value)
if bias is not None:
lastDim = bias.size(-1)
lastDimAligned = lastDim if lastDim % 16 == 0 else lastDim + 16 - lastDim % 16
new_sizes = list(bias.size())
new_sizes[-1] = lastDimAligned
grad_bias = torch.empty(new_sizes, dtype=bias.dtype, device=bias.device)
grad_bias = grad_bias[..., :lastDim]
else:
grad_bias = torch.empty((), device=query.device)
return grad_query, grad_key, grad_value, grad_bias
@register_meta([aten._scaled_mm.default])
def meta_scaled_mm(
self: torch.Tensor,
mat2: torch.Tensor,
bias: Optional[torch.Tensor] = None,
out_dtype: Optional[torch.dtype] = None,
scale_a: Optional[torch.Tensor] = None,
scale_b: Optional[torch.Tensor] = None,
scale_result: Optional[torch.Tensor] = None,
use_fast_accum: bool = False,
):
def is_row_major(stride):
return stride[0] > stride[1] and stride[1] == 1
def is_col_major(shape, stride):
return stride[0] == 1 and stride[1] == shape[0]
def is_fp8_type(dtype):
return dtype in (
torch.float8_e4m3fn,
torch.float8_e5m2,
torch.float8_e4m3fnuz,
torch.float8_e5m2fnuz,
)
torch._check(
self.dim() == 2 and mat2.dim() == 2,
lambda: f"Inputs must be 2D but got self.dim()={self.dim()} and mat2.dim()={mat2.dim()}",
)
torch._check(
is_row_major(self.stride()),
lambda: "self must be row_major",
)
torch._check(
is_col_major(mat2.shape, mat2.stride()),
lambda: "mat2 must be col_major",
)
torch._check(
self.size(1) % 16 == 0,
lambda: f"Expected self.size(0) to be divisible by 16, but got self.size(1)={self.size(1)}",
)
torch._check(
mat2.size(0) % 16 == 0 and mat2.size(1) % 16 == 0,
lambda: f"Expected both dimensions of mat2 to be divisble by 16 but got {mat2.shape}",
)
torch._check(
is_fp8_type(self.dtype) and is_fp8_type(mat2.dtype),
lambda: f"Expected both inputs to be fp8 types but got self.dtype={self.dtype} and mat2.dtype={mat2.dtype}",
)
_out_dtype = out_dtype if out_dtype is not None else self.dtype
return torch.empty(
self.size(0), mat2.size(1), dtype=_out_dtype, device=self.device
), torch.empty((), dtype=torch.float32, device=self.device)
@register_meta([aten.scatter_reduce.two, aten.scatter_reduce.two_out])
@out_wrapper()
def meta_scatter_reduce_two(self, dim, index, src, reduce, include_self=True):
scatter_meta_impl(self, dim, index, src, reduce, use_new_options=True)
return self.new_empty(self.shape)
@register_meta(aten.scatter_reduce_.two)
def meta_scatter_reduce__two(self, dim, index, src, reduce, include_self=True):
scatter_meta_impl(self, dim, index, src, reduce, use_new_options=True)
return self
@register_meta([aten.multinomial.default, aten.multinomial.out])
@out_wrapper()
def meta_multinomial(input, num_samples, replacement=False, *, generator=None):
torch._check(
0 < input.dim() <= 2,
lambda: f"The probabilty distributions dimensions must be 1 or 2, but got {input.dim()}",
)
if input.dim() == 1:
return torch.empty(num_samples, dtype=torch.long, device=input.device)
return torch.empty(
input.size(0), num_samples, dtype=torch.long, device=input.device
)
def multiply_integers(vs):
r = 1
for v in vs:
r *= v
return r
def upsample_common_check(input_size, output_size, num_spatial_dims):
torch._check(
len(output_size) == num_spatial_dims,
lambda: f"It is expected output_size equals to {num_spatial_dims}, but got size {len(output_size)}",
)
expected_input_dims = num_spatial_dims + 2 # N, C, ...
torch._check(
len(input_size) == expected_input_dims,
lambda: f"It is expected input_size equals to {expected_input_dims}, but got size {len(input_size)}",
)
torch._check(
all(s > 0 for s in input_size[2:]) and all(s > 0 for s in output_size),
lambda: f"Input and output sizes should be greater than 0, but got "
f"input size {input_size} and output size {output_size}",
)
nbatch, channels = input_size[:2]
return (nbatch, channels, *output_size)
@register_meta(
[aten.upsample_nearest1d.default, aten._upsample_nearest_exact1d.default]
)
def upsample_nearest1d(input, output_size, scales=None):
torch._check(
input.numel() != 0 or multiply_integers(input.size()[1:]),
lambda: f"Non-empty 3D data tensor expected but got a tensor with sizes {input.size()}",
)
full_output_size = upsample_common_check(
input.size(), output_size, num_spatial_dims=1
)
return input.new_empty(full_output_size).to(
memory_format=utils.suggest_memory_format(input)
)
@register_meta(
[aten.upsample_nearest2d.default, aten._upsample_nearest_exact2d.default]
)
def upsample_nearest2d(input, output_size, scales_h=None, scales_w=None):
torch._check(
input.numel() != 0 or multiply_integers(input.size()[1:]),
lambda: f"Non-empty 4D data tensor expected but got a tensor with sizes {input.size()}",
)
full_output_size = upsample_common_check(
input.size(), output_size, num_spatial_dims=2
)
output = input.new_empty(full_output_size)
# convert output to correct memory format, if necessary
memory_format = utils.suggest_memory_format(input)
# following "heuristic: only use channels_last path when it's faster than the contiguous path"
_, n_channels, _, _ = input.shape
if input.device.type == "cuda" and n_channels < 4:
memory_format = torch.contiguous_format
output = output.contiguous(memory_format=memory_format)
return output
@register_meta(
[
aten.upsample_nearest2d_backward.default,
aten._upsample_nearest_exact2d_backward.default,
]
)
def upsample_nearest2d_backward(
grad_output: Tensor,
output_size: Sequence[Union[int, torch.SymInt]],
input_size: Sequence[Union[int, torch.SymInt]],
scales_h: Optional[float] = None,
scales_w: Optional[float] = None,
):
full_output_size = upsample_common_check(
input_size, output_size, num_spatial_dims=2
)
torch._check(
grad_output.ndim == 4,
lambda: f"Expected grad_output to be a tensor of dimension 4 but got: dimension {grad_output.ndim}",
)
for i in range(4):
torch._check(
grad_output.size(i) == full_output_size[i],
lambda: (
f"Expected grad_output to have the same shape as output;"
f" output.size({i}) = {full_output_size[i]}"
f" but got grad_output.size({i}) = {grad_output.size(i)}"
),
)
return grad_output.new_empty(input_size).to(
memory_format=utils.suggest_memory_format(grad_output)
) # type: ignore[call-overload]
@register_meta(
[aten.upsample_nearest3d.default, aten._upsample_nearest_exact3d.default]
)
def upsample_nearest3d(input, output_size, scales_d=None, scales_h=None, scales_w=None):
torch._check(
input.numel() != 0 or multiply_integers(input.size()[1:]),
lambda: f"Non-empty 5D data tensor expected but got a tensor with sizes {input.size()}",
)
full_output_size = upsample_common_check(
input.size(), output_size, num_spatial_dims=3
)
return input.new_empty(full_output_size).to(
memory_format=utils.suggest_memory_format(input)
)
@register_meta(
[
aten.sort.default,
aten.sort.stable,
aten.sort.values,
aten.sort.values_stable,
]
)
def meta_sort(self, stable=None, dim=-1, descending=False, values=None, indices=None):
v, i = torch.empty_like(self), torch.empty_like(self, dtype=torch.int64)
if values is not None and indices is not None:
assert isinstance(values, TensorLike)
assert isinstance(indices, TensorLike)
# Makes sure values and indices have the same strides. For cases where
# these have different shapes, like (5, 10, 5) and (0) in msort.
out_shape = v.shape
out_stride = v.stride()
values = _maybe_resize_out(values, out_shape)
indices = _maybe_resize_out(indices, out_shape)
values.as_strided_(out_shape, out_stride)
indices.as_strided_(out_shape, out_stride)
_safe_copy_out(copy_from=v, copy_to=values) # type: ignore[arg-type]
_safe_copy_out(copy_from=i, copy_to=indices) # type: ignore[arg-type]
return values, indices
return v, i
@register_meta(aten.argsort.stable)
def meta_argsort(self, *, stable, dim=-1, descending=False):
return meta_sort(self, stable=stable, dim=dim, descending=descending)[1]
def rnn_cell_checkSizes(
input_gates, hidden_gates, input_bias, hidden_bias, factor, prev_hidden
):
torch._check(input_gates.ndim == 2, lambda: f"{input_gates.ndim} != 2")
torch._check(
input_gates.shape == hidden_gates.shape,
lambda: f"{input_gates.shape} != {hidden_gates.shape}",
)
gates_size = input_gates.size(1)
if input_bias is not None:
torch._check(input_bias.ndim == 1, lambda: f"{input_bias.ndim} != 1")
torch._check(
input_bias.numel() == gates_size,
lambda: f"{input_bias.numel()} != {gates_size}",
)
torch._check(
input_bias.shape == hidden_bias.shape,
lambda: f"{input_bias.shape} != {hidden_bias.shape}",
)
torch._check(prev_hidden.ndim == 2, lambda: f"{prev_hidden.ndim} != 2")
expected_prev_hidden_numel = input_gates.size(0) * gates_size // factor
torch._check(
prev_hidden.numel() == expected_prev_hidden_numel,
lambda: f"{prev_hidden.numel()} != {input_gates.size(0)} * {gates_size} // {factor} (aka {expected_prev_hidden_numel})",
)
torch._check(
all(
x.device == input_gates.device
for x in [hidden_gates, input_bias, hidden_bias, prev_hidden]
),
lambda: "expected all inputs to be same device",
)
@register_meta(aten._thnn_fused_lstm_cell.default)
def _thnn_fused_lstm_cell_meta(
input_gates, hidden_gates, cx, input_bias=None, hidden_bias=None
):
rnn_cell_checkSizes(input_gates, hidden_gates, input_bias, hidden_bias, 4, cx)
workspace = torch.empty_like(input_gates, memory_format=torch.contiguous_format)
hy = torch.empty_like(cx, memory_format=torch.contiguous_format)
cy = torch.empty_like(cx, memory_format=torch.contiguous_format)
return (hy, cy, workspace)
@register_meta(aten._cudnn_rnn.default)
def _cudnn_rnn(
input,
weight,
weight_stride0,
weight_buf,
hx,
cx,
mode,
hidden_size,
proj_size,
num_layers,
batch_first,
dropout,
train,
bidirectional,
batch_sizes,
dropout_state,
):
is_input_packed = len(batch_sizes) != 0
if is_input_packed:
seq_length = len(batch_sizes)
mini_batch = batch_sizes[0]
batch_sizes_sum = input.shape[0]
else:
seq_length = input.shape[1] if batch_first else input.shape[0]
mini_batch = input.shape[0] if batch_first else input.shape[1]
batch_sizes_sum = -1
num_directions = 2 if bidirectional else 1
out_size = proj_size if proj_size != 0 else hidden_size
if is_input_packed:
out_shape = [batch_sizes_sum, out_size * num_directions]
else:
out_shape = (
[mini_batch, seq_length, out_size * num_directions]
if batch_first
else [seq_length, mini_batch, out_size * num_directions]
)
output = input.new_empty(out_shape)
cell_shape = [num_layers * num_directions, mini_batch, hidden_size]
if cx is None:
cy = torch.empty(0, device=input.device)
else:
cy = cx.new_empty(cell_shape)
hy = hx.new_empty([num_layers * num_directions, mini_batch, out_size])
# TODO: Query cudnnGetRNNTrainingReserveSize (expose to python)
reserve_shape = 0 if train else 0
reserve = input.new_empty(reserve_shape, dtype=torch.uint8)
return output, hy, cy, reserve, weight_buf
@register_meta(aten.mkldnn_rnn_layer.default)
def mkldnn_rnn_layer(
input,
w0,
w1,
w2,
w3,
hx_,
cx_,
reverse,
batch_sizes,
mode,
hidden_size,
num_layers,
has_biases,
bidirectional,
batch_first,
train,
):
seq_length = input.shape[1] if batch_first else input.shape[0]
mini_batch = input.shape[0] if batch_first else input.shape[1]
output_chanels = hidden_size
out_shape = (
[mini_batch, seq_length, output_chanels]
if batch_first
else [seq_length, mini_batch, output_chanels]
)
output = input.new_empty(out_shape)
if hx_ is None:
hy = torch.empty(0, device=input.device)
else:
hy = hx_.new_empty(hx_.shape)
if cx_ is None:
cy = torch.empty(0, device=input.device)
else:
cy = cx_.new_empty(cx_.shape)
workspace = torch.empty(0, device=input.device, dtype=torch.uint8)
return output, hy, cy, workspace
def zero_numel_check_dims(self, dim, fn_name):
if self.ndim == 0:
torch._check_index(
dim == 0 or dim == -1,
lambda: f"{fn_name}: Expected reduction dim -1 or 0 for scalar but got {dim}",
)
else:
torch._check_index(
self.size(dim) != 0,
lambda: f"{fn_name}: Expected reduction dim {dim} to have non-zero size.",
)
# From aten/src/ATen/native/ReduceOps.cpp
def check_argmax_argmin(name, self, dim):
if dim is not None:
dim = maybe_wrap_dim(dim, self.dim())
zero_numel_check_dims(self, dim, name)
else:
torch._check(
self.numel() != 0,
lambda: f"{name}: Expected reduction dim to be specified for input.numel() == 0.",
)
@register_meta([aten.argmax.default, aten.argmin.default])
def argmax_argmin_meta(self, dim=None, keepdim=False):
check_argmax_argmin("argmax", self, dim)
dims = utils.reduction_dims(self.shape, (dim,) if dim is not None else None)
shape = _compute_reduction_shape(self, dims, keepdim)
return self.new_empty(shape, dtype=torch.int64)
@register_meta(aten.scalar_tensor.default)
def scalar_tensor(s, dtype=None, layout=None, device=None, pin_memory=None):
return torch.empty(
(), dtype=dtype, layout=layout, device=device, pin_memory=pin_memory
)
@register_meta(aten.topk.default)
def topk_meta(self, k, dim=-1, largest=True, sorted=True):
# From aten/src/ATen/native/Sorting.cpp
dim = maybe_wrap_dim(dim, self.dim(), wrap_scalar=True)
torch._check(
k >= 0 and k <= (self.size(dim) if self.dim() > 0 else 1),
lambda: "selected index k out of range",
)
sliceSize = 1 if self.dim() == 0 else self.size(dim)
torch._check(k >= 0 and k <= sliceSize, lambda: "k not in range for dimension")
topKSize = list(self.shape)
if len(topKSize) > 0:
topKSize[dim] = k
return self.new_empty(topKSize), self.new_empty(topKSize, dtype=torch.int64)
legacy_contiguous_memory_format = torch.contiguous_format
# From aten/src/ATen/native/cuda/RNN.cu
def checkLSTMBackwardSizes(grad_hy, grad_cy, cx, cy, workspace):
defined_grad = grad_hy if grad_hy is not None else grad_cy
torch._check(defined_grad.dim() == 2, lambda: "")
exp_size = defined_grad.size()
if grad_hy is not None:
torch._check(grad_hy.size() == exp_size, lambda: "")
if grad_cy is not None:
torch._check(grad_cy.size() == exp_size, lambda: "")
torch._check(cx.size() == exp_size, lambda: "")
torch._check(cy.size() == exp_size, lambda: "")
torch._check(workspace.dim() == 2, lambda: "")
torch._check(workspace.numel() == exp_size[0] * exp_size[1] * 4, lambda: "")
# From aten/src/ATen/native/cuda/RNN.cu
@register_meta(aten._thnn_fused_lstm_cell_backward_impl.default)
def _thnn_fused_lstm_cell_backward_impl(grad_hy, grad_cy, cx, cy, workspace, has_bias):
if grad_hy is None and grad_cy is None:
return None, None, None
checkLSTMBackwardSizes(grad_hy, grad_cy, cx, cy, workspace)
grad_gates = torch.empty_like(
workspace, memory_format=legacy_contiguous_memory_format
)
grad_cx = torch.empty_like(cx, memory_format=legacy_contiguous_memory_format)
grad_bias = grad_gates.sum(0, keepdim=False) if has_bias else None
return grad_gates, grad_cx, grad_bias
# From aten/src/ATen/native/mps/operations/Linear.mm
@register_meta(aten.linear_backward.default)
def linear_backward(input_, grad_output_, weight_, output_mask):
grad_input = None
grad_weight = None
grad_bias = None
if output_mask[0]:
grad_input = grad_output_.new_empty(input_.size())
if output_mask[1] or output_mask[2]:
grad_weight = grad_output_.new_empty((grad_output_.size(-1), input_.size(-1)))
grad_bias = grad_output_.new_empty(grad_output_.size(-1))
return (grad_input, grad_weight, grad_bias)
@register_meta(aten.pixel_shuffle.default)
def meta_pixel_shuffle(self, upscale_factor):
assert (
len(self.shape) > 2 and self.shape[-3] % (upscale_factor * upscale_factor) == 0
), f"Invalid input shape for pixel_shuffle: {self.shape} with upscale_factor = {upscale_factor}"
def is_channels_last(ten):
return torch._prims_common.suggest_memory_format(ten) == torch.channels_last
def pick_memory_format():
if is_channels_last(self):
if device_hint(self) == "cuda":
return torch.contiguous_format
else:
return torch.channels_last
elif self.is_contiguous(memory_format=torch.contiguous_format):
return torch.contiguous_format
elif self.is_contiguous(memory_format=torch.preserve_format):
return torch.preserve_format
C = self.shape[-3] // (upscale_factor * upscale_factor)
Hr = self.shape[-2] * upscale_factor
Wr = self.shape[-1] * upscale_factor
out_shape = (*self.shape[:-3], C, Hr, Wr)
out = self.new_empty(out_shape)
out = out.to(memory_format=pick_memory_format()) # type: ignore[call-overload]
return out
@register_meta(aten.mkldnn_rnn_layer_backward.default)
def mkldnn_rnn_layer_backward(
input,
weight0,
weight1,
weight2,
weight3,
hx_,
cx_tmp,
output,
hy_,
cy_,
grad_output_r_opt,
grad_hy_r_opt,
grad_cy_r_opt,
reverse,
mode,
hidden_size,
num_layers,
has_biases,
train,
bidirectional,
batch_sizes,
batch_first,
workspace,
):
diff_x = input.new_empty(input.shape)
diff_hx = hx_.new_empty(hx_.shape)
diff_cx = cx_tmp.new_empty(cx_tmp.shape)
diff_w1 = weight0.new_empty(weight0.shape)
diff_w2 = weight1.new_empty(weight1.shape)
diff_b = weight2.new_empty(weight2.shape)
return diff_x, diff_w1, diff_w2, diff_b, diff_b, diff_hx, diff_cx
@register_meta([aten.bucketize.Tensor, aten.bucketize.Tensor_out])
@out_wrapper()
def meta_bucketize(self, boundaries, *, out_int32=False, right=False):
return torch.empty_like(
self, dtype=torch.int32 if out_int32 else torch.int64
).contiguous()
@register_meta(
[aten._upsample_bilinear2d_aa.default, aten._upsample_bicubic2d_aa.default]
)
def meta_upsample_bimode2d_aa(
input, output_size, align_corners, scales_h=None, scales_w=None
):
full_output_size = upsample_common_check(
input.size(), output_size, num_spatial_dims=2
)
torch._check(
input.numel() != 0 or all(size > 0 for size in input.size()[1:]),
lambda: f"Non-empty 4D data tensor expected but got a tensor with sizes {input.size()}",
)
return input.new_empty(full_output_size).to(
memory_format=utils.suggest_memory_format(input)
)
# From aten/src/ATen/native/cuda/AmpKernels.cu
@register_meta(aten._amp_foreach_non_finite_check_and_unscale_.default)
def _amp_foreach_non_finite_check_and_unscale_(self, found_inf, inv_scale):
torch._check(
found_inf.numel() == 1, lambda: "found_inf must be a 1-element tensor."
)
torch._check(
inv_scale.numel() == 1, lambda: "inv_scale must be a 1-element tensor."
)
torch._check(
found_inf.dtype.is_floating_point,
lambda: "found_inf must be a float tensor.",
)
torch._check(
inv_scale.dtype.is_floating_point,
lambda: "inv_scale must be a float tensor.",
)
# From aten/src/ATen/native/UnaryOps.cpp
@register_meta([aten.nan_to_num.default, aten.nan_to_num.out])
@out_wrapper()
def nan_to_num(self, nan=None, posinf=None, neginf=None):
result_size = list(self.size())
return self.new_empty(result_size)
@register_meta(torch.ops.aten.transpose_)
def transpose_(self, dim0, dim1):
assert self.layout not in {
torch.sparse_csr,
torch.sparse_csc,
torch.sparse_bsr,
torch.sparse_bsc,
}, f"torch.transpose_: in-place transposition is not supported for {self.layout} layout"
ndims = self.ndim
dim0 = maybe_wrap_dim(dim0, ndims)
dim1 = maybe_wrap_dim(dim1, ndims)
if dim0 == dim1:
return self
size = list(self.size())
stride = list(self.stride())
stride[dim0], stride[dim1] = stride[dim1], stride[dim0]
size[dim0], size[dim1] = size[dim1], size[dim0]
self.as_strided_(size, stride)
return self
@register_meta(torch.ops.aten.t_)
def t_(self):
ndims = self.ndim
if self.is_sparse:
sparse_dim = self.sparse_dim()
dense_dim = self.dense_dim()
assert (
sparse_dim <= 2 and dense_dim == 0
), f"t_ expects a tensor with <= 2 sparse and 0 dense dimensions, but got {sparse_dim} sparse and {dense_dim} dense dimensions" # noqa: B950
else:
assert (
self.dim() <= 2
), f"t_ expects a tensor with <= 2 dimensions, but self is {ndims}D"
return transpose_(self, 0, 0 if ndims < 2 else 1)
@register_meta(aten.searchsorted)
@out_wrapper()
def meta_searchsorted(
sorted_sequence, self, *, out_int32=False, right=False, side=None, sorter=None
):
dtype = torch.int32 if out_int32 else torch.int64
if isinstance(self, torch.Tensor):
return torch.empty_like(self, dtype=dtype).contiguous()
else: # Scalar
return torch.empty((), dtype=dtype, device=sorted_sequence.device)
def _check_for_unsupported_isin_dtype(dtype):
torch._check(
dtype not in [torch.bool, torch.bfloat16, torch.complex128, torch.complex64],
lambda: f"Unsupported input type encountered for isin(): {dtype}",
)
@register_meta(aten.isin)
@out_wrapper()
def meta_isin(elements, test_elements, *, assume_unique=False, invert=False):
torch._check(
isinstance(elements, Tensor) or isinstance(test_elements, Tensor),
lambda: "At least one of elements and test_elements must be a Tensor.",
)
if not isinstance(elements, Tensor):
elements = torch.tensor(elements, device=test_elements.device)
if not isinstance(test_elements, Tensor):
test_elements = torch.tensor(test_elements, device=elements.device)
_check_for_unsupported_isin_dtype(elements.dtype)
_check_for_unsupported_isin_dtype(test_elements.dtype)
return torch.empty_like(elements, dtype=torch.bool)
@register_meta(aten.polygamma)
@out_wrapper()
def meta_polygamma(n: int, self: Tensor) -> Tensor:
torch._check(n >= 0, lambda: "polygamma(n, x) does not support negative n.")
_, result_dtype = elementwise_dtypes(
self,
type_promotion_kind=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT,
)
return torch.empty_like(self, dtype=result_dtype)
def _create_unary_float_meta_func(func):
@register_meta(func)
@out_wrapper()
def _f(x):
return elementwise_meta(
x, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT
)
return _f
def _create_binary_float_meta_func(func):
@register_meta(func)
@out_wrapper()
def _f(x, y):
return elementwise_meta(
x, y, type_promotion=ELEMENTWISE_TYPE_PROMOTION_KIND.INT_TO_FLOAT
)
return _f
_create_unary_float_meta_func(aten.special_airy_ai)
_create_unary_float_meta_func(aten.special_bessel_y0)
_create_unary_float_meta_func(aten.special_bessel_y1)
_create_unary_float_meta_func(aten.special_modified_bessel_i0)
_create_unary_float_meta_func(aten.special_modified_bessel_i1)
_create_unary_float_meta_func(aten.special_modified_bessel_k0)
_create_unary_float_meta_func(aten.special_modified_bessel_k1)
_create_unary_float_meta_func(aten.special_scaled_modified_bessel_k0)
_create_unary_float_meta_func(aten.special_scaled_modified_bessel_k1)
_create_binary_float_meta_func(aten.special_chebyshev_polynomial_t)
_create_binary_float_meta_func(aten.special_chebyshev_polynomial_u)
_create_binary_float_meta_func(aten.special_chebyshev_polynomial_v)
_create_binary_float_meta_func(aten.special_chebyshev_polynomial_w)
_create_binary_float_meta_func(aten.special_shifted_chebyshev_polynomial_t)
_create_binary_float_meta_func(aten.special_shifted_chebyshev_polynomial_u)
_create_binary_float_meta_func(aten.special_shifted_chebyshev_polynomial_v)
_create_binary_float_meta_func(aten.special_shifted_chebyshev_polynomial_w)
_create_binary_float_meta_func(aten.special_hermite_polynomial_h)
_create_binary_float_meta_func(aten.special_hermite_polynomial_he)
_create_binary_float_meta_func(aten.special_laguerre_polynomial_l)
_create_binary_float_meta_func(aten.special_legendre_polynomial_p)
# We must also trigger meta registrations from PrimTorch ref
# decompositions
import torch._refs
import torch._refs.nn.functional
import torch._refs.special
def activate_meta():
activate_meta_table = {}
# For a given op, we pick the most specific decomp function from
# global_decomp_table in the precedence order of meta > post_autograd > pre_autograd
for type in ["meta", "post_autograd", "pre_autograd"]:
registry = global_decomposition_table[type]
for opo in registry:
if opo not in activate_meta_table:
activate_meta_table[opo] = registry[opo]
for op_overload, fn in activate_meta_table.items():
# Don't register meta for HigherOrderOp's decomp.
# We can reconsider this in the future, but in general,
# the way you do a meta for a HigherOrderOp is different from
# OpOverload.
if isinstance(op_overload, torch._ops.HigherOrderOperator):
continue
assert isinstance(op_overload, OpOverload)
op_overload.py_impl(torch._C.DispatchKey.Meta)(fn)
if torch._C._dispatch_has_kernel_for_dispatch_key(
op_overload.name(), "CompositeImplicitAutograd"
):
# Internally, we shouldn't be registering meta kernels for any operators that
# have CompositeImplicitAutograd kernels.
# Instead, we should be letting those decompositions run, and writing meta kernels
# only for the base operators.
if op_overload in global_decomposition_table["meta"]:
raise RuntimeError(
f"{op_overload} is a CompositeImplicitAutograd op, we shouldn't "
"register meta function for it. Instead, we should let the decomposition run and write "
"meta kernels for the base operators."
)
pass
elif op_overload.is_view:
# Attempting to register a python meta kernel for a view operator.
# We shouldn't do this, because the output will report as not having aliased storages.
# All view ops have meta kernels in C++ today, so we should use those instead.
pass
elif op_overload.name() in {
"aten::empty_strided", # causing infinite recursion, test_meta.py
"aten::clone", # causing infinite recursion
"aten::_to_copy", # causing infinite recursion, test_serialization.py -k test_tensor_subclass_getstate_overwrite # noqa: B950
"aten::copy_", # Exception not raised, test_torch.py -k test_storage_meta_errors_cpu_int64 # noqa: B950
"aten::constant_pad_nd", # requires_grad mismatch, test_ops.py -k test_fake_crossref_backward_amp_istft_cuda_float32 # noqa: B950
"aten::rot90", # requires_grad mismatch! test_ops.py -k test_fake_crossref_backward_amp_rot90_cuda_float32 # noqa: B950
"aten::as_strided_scatter", # requires_grad mismatch, test_ops.py -k test_fake_crossref_backward_no_amp_as_strided_scatter_cuda_float32 # noqa: B950
}:
pass
else:
if "mkldnn::" in op_overload.name():
_meta_lib_dont_use_me_use_register_meta_for_mkldnn.impl(op_overload, fn)
elif "mkl::" in op_overload.name():
_meta_lib_dont_use_me_use_register_meta_for_mkl.impl(op_overload, fn)
elif "onednn::" in op_overload.name():
_meta_lib_dont_use_me_use_register_meta_for_onednn.impl(op_overload, fn)
elif "quantized::" in op_overload.name():
_meta_lib_dont_use_me_use_register_meta_for_quantized.impl(
op_overload, fn
)
else:
_meta_lib_dont_use_me_use_register_meta.impl(op_overload, fn)
activate_meta()