You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
665 lines
28 KiB
665 lines
28 KiB
5 months ago
|
import copy
|
||
|
import itertools
|
||
|
import warnings
|
||
|
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import torch.ao.nn.quantized as nnq
|
||
|
from torch.ao.nn.intrinsic import _FusedModule
|
||
|
|
||
|
from torch.ao.quantization.quantization_mappings import (
|
||
|
get_default_dynamic_quant_module_mappings,
|
||
|
get_default_static_quant_module_mappings,
|
||
|
get_default_static_quant_reference_module_mappings,
|
||
|
get_default_qat_module_mappings,
|
||
|
get_default_qconfig_propagation_list,
|
||
|
no_observer_set,
|
||
|
_has_special_act_post_process,
|
||
|
_get_special_act_post_process,
|
||
|
)
|
||
|
from .utils import get_qparam_dict, has_no_children_ignoring_parametrizations
|
||
|
from torch.ao.quantization.stubs import DeQuantStub, QuantWrapper
|
||
|
from torch.ao.quantization.qconfig import (
|
||
|
_add_module_to_qconfig_obs_ctr,
|
||
|
default_dynamic_qconfig,
|
||
|
float16_dynamic_qconfig,
|
||
|
float_qparams_weight_only_qconfig,
|
||
|
float_qparams_weight_only_qconfig_4bit,
|
||
|
_activation_is_memoryless)
|
||
|
from torch.nn.utils.parametrize import type_before_parametrizations
|
||
|
from torch.ao.quantization.observer import _is_activation_post_process
|
||
|
|
||
|
# TODO remove this once BC is no longer required to avoid a SEV
|
||
|
from torch.ao.quantization.observer import ( # noqa: F401
|
||
|
_is_activation_post_process as is_activation_post_process
|
||
|
)
|
||
|
|
||
|
__all__ = [
|
||
|
"get_default_custom_config_dict",
|
||
|
"propagate_qconfig_",
|
||
|
"add_quant_dequant",
|
||
|
"prepare",
|
||
|
"quantize",
|
||
|
"quantize_dynamic",
|
||
|
"prepare_qat",
|
||
|
"quantize_qat",
|
||
|
"convert",
|
||
|
"swap_module",
|
||
|
]
|
||
|
|
||
|
_DEFAULT_CUSTOM_CONFIG_DICT = {
|
||
|
'float_to_observed_custom_module_class': {
|
||
|
nn.LSTM: nn.quantizable.LSTM,
|
||
|
nn.MultiheadAttention: nn.quantizable.MultiheadAttention,
|
||
|
},
|
||
|
'observed_to_quantized_custom_module_class': {
|
||
|
nn.quantizable.LSTM: nn.quantized.LSTM,
|
||
|
nn.quantizable.MultiheadAttention: nn.quantized.MultiheadAttention,
|
||
|
}
|
||
|
}
|
||
|
|
||
|
def get_default_custom_config_dict():
|
||
|
r"""Defines the default custom config dict.
|
||
|
"""
|
||
|
return _DEFAULT_CUSTOM_CONFIG_DICT
|
||
|
|
||
|
def _propagate_qconfig_helper(module, qconfig_dict,
|
||
|
qconfig_parent=None, prefix='', prepare_custom_config_dict=None):
|
||
|
r"""This is a helper function for `propagate_qconfig_`
|
||
|
|
||
|
Args:
|
||
|
module: input module
|
||
|
qconfig_dict: dictionary that maps from name of submodule to quantization
|
||
|
configuration
|
||
|
qconfig_parent: quantization config of parent module, we will fallback to
|
||
|
this config when there is no specified config for current
|
||
|
module
|
||
|
prefix: corresponding prefix of the current module, used as key in
|
||
|
qconfig_dict
|
||
|
prepare_custom_config_dict: dictionary for custom handling of modules
|
||
|
see docs for :func:`~torch.ao.quantization.prepare_fx`
|
||
|
|
||
|
Return:
|
||
|
None, module is modified inplace with qconfig attached
|
||
|
"""
|
||
|
|
||
|
module_qconfig = qconfig_dict.get(type_before_parametrizations(module), qconfig_parent)
|
||
|
module_qconfig = qconfig_dict.get(prefix, module_qconfig)
|
||
|
module_qconfig = getattr(module, 'qconfig', module_qconfig)
|
||
|
|
||
|
torch.ao.quantization.qconfig._assert_valid_qconfig(module_qconfig, module)
|
||
|
|
||
|
qconfig_with_device_check = _add_module_to_qconfig_obs_ctr(module_qconfig, module)
|
||
|
module.qconfig = qconfig_with_device_check
|
||
|
|
||
|
for name, child in module.named_children():
|
||
|
module_prefix = prefix + '.' + name if prefix else name
|
||
|
# do no not propagate qconfig to child if child is non traceable
|
||
|
if prepare_custom_config_dict is None or not (
|
||
|
name in prepare_custom_config_dict.get("non_traceable_module_name", [])
|
||
|
or type(child) in prepare_custom_config_dict.get("non_traceable_module_class", [])
|
||
|
):
|
||
|
_propagate_qconfig_helper(
|
||
|
child, qconfig_dict, qconfig_with_device_check, module_prefix
|
||
|
)
|
||
|
|
||
|
def propagate_qconfig_(module, qconfig_dict=None, prepare_custom_config_dict=None):
|
||
|
r"""Propagate qconfig through the module hierarchy and assign `qconfig`
|
||
|
attribute on each leaf module
|
||
|
|
||
|
Args:
|
||
|
module: input module
|
||
|
qconfig_dict: dictionary that maps from name or type of submodule to
|
||
|
quantization configuration, qconfig applies to all submodules of a
|
||
|
given module unless qconfig for the submodules are specified (when
|
||
|
the submodule already has qconfig attribute)
|
||
|
prepare_custom_config_dict: dictionary for custom handling of modules
|
||
|
see docs for :func:`~torch.ao.quantization.prepare_fx`
|
||
|
|
||
|
Return:
|
||
|
None, module is modified inplace with qconfig attached
|
||
|
"""
|
||
|
if qconfig_dict is None:
|
||
|
qconfig_dict = {}
|
||
|
if prepare_custom_config_dict is None:
|
||
|
prepare_custom_config_dict = {}
|
||
|
_propagate_qconfig_helper(module, qconfig_dict, prepare_custom_config_dict=prepare_custom_config_dict)
|
||
|
|
||
|
def _observer_forward_hook(self, input, output):
|
||
|
r"""Forward hook that calls observer on the output
|
||
|
"""
|
||
|
return self.activation_post_process(output)
|
||
|
|
||
|
def _observer_forward_pre_hook(self, input):
|
||
|
r"""Forward pre hook that calls observer on the output
|
||
|
"""
|
||
|
return self.activation_post_process(input[0])
|
||
|
|
||
|
def _register_activation_post_process_hook(module, pre_hook=False):
|
||
|
assert hasattr(module, 'activation_post_process'), \
|
||
|
'Expect activation_post_process attribute already attached to the module'
|
||
|
if pre_hook:
|
||
|
handle = module.register_forward_pre_hook(
|
||
|
_observer_forward_pre_hook, prepend=True
|
||
|
)
|
||
|
else:
|
||
|
handle = module.register_forward_hook(
|
||
|
_observer_forward_hook, prepend=True
|
||
|
)
|
||
|
|
||
|
|
||
|
def _add_observer_(module, qconfig_propagation_list=None, non_leaf_module_list=None, device=None, custom_module_class_mapping=None):
|
||
|
r"""Add observer for the leaf child of the module.
|
||
|
|
||
|
This function insert observer module to all leaf child module that
|
||
|
has a valid qconfig attribute.
|
||
|
|
||
|
Args:
|
||
|
module: input module with qconfig attributes for all the leaf modules that we want to quantize
|
||
|
qconfig_propagation_list: a list of quantizable modules that will have observers added to them
|
||
|
if they are leaf nodes
|
||
|
device: parent device, if any
|
||
|
non_leaf_module_list: list of non-leaf modules we want to add observer
|
||
|
|
||
|
Return:
|
||
|
None, module is modified inplace with added observer modules and forward_hooks
|
||
|
"""
|
||
|
if qconfig_propagation_list is None:
|
||
|
qconfig_propagation_list = get_default_qconfig_propagation_list()
|
||
|
|
||
|
if custom_module_class_mapping is None:
|
||
|
custom_module_class_mapping = {}
|
||
|
|
||
|
# respect device affinity when adding observers
|
||
|
if device is None:
|
||
|
devices = _get_unique_devices_(module)
|
||
|
assert len(devices) <= 1, (
|
||
|
f"_add_observer_ only works with cpu or single-device CUDA modules, but got devices {devices}"
|
||
|
)
|
||
|
device = next(iter(devices)) if len(devices) > 0 else None
|
||
|
|
||
|
def get_activation_post_process(qconfig, device, special_act_post_process=None):
|
||
|
activation = qconfig.activation() if special_act_post_process is None else special_act_post_process()
|
||
|
if device is not None:
|
||
|
activation.to(device)
|
||
|
return activation
|
||
|
|
||
|
def needs_observation(m):
|
||
|
return hasattr(m, 'qconfig') and m.qconfig is not None
|
||
|
|
||
|
def insert_activation_post_process(m, special_act_post_process=None):
|
||
|
""" Adds an activation post process module and register
|
||
|
a pre or post hook that calls the module
|
||
|
"""
|
||
|
# We don't insert observer/fake_quantize for DeQuantStub
|
||
|
if needs_observation(m) and not isinstance(m, DeQuantStub):
|
||
|
# observer and hook will be gone after we swap the module
|
||
|
m.add_module('activation_post_process', get_activation_post_process(
|
||
|
m.qconfig, device, special_act_post_process))
|
||
|
# Register observer as the first entry in the hook list
|
||
|
# All post forward hooks are preserved and will be executed after the observer before convert
|
||
|
_register_activation_post_process_hook(m, pre_hook=_activation_is_memoryless(m.qconfig))
|
||
|
|
||
|
for name, child in module.named_children():
|
||
|
# TODO remove Dropout special after codebase stable
|
||
|
if type_before_parametrizations(child) in [nn.Dropout]:
|
||
|
continue
|
||
|
elif issubclass(type_before_parametrizations(child), (nnq.FloatFunctional, nnq.QFunctional)):
|
||
|
if needs_observation(child):
|
||
|
assert hasattr(child, "activation_post_process"), (
|
||
|
f"functional class {type_before_parametrizations(child)} has no pre-defined `activation_post_process`"
|
||
|
)
|
||
|
child.activation_post_process = get_activation_post_process(child.qconfig, device)
|
||
|
elif isinstance(child, _FusedModule):
|
||
|
# activation_post_process are now added directly to nn.Sequential/_FusedModule
|
||
|
if needs_observation(child):
|
||
|
insert_activation_post_process(child)
|
||
|
elif non_leaf_module_list is not None and type_before_parametrizations(child) in non_leaf_module_list:
|
||
|
if needs_observation(child):
|
||
|
insert_activation_post_process(child)
|
||
|
elif _has_special_act_post_process(child):
|
||
|
special_act_post_process = _get_special_act_post_process(child)
|
||
|
insert_activation_post_process(child, special_act_post_process)
|
||
|
elif needs_observation(child) and type_before_parametrizations(child) in custom_module_class_mapping:
|
||
|
observed_child = custom_module_class_mapping[type_before_parametrizations(child)].from_float(child)
|
||
|
setattr(module, name, observed_child)
|
||
|
# TODO: These are the modules that cannot be observed
|
||
|
# Once there are more, we should move them to a separate list
|
||
|
if custom_module_class_mapping[type_before_parametrizations(child)] not in no_observer_set():
|
||
|
insert_activation_post_process(observed_child)
|
||
|
else:
|
||
|
_add_observer_(child, qconfig_propagation_list, non_leaf_module_list, device, custom_module_class_mapping)
|
||
|
|
||
|
# Insert observers only for leaf nodes, note that this observer is for
|
||
|
# the output of the module, for input QuantStub will observe them
|
||
|
if has_no_children_ignoring_parametrizations(module) and not isinstance(module, torch.nn.Sequential) \
|
||
|
and type_before_parametrizations(module) in qconfig_propagation_list:
|
||
|
insert_activation_post_process(module)
|
||
|
|
||
|
def _get_unique_devices_(module):
|
||
|
return {p.device for p in module.parameters()} | \
|
||
|
{p.device for p in module.buffers()}
|
||
|
|
||
|
def add_quant_dequant(module):
|
||
|
r"""Wrap the leaf child module in QuantWrapper if it has a valid qconfig
|
||
|
Note that this function will modify the children of module inplace and it
|
||
|
can return a new module which wraps the input module as well.
|
||
|
|
||
|
Args:
|
||
|
module: input module with qconfig attributes for all the leaf modules
|
||
|
that we want to quantize
|
||
|
|
||
|
Return:
|
||
|
Either the inplace modified module with submodules wrapped in
|
||
|
`QuantWrapper` based on qconfig or a new `QuantWrapper` module which
|
||
|
wraps the input module, the latter case only happens when the input
|
||
|
module is a leaf module and we want to quantize it.
|
||
|
"""
|
||
|
if has_no_children_ignoring_parametrizations(module) and hasattr(module, 'qconfig') and module.qconfig:
|
||
|
return QuantWrapper(module)
|
||
|
|
||
|
for name, child in module.named_children():
|
||
|
module._modules[name] = add_quant_dequant(child)
|
||
|
return module
|
||
|
|
||
|
def prepare(model, inplace=False, allow_list=None,
|
||
|
observer_non_leaf_module_list=None,
|
||
|
prepare_custom_config_dict=None):
|
||
|
r"""Prepares a copy of the model for quantization calibration or quantization-aware training.
|
||
|
|
||
|
Quantization configuration should be assigned preemptively
|
||
|
to individual submodules in `.qconfig` attribute.
|
||
|
|
||
|
The model will be attached with observer or fake quant modules, and qconfig
|
||
|
will be propagated.
|
||
|
|
||
|
Args:
|
||
|
`model`: input model to be modified in-place
|
||
|
`inplace`: carry out model transformations in-place, the original module is mutated
|
||
|
`allow_list`: list of quantizable modules
|
||
|
`observer_non_leaf_module_list`: list of non-leaf modules we want to add observer
|
||
|
`prepare_custom_config_dict`: customization configuration dictionary for prepare function
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
# Example of prepare_custom_config_dict:
|
||
|
prepare_custom_config_dict = {
|
||
|
# user will manually define the corresponding observed
|
||
|
# module class which has a from_float class method that converts
|
||
|
# float custom module to observed custom module
|
||
|
"float_to_observed_custom_module_class": {
|
||
|
CustomModule: ObservedCustomModule
|
||
|
}
|
||
|
}
|
||
|
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("quantization_api.quantize.prepare")
|
||
|
if prepare_custom_config_dict is None:
|
||
|
prepare_custom_config_dict = get_default_custom_config_dict()
|
||
|
custom_module_class_mapping = prepare_custom_config_dict.get("float_to_observed_custom_module_class", {})
|
||
|
|
||
|
if not inplace:
|
||
|
model = copy.deepcopy(model)
|
||
|
|
||
|
# TODO: remove allow_list
|
||
|
qconfig_propagation_list = allow_list
|
||
|
if allow_list is None:
|
||
|
qconfig_propagation_list = get_default_qconfig_propagation_list()
|
||
|
propagate_qconfig_(model, qconfig_dict=None)
|
||
|
|
||
|
# sanity check common API misusage
|
||
|
if not any(hasattr(m, 'qconfig') and m.qconfig for m in model.modules()):
|
||
|
warnings.warn("None of the submodule got qconfig applied. Make sure you "
|
||
|
"passed correct configuration through `qconfig_dict` or "
|
||
|
"by assigning the `.qconfig` attribute directly on submodules")
|
||
|
|
||
|
_add_observer_(
|
||
|
model, qconfig_propagation_list, observer_non_leaf_module_list,
|
||
|
custom_module_class_mapping=custom_module_class_mapping)
|
||
|
return model
|
||
|
|
||
|
def _remove_activation_post_process(module):
|
||
|
# TODO: maybe we should change activation_post_process to _activation_post_process
|
||
|
# to prevent it from being used by user
|
||
|
if hasattr(module, 'activation_post_process') and \
|
||
|
_is_activation_post_process(module.activation_post_process):
|
||
|
delattr(module, 'activation_post_process')
|
||
|
|
||
|
# remove activation_post_process pre and post hooks
|
||
|
def remove_hooks(pre_hook=False):
|
||
|
hook_map = module._forward_pre_hooks if pre_hook else module._forward_hooks
|
||
|
observer_hook = _observer_forward_pre_hook if pre_hook else _observer_forward_hook
|
||
|
handle_ids_to_remove = set()
|
||
|
for handle_id, hook_fn in hook_map.items():
|
||
|
if hook_fn is observer_hook:
|
||
|
handle_ids_to_remove.add(handle_id)
|
||
|
for handle_id in handle_ids_to_remove:
|
||
|
hook_map.pop(handle_id)
|
||
|
|
||
|
remove_hooks(pre_hook=True)
|
||
|
remove_hooks(pre_hook=False)
|
||
|
|
||
|
# TODO: rename to something more general
|
||
|
def _remove_qconfig(module):
|
||
|
r"""Clean up the qconfig left in the module so that new qconfig can be
|
||
|
propagated.
|
||
|
|
||
|
Args:
|
||
|
module: module to be cleaned up
|
||
|
"""
|
||
|
for child in module.children():
|
||
|
_remove_qconfig(child)
|
||
|
|
||
|
if hasattr(module, "qconfig"):
|
||
|
del module.qconfig
|
||
|
|
||
|
_remove_activation_post_process(module)
|
||
|
|
||
|
def quantize(model, run_fn, run_args, mapping=None, inplace=False):
|
||
|
r"""Quantize the input float model with post training static quantization.
|
||
|
|
||
|
First it will prepare the model for calibration, then it calls
|
||
|
`run_fn` which will run the calibration step, after that we will
|
||
|
convert the model to a quantized model.
|
||
|
|
||
|
Args:
|
||
|
model: input float model
|
||
|
run_fn: a calibration function for calibrating the prepared model
|
||
|
run_args: positional arguments for `run_fn`
|
||
|
inplace: carry out model transformations in-place, the original module is mutated
|
||
|
mapping: correspondence between original module types and quantized counterparts
|
||
|
|
||
|
Return:
|
||
|
Quantized model.
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("quantization_api.quantize.quantize")
|
||
|
if mapping is None:
|
||
|
mapping = get_default_static_quant_module_mappings()
|
||
|
if not inplace:
|
||
|
model = copy.deepcopy(model)
|
||
|
model.eval()
|
||
|
prepare(model, inplace=True)
|
||
|
run_fn(model, *run_args)
|
||
|
convert(model, mapping, inplace=True)
|
||
|
return model
|
||
|
|
||
|
def quantize_dynamic(model, qconfig_spec=None, dtype=torch.qint8,
|
||
|
mapping=None, inplace=False):
|
||
|
r"""Converts a float model to dynamic (i.e. weights-only) quantized model.
|
||
|
|
||
|
Replaces specified modules with dynamic weight-only quantized versions and output the quantized model.
|
||
|
|
||
|
For simplest usage provide `dtype` argument that can be float16 or qint8. Weight-only quantization
|
||
|
by default is performed for layers with large weights size - i.e. Linear and RNN variants.
|
||
|
|
||
|
Fine grained control is possible with `qconfig` and `mapping` that act similarly to `quantize()`.
|
||
|
If `qconfig` is provided, the `dtype` argument is ignored.
|
||
|
|
||
|
Args:
|
||
|
model: input model
|
||
|
qconfig_spec: Either:
|
||
|
|
||
|
- A dictionary that maps from name or type of submodule to quantization
|
||
|
configuration, qconfig applies to all submodules of a given
|
||
|
module unless qconfig for the submodules are specified (when the
|
||
|
submodule already has qconfig attribute). Entries in the dictionary
|
||
|
need to be QConfig instances.
|
||
|
|
||
|
- A set of types and/or submodule names to apply dynamic quantization to,
|
||
|
in which case the `dtype` argument is used to specify the bit-width
|
||
|
|
||
|
inplace: carry out model transformations in-place, the original module is mutated
|
||
|
mapping: maps type of a submodule to a type of corresponding dynamically quantized version
|
||
|
with which the submodule needs to be replaced
|
||
|
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("quantization_api.quantize.quantize_dynamic")
|
||
|
if qconfig_spec is None:
|
||
|
if dtype == torch.qint8:
|
||
|
qconfig_spec = {
|
||
|
nn.Linear : default_dynamic_qconfig,
|
||
|
nn.LSTM : default_dynamic_qconfig,
|
||
|
nn.GRU : default_dynamic_qconfig,
|
||
|
nn.LSTMCell : default_dynamic_qconfig,
|
||
|
nn.RNNCell : default_dynamic_qconfig,
|
||
|
nn.GRUCell : default_dynamic_qconfig,
|
||
|
}
|
||
|
elif dtype == torch.float16:
|
||
|
qconfig_spec = {
|
||
|
nn.Linear : float16_dynamic_qconfig,
|
||
|
nn.LSTM : float16_dynamic_qconfig,
|
||
|
nn.GRU : float16_dynamic_qconfig,
|
||
|
nn.LSTMCell : float16_dynamic_qconfig,
|
||
|
nn.RNNCell : float16_dynamic_qconfig,
|
||
|
nn.GRUCell : float16_dynamic_qconfig,
|
||
|
}
|
||
|
elif dtype == torch.quint8:
|
||
|
qconfig_spec = {
|
||
|
nn.EmbeddingBag : float_qparams_weight_only_qconfig,
|
||
|
nn.Embedding : float_qparams_weight_only_qconfig,
|
||
|
}
|
||
|
elif dtype == torch.quint4x2:
|
||
|
qconfig_spec = {
|
||
|
nn.EmbeddingBag : float_qparams_weight_only_qconfig_4bit,
|
||
|
}
|
||
|
else:
|
||
|
raise ValueError(
|
||
|
f"Don't know how to quantize with default settings for {dtype}. Provide full qconfig please")
|
||
|
elif isinstance(qconfig_spec, set):
|
||
|
if dtype is torch.qint8:
|
||
|
default_qconfig = default_dynamic_qconfig
|
||
|
elif dtype is torch.float16:
|
||
|
default_qconfig = float16_dynamic_qconfig
|
||
|
elif dtype is torch.quint8:
|
||
|
default_qconfig = float_qparams_weight_only_qconfig
|
||
|
elif dtype is torch.quint4x2:
|
||
|
default_qconfig = float_qparams_weight_only_qconfig_4bit
|
||
|
else:
|
||
|
raise RuntimeError('Unknown dtype specified for quantize_dynamic: ', str(dtype))
|
||
|
qconfig_spec = dict(zip(qconfig_spec, itertools.repeat(default_qconfig)))
|
||
|
|
||
|
if mapping is None:
|
||
|
mapping = get_default_dynamic_quant_module_mappings()
|
||
|
|
||
|
if not inplace:
|
||
|
model = copy.deepcopy(model)
|
||
|
model.eval()
|
||
|
propagate_qconfig_(model, qconfig_spec)
|
||
|
convert(model, mapping, inplace=True)
|
||
|
return model
|
||
|
|
||
|
def prepare_qat(model, mapping=None, inplace=False):
|
||
|
r"""
|
||
|
Prepares a copy of the model for quantization calibration or
|
||
|
quantization-aware training and converts it to quantized version.
|
||
|
|
||
|
Quantization configuration should be assigned preemptively
|
||
|
to individual submodules in `.qconfig` attribute.
|
||
|
|
||
|
Args:
|
||
|
model: input model to be modified in-place
|
||
|
mapping: dictionary that maps float modules to quantized modules to be
|
||
|
replaced.
|
||
|
inplace: carry out model transformations in-place, the original module
|
||
|
is mutated
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("quantization_api.quantize.prepare_qat")
|
||
|
assert model.training, "prepare_qat only works on models in training mode"
|
||
|
if mapping is None:
|
||
|
mapping = get_default_qat_module_mappings()
|
||
|
|
||
|
if not inplace:
|
||
|
model = copy.deepcopy(model)
|
||
|
|
||
|
propagate_qconfig_(model, qconfig_dict=None)
|
||
|
convert(model, mapping=mapping, inplace=True, remove_qconfig=False)
|
||
|
prepare(model, observer_non_leaf_module_list=set(mapping.values()), inplace=True)
|
||
|
return model
|
||
|
|
||
|
def quantize_qat(model, run_fn, run_args, inplace=False):
|
||
|
r"""Do quantization aware training and output a quantized model
|
||
|
|
||
|
Args:
|
||
|
model: input model
|
||
|
run_fn: a function for evaluating the prepared model, can be a
|
||
|
function that simply runs the prepared model or a training
|
||
|
loop
|
||
|
run_args: positional arguments for `run_fn`
|
||
|
|
||
|
Return:
|
||
|
Quantized model.
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("quantization_api.quantize.quantize_qat")
|
||
|
if not inplace:
|
||
|
model = copy.deepcopy(model)
|
||
|
model.train()
|
||
|
prepare_qat(model, inplace=True)
|
||
|
run_fn(model, *run_args)
|
||
|
convert(model, inplace=True)
|
||
|
return model
|
||
|
|
||
|
def convert(
|
||
|
module, mapping=None, inplace=False, remove_qconfig=True,
|
||
|
is_reference=False, convert_custom_config_dict=None):
|
||
|
r"""Converts submodules in input module to a different module according to `mapping`
|
||
|
by calling `from_float` method on the target module class. And remove qconfig at the
|
||
|
end if remove_qconfig is set to True.
|
||
|
|
||
|
Args:
|
||
|
`module`: prepared and calibrated module
|
||
|
`mapping`: a dictionary that maps from source module type to target
|
||
|
module type, can be overwritten to allow swapping user defined
|
||
|
Modules
|
||
|
`inplace`: carry out model transformations in-place, the original module
|
||
|
is mutated
|
||
|
`convert_custom_config_dict`: custom configuration dictionary for convert function
|
||
|
|
||
|
.. code-block:: python
|
||
|
|
||
|
# Example of convert_custom_config_dict:
|
||
|
convert_custom_config_dict = {
|
||
|
# user will manually define the corresponding quantized
|
||
|
# module class which has a from_observed class method that converts
|
||
|
# observed custom module to quantized custom module
|
||
|
"observed_to_quantized_custom_module_class": {
|
||
|
ObservedCustomModule: QuantizedCustomModule
|
||
|
}
|
||
|
}
|
||
|
|
||
|
"""
|
||
|
torch._C._log_api_usage_once("quantization_api.quantize.convert")
|
||
|
if not inplace:
|
||
|
module = copy.deepcopy(module)
|
||
|
_convert(
|
||
|
module, mapping, inplace=True, is_reference=is_reference,
|
||
|
convert_custom_config_dict=convert_custom_config_dict)
|
||
|
if remove_qconfig:
|
||
|
_remove_qconfig(module)
|
||
|
return module
|
||
|
|
||
|
def _convert(
|
||
|
module, mapping=None, inplace=False,
|
||
|
is_reference=False, convert_custom_config_dict=None):
|
||
|
r"""Converts submodules in input module to a different module according to `mapping`
|
||
|
by calling `from_float` method on the target module class
|
||
|
|
||
|
Args:
|
||
|
module: input module
|
||
|
mapping: a dictionary that maps from source module type to target
|
||
|
module type, can be overwritten to allow swapping user defined
|
||
|
Modules
|
||
|
inplace: carry out model transformations in-place, the original module
|
||
|
is mutated
|
||
|
is_reference: a flag to enable quantized reference module
|
||
|
|
||
|
"""
|
||
|
if mapping is None:
|
||
|
mapping = get_default_static_quant_reference_module_mappings() if is_reference \
|
||
|
else get_default_static_quant_module_mappings()
|
||
|
if convert_custom_config_dict is None:
|
||
|
convert_custom_config_dict = get_default_custom_config_dict()
|
||
|
custom_module_class_mapping = convert_custom_config_dict.get("observed_to_quantized_custom_module_class", {})
|
||
|
|
||
|
if not inplace:
|
||
|
module = copy.deepcopy(module)
|
||
|
reassign = {}
|
||
|
for name, mod in module.named_children():
|
||
|
# both fused modules and observed custom modules are
|
||
|
# swapped as one unit
|
||
|
if not isinstance(mod, _FusedModule) and \
|
||
|
type_before_parametrizations(mod) not in custom_module_class_mapping:
|
||
|
_convert(mod, mapping, True, # inplace
|
||
|
is_reference, convert_custom_config_dict)
|
||
|
reassign[name] = swap_module(mod, mapping, custom_module_class_mapping)
|
||
|
|
||
|
for key, value in reassign.items():
|
||
|
module._modules[key] = value
|
||
|
|
||
|
return module
|
||
|
|
||
|
def swap_module(mod, mapping, custom_module_class_mapping):
|
||
|
r"""Swaps the module if it has a quantized counterpart and it has an
|
||
|
`observer` attached.
|
||
|
|
||
|
Args:
|
||
|
mod: input module
|
||
|
mapping: a dictionary that maps from nn module to nnq module
|
||
|
|
||
|
Return:
|
||
|
The corresponding quantized module of `mod`
|
||
|
"""
|
||
|
new_mod = mod
|
||
|
if hasattr(mod, 'qconfig') and mod.qconfig is not None:
|
||
|
swapped = False
|
||
|
if type_before_parametrizations(mod) in custom_module_class_mapping:
|
||
|
new_mod = custom_module_class_mapping[type_before_parametrizations(mod)].from_observed(mod)
|
||
|
swapped = True
|
||
|
elif type_before_parametrizations(mod) in mapping:
|
||
|
qmod = mapping[type_before_parametrizations(mod)]
|
||
|
if hasattr(qmod, '_IS_REFERENCE') and qmod._IS_REFERENCE:
|
||
|
assert mod.qconfig is not None
|
||
|
weight_post_process = mod.qconfig.weight()
|
||
|
weight_post_process(mod.weight)
|
||
|
weight_qparams = get_qparam_dict(weight_post_process)
|
||
|
new_mod = qmod.from_float(mod, weight_qparams)
|
||
|
else:
|
||
|
new_mod = qmod.from_float(mod)
|
||
|
swapped = True
|
||
|
|
||
|
if swapped:
|
||
|
# Preserve module's pre forward hooks. They'll be called on quantized input
|
||
|
for pre_hook_fn in mod._forward_pre_hooks.values():
|
||
|
new_mod.register_forward_pre_hook(pre_hook_fn)
|
||
|
# Preserve module's post forward hooks except _observer_forward_hook
|
||
|
# After convert they'll work with quantized output
|
||
|
for hook_fn in mod._forward_hooks.values():
|
||
|
if hook_fn is not _observer_forward_hook:
|
||
|
new_mod.register_forward_hook(hook_fn)
|
||
|
|
||
|
# respect device affinity when swapping modules
|
||
|
devices = _get_unique_devices_(mod)
|
||
|
assert len(devices) <= 1, (
|
||
|
f"swap_module only works with cpu or single-device CUDA modules, but got devices {devices}"
|
||
|
)
|
||
|
device = next(iter(devices)) if len(devices) > 0 else None
|
||
|
if device:
|
||
|
new_mod.to(device)
|
||
|
return new_mod
|
||
|
|
||
|
def _get_observer_dict(mod, target_dict, prefix=""):
|
||
|
r"""Traverse the modules and save all observers into dict.
|
||
|
This is mainly used for quantization accuracy debug
|
||
|
Args:
|
||
|
mod: the top module we want to save all observers
|
||
|
prefix: the prefix for the current module
|
||
|
target_dict: the dictionary used to save all the observers
|
||
|
"""
|
||
|
def get_prefix(prefix):
|
||
|
return prefix if prefix == "" else prefix + '.'
|
||
|
|
||
|
if hasattr(mod, 'activation_post_process'):
|
||
|
target_dict[get_prefix(prefix) + 'activation_post_process'] = mod.activation_post_process
|
||
|
for name, child in mod.named_children():
|
||
|
module_prefix = get_prefix(prefix) + name if prefix else name
|
||
|
_get_observer_dict(child, target_dict, module_prefix)
|