You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2267 lines
88 KiB
2267 lines
88 KiB
5 months ago
|
import collections
|
||
|
import functools
|
||
|
import warnings
|
||
|
from itertools import product
|
||
|
from typing import Callable, Dict, Iterable, List, Optional, Tuple, Union
|
||
|
|
||
|
import torch
|
||
|
import torch.testing
|
||
|
from torch._vmap_internals import _vmap, vmap
|
||
|
from torch.overrides import is_tensor_like
|
||
|
from torch.types import _TensorOrTensors
|
||
|
|
||
|
# Note: `get_*_jacobian` functions are added here even though we didn't intend to make them public
|
||
|
# since they have been exposed from before we added `__all__` and we already maintain BC for them
|
||
|
# We should eventually deprecate them and remove them from `__all__`
|
||
|
__all__ = [
|
||
|
"gradcheck",
|
||
|
"gradgradcheck",
|
||
|
"GradcheckError",
|
||
|
"get_numerical_jacobian",
|
||
|
"get_analytical_jacobian",
|
||
|
"get_numerical_jacobian_wrt_specific_input",
|
||
|
]
|
||
|
|
||
|
|
||
|
class GradcheckError(RuntimeError):
|
||
|
r"""Error raised by :func:`gradcheck` and :func:`gradgradcheck`."""
|
||
|
|
||
|
pass
|
||
|
|
||
|
|
||
|
def _is_sparse_compressed_tensor(obj: torch.Tensor):
|
||
|
return obj.layout in {
|
||
|
torch.sparse_csr,
|
||
|
torch.sparse_csc,
|
||
|
torch.sparse_bsr,
|
||
|
torch.sparse_bsc,
|
||
|
}
|
||
|
|
||
|
|
||
|
def _is_sparse_any_tensor(obj: torch.Tensor):
|
||
|
return _is_sparse_compressed_tensor(obj) or obj.layout is torch.sparse_coo
|
||
|
|
||
|
|
||
|
def _is_float_or_complex_tensor(obj):
|
||
|
return is_tensor_like(obj) and (obj.is_floating_point() or obj.is_complex())
|
||
|
|
||
|
|
||
|
def _allocate_jacobians_with_inputs(
|
||
|
input_tensors: Tuple, numel_output
|
||
|
) -> Tuple[torch.Tensor, ...]:
|
||
|
# Makes zero-filled tensors from inputs. If `numel_output` is not None, for
|
||
|
# each tensor in `input_tensors`, returns a new zero-filled tensor with height
|
||
|
# of `t.numel` and width of `numel_output`. Otherwise, for each tensor, returns
|
||
|
# a 1-d tensor with size `(t.numel,)`. Each new tensor will be strided and have
|
||
|
# the same dtype and device as those of the corresponding input.
|
||
|
out: List[torch.Tensor] = []
|
||
|
for t in input_tensors:
|
||
|
if _is_float_or_complex_tensor(t) and t.requires_grad:
|
||
|
out.append(t.new_zeros((t.numel(), numel_output), layout=torch.strided))
|
||
|
return tuple(out)
|
||
|
|
||
|
|
||
|
def _allocate_jacobians_with_outputs(
|
||
|
output_tensors: Tuple, numel_input, dtype=None, device=None
|
||
|
) -> Tuple[torch.Tensor, ...]:
|
||
|
# Makes zero-filled tensors from outputs. If `dim` is not None, for each tensor
|
||
|
# in `output_tensors`, returns a new zero-filled tensor with height of `dim` and
|
||
|
# width of `t.numel`. Otherwise, for each tensor, returns a 1-d tensor with size
|
||
|
# (t.numel,).
|
||
|
out: List[torch.Tensor] = []
|
||
|
options = {"dtype": dtype, "device": device, "layout": torch.strided}
|
||
|
for t in output_tensors:
|
||
|
if _is_float_or_complex_tensor(t):
|
||
|
out.append(t.new_zeros((numel_input, t.numel()), **options))
|
||
|
return tuple(out)
|
||
|
|
||
|
|
||
|
def _iter_tensors(
|
||
|
x: Union[torch.Tensor, Iterable[torch.Tensor]], only_requiring_grad: bool = False
|
||
|
) -> Iterable[torch.Tensor]:
|
||
|
if is_tensor_like(x):
|
||
|
# mypy doesn't narrow type of `x` to torch.Tensor
|
||
|
if x.requires_grad or not only_requiring_grad: # type: ignore[union-attr]
|
||
|
yield x # type: ignore[misc]
|
||
|
elif isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
|
||
|
for elem in x:
|
||
|
yield from _iter_tensors(elem, only_requiring_grad)
|
||
|
|
||
|
|
||
|
def _densify(x):
|
||
|
# return a copy of sparse x with all unspecified elements
|
||
|
# "replaced" with zero-valued elements
|
||
|
if isinstance(x, (list, tuple)):
|
||
|
return type(x)(map(_densify, x))
|
||
|
elif not is_tensor_like(x) or x.layout in {torch.strided, torch._mkldnn}: # type: ignore[attr-defined] # no attr _mkldnn
|
||
|
return x
|
||
|
elif x.layout is torch.sparse_coo:
|
||
|
device = x.device
|
||
|
indices_dtype = x._indices().dtype
|
||
|
tmp = torch.ones(x.shape[: x.sparse_dim()], dtype=torch.int8, device=device)
|
||
|
indices = tmp.nonzero().t().to(dtype=indices_dtype)
|
||
|
values = torch.zeros(
|
||
|
(tmp.numel(), *x.shape[x.sparse_dim() :]), dtype=x.dtype, device=device
|
||
|
)
|
||
|
x_coalesced = x.detach().coalesce()
|
||
|
if x_coalesced.numel() > 0:
|
||
|
stride = tmp.stride()
|
||
|
flat_indices = (
|
||
|
x_coalesced.indices()
|
||
|
.mul(
|
||
|
torch.tensor(stride, dtype=indices_dtype, device=device).unsqueeze(
|
||
|
1
|
||
|
)
|
||
|
)
|
||
|
.sum(0)
|
||
|
)
|
||
|
values[flat_indices] = x_coalesced.values()
|
||
|
return (
|
||
|
torch.sparse_coo_tensor(indices, values, x.shape)
|
||
|
._coalesced_(True)
|
||
|
.requires_grad_(x.requires_grad)
|
||
|
)
|
||
|
elif _is_sparse_compressed_tensor(x):
|
||
|
blocksize = (
|
||
|
x.values().shape[1:3]
|
||
|
if x.layout in {torch.sparse_bsr, torch.sparse_bsc}
|
||
|
else None
|
||
|
)
|
||
|
compressed_indices = (
|
||
|
x.crow_indices()
|
||
|
if x.layout in {torch.sparse_csr, torch.sparse_bsr}
|
||
|
else x.ccol_indices()
|
||
|
)
|
||
|
# We'll use intermediate sparse COO for simplicity
|
||
|
r = _densify(x.detach().to_sparse(layout=torch.sparse_coo)).to_sparse(
|
||
|
layout=x.layout, blocksize=blocksize
|
||
|
)
|
||
|
# Check that all elements are specified also after `to_sparse` op:
|
||
|
dense_numel = r.values().numel() // max(1, r.values().shape[0])
|
||
|
batch_numel = compressed_indices.numel() // compressed_indices.shape[-1]
|
||
|
sparse_numel = r.numel() // max(1, dense_numel * batch_numel)
|
||
|
if sparse_numel != r._nnz():
|
||
|
raise AssertionError(
|
||
|
f"{x.layout} densify failed: expected nnz={sparse_numel} but got {r._nnz()}"
|
||
|
)
|
||
|
return r.requires_grad_(x.requires_grad)
|
||
|
elif _is_sparse_any_tensor(x):
|
||
|
raise NotImplementedError(x.layout)
|
||
|
return x
|
||
|
|
||
|
|
||
|
def _iter_tensor(x_tensor):
|
||
|
# (Only used for slow gradcheck) Returns a generator that yields the following
|
||
|
# elements at each iteration:
|
||
|
# 1) a tensor: the same tensor is returned across all iterations. The tensor
|
||
|
# is not the same as the original x_tensor as given as input - it is
|
||
|
# prepared so that it can be modified in-place. Depending on whether the
|
||
|
# input tensor is strided, sparse, or dense, the returned tensor may or may
|
||
|
# not share storage with x_tensor.
|
||
|
# 2) a tuple of indices that can be used with advanced indexing (yielded in
|
||
|
# dictionary order)
|
||
|
# 3) flattened index that will be used to index into the Jacobian tensor
|
||
|
#
|
||
|
# For a tensor t with size (2, 2), _iter_tensor yields:
|
||
|
# `x, (0, 0), 0`, `x, (0, 1), 1`, `x, (1, 0), 2`, `x, (1, 1), 3`
|
||
|
#
|
||
|
# where x is the t.data of the original tensor. Perturbing the entry of x
|
||
|
# at index (1, 1) yields the 3rd column of the overall Jacobian matrix.
|
||
|
if _is_sparse_any_tensor(x_tensor):
|
||
|
|
||
|
def get_stride(size):
|
||
|
dim = len(size)
|
||
|
tmp = 1
|
||
|
stride = [0] * dim
|
||
|
for i in reversed(range(dim)):
|
||
|
stride[i] = tmp
|
||
|
tmp *= size[i]
|
||
|
return stride
|
||
|
|
||
|
x_nnz = x_tensor._nnz()
|
||
|
x_size = list(x_tensor.size())
|
||
|
if x_tensor.layout is torch.sparse_coo:
|
||
|
x_indices = x_tensor._indices().t()
|
||
|
x_values = x_tensor._values()
|
||
|
elif x_tensor.layout is torch.sparse_csr:
|
||
|
x_indices = torch._convert_indices_from_csr_to_coo(
|
||
|
x_tensor.crow_indices(), x_tensor.col_indices()
|
||
|
).t()
|
||
|
x_values = x_tensor.values()
|
||
|
elif x_tensor.layout is torch.sparse_csc:
|
||
|
x_indices = torch._convert_indices_from_csr_to_coo(
|
||
|
x_tensor.ccol_indices(), x_tensor.row_indices(), transpose=True
|
||
|
).t()
|
||
|
x_values = x_tensor.values()
|
||
|
elif x_tensor.layout is torch.sparse_bsr:
|
||
|
x_block_values = x_tensor.values()
|
||
|
x_blocksize = x_block_values.size()[1:3]
|
||
|
x_indices = (
|
||
|
torch._convert_indices_from_csr_to_coo(
|
||
|
x_tensor.crow_indices(), x_tensor.col_indices()
|
||
|
)
|
||
|
.repeat_interleave(x_blocksize[0] * x_blocksize[1], 1)
|
||
|
.mul_(torch.tensor(x_blocksize, device=x_tensor.device).reshape(2, 1))
|
||
|
.add_(
|
||
|
torch.stack(
|
||
|
torch.where(torch.ones(x_blocksize, device=x_tensor.device))
|
||
|
).repeat(1, x_nnz)
|
||
|
)
|
||
|
.t()
|
||
|
)
|
||
|
x_values = x_block_values.flatten(0, 2)
|
||
|
x_nnz = x_values.size(0)
|
||
|
elif x_tensor.layout is torch.sparse_bsc:
|
||
|
x_block_values = x_tensor.values()
|
||
|
x_blocksize = x_block_values.size()[1:3]
|
||
|
x_indices = (
|
||
|
torch._convert_indices_from_csr_to_coo(
|
||
|
x_tensor.ccol_indices(), x_tensor.row_indices(), transpose=True
|
||
|
)
|
||
|
.repeat_interleave(x_blocksize[0] * x_blocksize[1], 1)
|
||
|
.mul_(torch.tensor(x_blocksize, device=x_tensor.device).reshape(2, 1))
|
||
|
.add_(
|
||
|
torch.stack(
|
||
|
torch.where(torch.ones(x_blocksize, device=x_tensor.device))
|
||
|
).repeat(1, x_nnz)
|
||
|
)
|
||
|
.t()
|
||
|
)
|
||
|
x_values = x_block_values.flatten(0, 2)
|
||
|
x_nnz = x_values.size(0)
|
||
|
else:
|
||
|
raise NotImplementedError(f"_iter_tensor for {x_tensor.layout} input")
|
||
|
x_stride = get_stride(x_size)
|
||
|
# Use .data here to get around the version check
|
||
|
x_values = x_values.data
|
||
|
for i in range(x_nnz):
|
||
|
x_value = x_values[i]
|
||
|
for x_idx in product(*[range(m) for m in x_values.size()[1:]]):
|
||
|
indices = x_indices[i].tolist() + list(x_idx)
|
||
|
d_idx = sum(indices[k] * x_stride[k] for k in range(len(x_size)))
|
||
|
yield x_value, x_idx, d_idx
|
||
|
elif x_tensor.layout == torch._mkldnn: # type: ignore[attr-defined]
|
||
|
for d_idx, x_idx in enumerate(product(*[range(m) for m in x_tensor.size()])):
|
||
|
# this is really inefficient, but without indexing implemented, there's
|
||
|
# not really a better way than converting back and forth
|
||
|
x_tensor_dense = x_tensor.to_dense()
|
||
|
yield x_tensor_dense, x_idx, d_idx
|
||
|
else:
|
||
|
# Use .data here to get around the version check
|
||
|
x_tensor = x_tensor.data
|
||
|
for d_idx, x_idx in enumerate(product(*[range(m) for m in x_tensor.size()])):
|
||
|
yield x_tensor, x_idx, d_idx
|
||
|
|
||
|
|
||
|
def _get_numerical_jacobian(
|
||
|
fn, inputs, outputs=None, target=None, eps=1e-3, is_forward_ad=False
|
||
|
) -> List[Tuple[torch.Tensor, ...]]:
|
||
|
"""Compute the numerical Jacobian of `fn(inputs)` with respect to `target`.
|
||
|
|
||
|
If not specified, targets are the input. Returns M * N Jacobians where N is the
|
||
|
number of tensors in target that require grad and M is the number of non-integral
|
||
|
outputs.
|
||
|
|
||
|
Args:
|
||
|
fn: the function to compute the jacobian for
|
||
|
inputs: inputs to `fn`
|
||
|
outputs: provide precomputed outputs to avoid one extra invocation of fn
|
||
|
target: the Tensors wrt whom Jacobians are calculated (default=`inputs`)
|
||
|
eps: the magnitude of the perturbation during finite differencing
|
||
|
(default=`1e-3`)
|
||
|
is_forward_ad: if this numerical jacobian is computed to be checked wrt
|
||
|
forward AD gradients (this is used for error checking only)
|
||
|
|
||
|
Returns:
|
||
|
A list of M N-tuples of tensors
|
||
|
|
||
|
Note that `target` may not even be part of `input` to `fn`, so please be
|
||
|
**very careful** in this to not clone `target`.
|
||
|
"""
|
||
|
jacobians: List[Tuple[torch.Tensor, ...]] = []
|
||
|
if outputs is None:
|
||
|
outputs = _as_tuple(fn(*_as_tuple(inputs)))
|
||
|
if not is_forward_ad and any(o.is_complex() for o in outputs):
|
||
|
raise ValueError(
|
||
|
"Expected output to be non-complex. get_numerical_jacobian no "
|
||
|
"longer supports functions that return complex outputs."
|
||
|
)
|
||
|
if target is None:
|
||
|
target = inputs
|
||
|
inp_indices = [
|
||
|
i for i, a in enumerate(target) if is_tensor_like(a) and a.requires_grad
|
||
|
]
|
||
|
for i, (inp, inp_idx) in enumerate(zip(_iter_tensors(target, True), inp_indices)):
|
||
|
jacobians += [
|
||
|
get_numerical_jacobian_wrt_specific_input(
|
||
|
fn,
|
||
|
inp_idx,
|
||
|
inputs,
|
||
|
outputs,
|
||
|
eps,
|
||
|
input=inp,
|
||
|
is_forward_ad=is_forward_ad,
|
||
|
)
|
||
|
]
|
||
|
return jacobians
|
||
|
|
||
|
|
||
|
def get_numerical_jacobian(fn, inputs, target=None, eps=1e-3, grad_out=1.0):
|
||
|
"""Compute the numerical Jacobian for a given fn and its inputs.
|
||
|
|
||
|
This is a Deprecated API.
|
||
|
|
||
|
Args:
|
||
|
fn: the function to compute the Jacobian for (must take inputs as a tuple)
|
||
|
input: input to `fn`
|
||
|
target: the Tensors wrt whom Jacobians are calculated (default=`input`)
|
||
|
eps: the magnitude of the perturbation during finite differencing
|
||
|
(default=`1e-3`)
|
||
|
|
||
|
Returns:
|
||
|
A list of Jacobians of `fn` (restricted to its first output) with respect to
|
||
|
each input or target, if provided.
|
||
|
|
||
|
Note that `target` may not even be part of `input` to `fn`, so please be
|
||
|
**very careful** in this to not clone `target`.
|
||
|
"""
|
||
|
warnings.warn(
|
||
|
"get_numerical_jacobian was part of PyTorch's private API and not "
|
||
|
"meant to be exposed. We are deprecating it and it will be removed "
|
||
|
"in a future version of PyTorch. If you have a specific use for "
|
||
|
"this or feature request for this to be a stable API, please file "
|
||
|
"us an issue at https://github.com/pytorch/pytorch/issues/new"
|
||
|
)
|
||
|
if (
|
||
|
grad_out != 1.0
|
||
|
): # grad_out param is only kept for backward compatibility reasons
|
||
|
raise ValueError(
|
||
|
"Expected grad_out to be 1.0. get_numerical_jacobian no longer "
|
||
|
"supports values of grad_out != 1.0."
|
||
|
)
|
||
|
|
||
|
def fn_pack_inps(*inps):
|
||
|
return fn(inps)
|
||
|
|
||
|
jacobians = _get_numerical_jacobian(fn_pack_inps, inputs, None, target, eps)
|
||
|
|
||
|
return tuple(jacobian_for_each_output[0] for jacobian_for_each_output in jacobians)
|
||
|
|
||
|
|
||
|
def _compute_numerical_gradient(fn, entry, v, norm_v, nbhd_checks_fn):
|
||
|
# Computes numerical directional derivative as finite difference
|
||
|
# of function `fn` at input `entry`, perturbed by vector `v`.
|
||
|
if _is_sparse_compressed_tensor(entry):
|
||
|
# sparse compressed tensors don't implement sub/add/copy_
|
||
|
# yet. However, in non-masked semantics context entry and v
|
||
|
# have the same sparse indices ...
|
||
|
assert entry.layout == v.layout, (entry.layout, v.layout)
|
||
|
assert entry._nnz() == v._nnz(), (entry._nnz(), v._nnz(), entry.shape)
|
||
|
# ... the finite differencing can be performed on values only:
|
||
|
entry = entry.values()
|
||
|
v = v.values()
|
||
|
# we'll detach to avoid backward computations that sparse
|
||
|
# tensors have limited support for.
|
||
|
entry = entry.detach()
|
||
|
|
||
|
orig = entry.clone()
|
||
|
entry.copy_(orig - v)
|
||
|
outa = fn()
|
||
|
entry.copy_(orig + v)
|
||
|
outb = fn()
|
||
|
entry.copy_(orig)
|
||
|
|
||
|
def compute(a, b):
|
||
|
nbhd_checks_fn(a, b)
|
||
|
ret = (b - a) / (2 * norm_v) # use central difference approx
|
||
|
return ret.detach().reshape(-1)
|
||
|
|
||
|
return tuple(compute(a, b) for (a, b) in zip(outa, outb))
|
||
|
|
||
|
|
||
|
def _compute_numerical_jvps_wrt_specific_input(
|
||
|
jvp_fn, delta, input_is_complex, is_forward_ad=False
|
||
|
) -> List[torch.Tensor]:
|
||
|
# Computing the jacobian only works for real delta
|
||
|
# For details on the algorithm used here, refer:
|
||
|
# Section 3.5.3 https://arxiv.org/pdf/1701.00392.pdf
|
||
|
# s = fn(z) where z = x for real valued input
|
||
|
# and z = x + yj for complex valued input
|
||
|
jvps: List[torch.Tensor] = []
|
||
|
ds_dx_tup = jvp_fn(delta[0] if isinstance(delta, tuple) else delta)
|
||
|
|
||
|
if input_is_complex: # C -> R
|
||
|
ds_dy_tup = (
|
||
|
jvp_fn(delta[1] * 1j) if isinstance(delta, tuple) else jvp_fn(delta * 1j)
|
||
|
)
|
||
|
for ds_dx, ds_dy in zip(ds_dx_tup, ds_dy_tup):
|
||
|
assert not ds_dx.is_complex()
|
||
|
# conjugate wirtinger derivative
|
||
|
conj_w_d = ds_dx + ds_dy * 1j
|
||
|
jvps.append(conj_w_d)
|
||
|
else:
|
||
|
for ds_dx in ds_dx_tup: # R -> R or (R -> C for the forward AD case)
|
||
|
assert is_forward_ad or not ds_dx.is_complex()
|
||
|
jvps.append(ds_dx)
|
||
|
return jvps
|
||
|
|
||
|
|
||
|
def _combine_jacobian_cols(
|
||
|
jacobians_cols: Dict[int, List[torch.Tensor]], outputs, input, numel
|
||
|
) -> Tuple[torch.Tensor, ...]:
|
||
|
# jacobian_cols maps column_idx -> output_idx -> single column of jacobian Tensor
|
||
|
# we return a list that maps output_idx -> full jacobian Tensor
|
||
|
jacobians = _allocate_jacobians_with_outputs(
|
||
|
outputs, numel, dtype=input.dtype if input.dtype.is_complex else None
|
||
|
)
|
||
|
for i, jacobian in enumerate(jacobians):
|
||
|
for k, v in jacobians_cols.items():
|
||
|
jacobian[k] = v[i]
|
||
|
return jacobians
|
||
|
|
||
|
|
||
|
def _prepare_input(
|
||
|
input: torch.Tensor, maybe_perturbed_input: Optional[torch.Tensor], fast_mode=False
|
||
|
) -> torch.Tensor:
|
||
|
# Prepares the inputs to be passed into the function while including the new
|
||
|
# modified input.
|
||
|
if input.layout == torch._mkldnn: # type: ignore[attr-defined] # no attr _mkldnn
|
||
|
# Convert back to mkldnn
|
||
|
if maybe_perturbed_input is not None:
|
||
|
return maybe_perturbed_input.to_mkldnn()
|
||
|
else:
|
||
|
return input
|
||
|
elif _is_sparse_any_tensor(input):
|
||
|
if fast_mode and maybe_perturbed_input is not None:
|
||
|
# entry is already a "cloned" version of the original tensor
|
||
|
# thus changes to entry are not reflected in the input
|
||
|
return maybe_perturbed_input
|
||
|
else:
|
||
|
return input
|
||
|
else:
|
||
|
# We cannot use entry (input.data) if we want gradgrad to work because
|
||
|
# fn (in the gradgrad case) needs to compute grad wrt input
|
||
|
return input
|
||
|
|
||
|
|
||
|
def _check_outputs_same_dtype_and_shape(output1, output2, eps, idx=None) -> None:
|
||
|
# Check that the returned outputs don't have different dtype or shape when you
|
||
|
# perturb the input
|
||
|
on_index = "on index {idx} " if idx is not None else ""
|
||
|
assert output1.shape == output2.shape, (
|
||
|
f"Expected `func` to return outputs with the same shape"
|
||
|
f" when inputs are perturbed {on_index}by {eps}, but got:"
|
||
|
f" shapes {output1.shape} and {output2.shape}."
|
||
|
)
|
||
|
assert output1.dtype == output2.dtype, (
|
||
|
f"Expected `func` to return outputs with the same dtype"
|
||
|
f" when inputs are perturbed {on_index}by {eps}, but got:"
|
||
|
f" dtypes {output1.dtype} and {output2.dtype}."
|
||
|
)
|
||
|
|
||
|
|
||
|
def get_numerical_jacobian_wrt_specific_input(
|
||
|
fn, input_idx, inputs, outputs, eps, input=None, is_forward_ad=False
|
||
|
) -> Tuple[torch.Tensor, ...]:
|
||
|
# Computes the numerical jacobians wrt to a single input. Returns N jacobian
|
||
|
# tensors, where N is the number of outputs. We use a dictionary for
|
||
|
# jacobian_cols because indices aren't necessarily consecutive for sparse inputs
|
||
|
# When we perturb only a single element of the input tensor at a time, the jvp
|
||
|
# is equivalent to a single col of the Jacobian matrix of fn.
|
||
|
jacobian_cols: Dict[int, List[torch.Tensor]] = {}
|
||
|
input = inputs[input_idx] if input is None else input
|
||
|
assert input.requires_grad
|
||
|
for x, idx, d_idx in _iter_tensor(input):
|
||
|
wrapped_fn = _with_prepare_inputs(fn, inputs, input_idx, x)
|
||
|
input_to_perturb = x[idx]
|
||
|
nbhd_checks_fn = functools.partial(
|
||
|
_check_outputs_same_dtype_and_shape, idx=idx, eps=eps
|
||
|
)
|
||
|
jvp_fn = _get_numerical_jvp_fn(
|
||
|
wrapped_fn, input_to_perturb, eps, nbhd_checks_fn
|
||
|
)
|
||
|
jacobian_cols[d_idx] = _compute_numerical_jvps_wrt_specific_input(
|
||
|
jvp_fn, eps, x.is_complex(), is_forward_ad
|
||
|
)
|
||
|
return _combine_jacobian_cols(jacobian_cols, outputs, input, input.numel())
|
||
|
|
||
|
|
||
|
def _get_analytical_jacobian_forward_ad(
|
||
|
fn, inputs, outputs, *, check_grad_dtypes=False, all_u=None
|
||
|
) -> Tuple[Tuple[torch.Tensor, ...], ...]:
|
||
|
"""Compute the analytical Jacobian using forward mode AD of `fn(inputs)` using forward mode AD with respect to `target`.
|
||
|
|
||
|
Return N * M Jacobians where N is the number of tensors in target that require grad and
|
||
|
M is the number of non-integral outputs.
|
||
|
Contrary to other functions here, this function requires "inputs" to actually be used by the function.
|
||
|
The computed value is expected to be wrong if the function captures the inputs by side effect instead of
|
||
|
using the passed ones (many torch.nn tests do this).
|
||
|
|
||
|
Args:
|
||
|
fn: the function to compute the jacobian for
|
||
|
inputs: inputs to `fn`
|
||
|
outputs: provide precomputed outputs to avoid one extra invocation of fn
|
||
|
check_grad_dtypes: if True, will check that the gradient dtype are valid
|
||
|
all_u (optional): if provided, the Jacobian will be right multiplied with this vector
|
||
|
|
||
|
Returns:
|
||
|
A tuple of M N-tuples of tensors
|
||
|
"""
|
||
|
# To avoid early import issues
|
||
|
fwAD = torch.autograd.forward_ad
|
||
|
|
||
|
tensor_inputs = tuple(i for i in inputs if is_tensor_like(i) and i.requires_grad)
|
||
|
|
||
|
if any(i.is_complex() for i in tensor_inputs):
|
||
|
raise ValueError(
|
||
|
"Expected inputs to be non-complex for _get_analytical_jacobian_forward_ad."
|
||
|
)
|
||
|
|
||
|
if all_u:
|
||
|
jacobians = tuple(
|
||
|
_allocate_jacobians_with_outputs(outputs, 1) for i in tensor_inputs
|
||
|
)
|
||
|
else:
|
||
|
jacobians = tuple(
|
||
|
_allocate_jacobians_with_outputs(outputs, i.numel()) for i in tensor_inputs
|
||
|
)
|
||
|
|
||
|
with fwAD.dual_level():
|
||
|
fw_grads = []
|
||
|
dual_inputs = []
|
||
|
for i, inp in enumerate(inputs):
|
||
|
if is_tensor_like(inp) and inp.requires_grad:
|
||
|
if inp.layout == torch._mkldnn: # type: ignore[attr-defined]
|
||
|
raise ValueError(
|
||
|
"MKLDNN inputs are not support for forward AD gradcheck."
|
||
|
)
|
||
|
|
||
|
inp = fwAD.make_dual(inp.detach(), torch.zeros_like(inp))
|
||
|
# If inp is a differentiable view, the dual might not be the tangent given to
|
||
|
# make_dual, so read it explicitly from the dual tensor
|
||
|
fw_grads.append(fwAD.unpack_dual(inp)[1])
|
||
|
dual_inputs.append(inp)
|
||
|
|
||
|
if all_u:
|
||
|
# Do the full reduction in one pass
|
||
|
# To be consistent with numerical evaluation, we actually compute one reduction per input
|
||
|
for i, (fw_grad, u) in enumerate(zip(fw_grads, all_u)):
|
||
|
fw_grad.copy_(u.view_as(fw_grad))
|
||
|
raw_outputs = _as_tuple(fn(*dual_inputs))
|
||
|
dual_outputs = filter(_is_float_or_complex_tensor, raw_outputs)
|
||
|
for index_o, d_o in enumerate(dual_outputs):
|
||
|
val, res = fwAD.unpack_dual(d_o)
|
||
|
if (
|
||
|
check_grad_dtypes
|
||
|
and res is not None
|
||
|
and val.is_complex() != res.is_complex()
|
||
|
):
|
||
|
raise GradcheckError("Forward AD gradient has dtype mismatch.")
|
||
|
|
||
|
# Remove extra dimension of size 1 corresponding to the reduced input
|
||
|
jacobians[i][index_o].squeeze_(0)
|
||
|
if res is None:
|
||
|
jacobians[i][index_o].zero_()
|
||
|
else:
|
||
|
jacobians[i][index_o].copy_(res.reshape(-1))
|
||
|
fw_grad.zero_()
|
||
|
else:
|
||
|
# Reconstruct the full Jacobian column by column
|
||
|
for i, fw_grad in enumerate(fw_grads):
|
||
|
for lin_idx, grad_idx in enumerate(
|
||
|
product(*[range(m) for m in fw_grad.size()])
|
||
|
):
|
||
|
fw_grad[grad_idx] = 1.0
|
||
|
raw_outputs = _as_tuple(fn(*dual_inputs))
|
||
|
dual_outputs = filter(_is_float_or_complex_tensor, raw_outputs)
|
||
|
for index_o, d_o in enumerate(dual_outputs):
|
||
|
val, res = fwAD.unpack_dual(d_o)
|
||
|
if (
|
||
|
check_grad_dtypes
|
||
|
and res is not None
|
||
|
and val.is_complex() != res.is_complex()
|
||
|
):
|
||
|
raise GradcheckError(
|
||
|
"Forward AD gradient has dtype mismatch."
|
||
|
)
|
||
|
|
||
|
if res is None:
|
||
|
jacobians[i][index_o][lin_idx].zero_()
|
||
|
else:
|
||
|
jacobians[i][index_o][lin_idx].copy_(res.reshape(-1))
|
||
|
fw_grad[grad_idx] = 0.0
|
||
|
|
||
|
return jacobians
|
||
|
|
||
|
|
||
|
def _get_input_to_perturb(input):
|
||
|
# Prepare the input so that it can be modified in-place and do certain
|
||
|
# operations that require the tensor to have strides. If fast_mode=False,
|
||
|
# _iter_tensor would handle the below cases:
|
||
|
if input.layout == torch._mkldnn: # type: ignore[attr-defined] # no attr _mkldnn
|
||
|
# Convert to dense so we can perform operations that require strided tensors
|
||
|
input_to_perturb = input.to_dense()
|
||
|
elif _is_sparse_any_tensor(input):
|
||
|
# Clone because input may require grad, and copy_ calls resize_,
|
||
|
# which is not allowed for .data
|
||
|
input_to_perturb = input.clone()
|
||
|
else:
|
||
|
input_to_perturb = input.data
|
||
|
return input_to_perturb
|
||
|
|
||
|
|
||
|
def _with_prepare_inputs(fn, inputs, input_idx, input_to_perturb, fast_mode=False):
|
||
|
# Wraps `fn` so that its inputs are already supplied
|
||
|
def wrapped_fn():
|
||
|
inp = tuple(
|
||
|
_prepare_input(a, input_to_perturb if i == input_idx else None, fast_mode)
|
||
|
if is_tensor_like(a)
|
||
|
else a
|
||
|
for i, a in enumerate(_as_tuple(inputs))
|
||
|
)
|
||
|
return tuple(a.clone() for a in _as_tuple(fn(*inp)))
|
||
|
|
||
|
return wrapped_fn
|
||
|
|
||
|
|
||
|
def _get_numerical_jvp_fn(wrapped_fn, input_to_perturb, eps, nbhd_checks_fn):
|
||
|
# Wraps jvp_fn so that certain arguments are already supplied
|
||
|
def jvp_fn(delta):
|
||
|
return _compute_numerical_gradient(
|
||
|
wrapped_fn, input_to_perturb, delta, eps, nbhd_checks_fn
|
||
|
)
|
||
|
|
||
|
return jvp_fn
|
||
|
|
||
|
|
||
|
def _reshape_tensor_or_tuple(u, shape):
|
||
|
# We don't need to reshape when input corresponding to u is sparse
|
||
|
if isinstance(u, tuple):
|
||
|
if not _is_sparse_any_tensor(u[0]):
|
||
|
return (u[0].reshape(shape), u[1].reshape(shape))
|
||
|
else:
|
||
|
if not _is_sparse_any_tensor(u):
|
||
|
return u.reshape(shape)
|
||
|
return u
|
||
|
|
||
|
|
||
|
def _mul_tensor_or_tuple(u, k):
|
||
|
if isinstance(u, tuple):
|
||
|
return (k * u[0], k * u[1])
|
||
|
else:
|
||
|
return k * u
|
||
|
|
||
|
|
||
|
def _get_numerical_jvp_wrt_specific_input(
|
||
|
fn, input_idx, inputs, u, eps, is_forward_ad=False
|
||
|
) -> List[torch.Tensor]:
|
||
|
input = inputs[input_idx]
|
||
|
input_to_perturb = _get_input_to_perturb(input)
|
||
|
wrapped_fn = _with_prepare_inputs(fn, inputs, input_idx, input_to_perturb, True)
|
||
|
nbhd_checks_fn = functools.partial(_check_outputs_same_dtype_and_shape, eps=eps)
|
||
|
jvp_fn = _get_numerical_jvp_fn(wrapped_fn, input_to_perturb, eps, nbhd_checks_fn)
|
||
|
u = _reshape_tensor_or_tuple(u, input_to_perturb.shape)
|
||
|
u = _mul_tensor_or_tuple(u, eps)
|
||
|
return _compute_numerical_jvps_wrt_specific_input(
|
||
|
jvp_fn, u, input.is_complex(), is_forward_ad
|
||
|
)
|
||
|
|
||
|
|
||
|
def _get_numerical_vJu(
|
||
|
fn, inputs, inp_indices, func_out, all_u, all_v, eps, is_forward_ad
|
||
|
):
|
||
|
# Note that all_v can also be None, in that case, this function only computes Ju.
|
||
|
reduced_jacobians: List[List[torch.Tensor]] = []
|
||
|
for i, (inp_idx, u) in enumerate(zip(inp_indices, all_u)):
|
||
|
all_Ju = _get_numerical_jvp_wrt_specific_input(
|
||
|
fn, inp_idx, inputs, u, eps, is_forward_ad
|
||
|
)
|
||
|
# Filter out the Ju for non floating point outputs
|
||
|
filtered_Ju = []
|
||
|
func_out = _as_tuple(func_out)
|
||
|
assert len(all_Ju) == len(func_out)
|
||
|
for Ju, output in zip(all_Ju, func_out):
|
||
|
if _is_float_or_complex_tensor(output):
|
||
|
filtered_Ju.append(Ju)
|
||
|
else:
|
||
|
# TODO: handle the other Ju
|
||
|
pass
|
||
|
if all_v is not None:
|
||
|
jacobian_scalars: List[torch.Tensor] = []
|
||
|
for v, Ju in zip(all_v, filtered_Ju):
|
||
|
jacobian_scalars.append(_dot_with_type_promotion(v, Ju))
|
||
|
reduced_jacobians.append(jacobian_scalars)
|
||
|
else:
|
||
|
reduced_jacobians.append(filtered_Ju)
|
||
|
return reduced_jacobians
|
||
|
|
||
|
|
||
|
def _check_jacobians_equal(j1, j2, atol):
|
||
|
# Check whether the max difference between two Jacobian tensors are within some
|
||
|
# tolerance `atol`.
|
||
|
for j1_x, j2_x in zip(j1, j2):
|
||
|
if j1_x.numel() != 0 and (j1_x - j2_x).abs().max() > atol:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
|
||
|
def _stack_and_check_tensors(
|
||
|
list_of_list_of_tensors, inputs, numel_outputs
|
||
|
) -> Tuple[Tuple[torch.Tensor, ...], bool, bool]:
|
||
|
# For the ith tensor in the inner list checks whether it has the same size and
|
||
|
# dtype as the ith differentiable input.
|
||
|
out_jacobians = _allocate_jacobians_with_inputs(inputs, numel_outputs)
|
||
|
diff_input_list = list(_iter_tensors(inputs, True))
|
||
|
correct_grad_sizes = True
|
||
|
correct_grad_types = True
|
||
|
for i, tensor_list in enumerate(list_of_list_of_tensors):
|
||
|
inp = diff_input_list[i]
|
||
|
out_jacobian = out_jacobians[i]
|
||
|
for j, tensor in enumerate(tensor_list):
|
||
|
if tensor is not None and tensor.size() != inp.size():
|
||
|
correct_grad_sizes = False
|
||
|
elif tensor is not None and tensor.dtype != inp.dtype:
|
||
|
correct_grad_types = False
|
||
|
if tensor is None:
|
||
|
out_jacobian[:, j].zero_()
|
||
|
else:
|
||
|
dense = (
|
||
|
tensor.to_dense() if not tensor.layout == torch.strided else tensor
|
||
|
)
|
||
|
assert out_jacobian[:, j].numel() == dense.numel()
|
||
|
out_jacobian[:, j] = dense.reshape(-1)
|
||
|
return out_jacobians, correct_grad_sizes, correct_grad_types
|
||
|
|
||
|
|
||
|
FAILED_NONDET_MSG = """\n
|
||
|
NOTE: If your op relies on non-deterministic operations i.e., it is listed here:
|
||
|
https://pytorch.org/docs/stable/generated/torch.use_deterministic_algorithms.html
|
||
|
this failure might be expected.
|
||
|
|
||
|
If you are adding a new operator, please file an issue and then use one of the
|
||
|
workarounds. The workaround depends on how your test invokes gradcheck/gradgradcheck.
|
||
|
If the test
|
||
|
- manually invokes gradcheck/gradgradcheck, then call gradcheck/gradgradcheck
|
||
|
with `nondet_tol=<tol>` as a keyword argument.
|
||
|
- is OpInfo-based (e.g., in test_ops_gradients.py), then modify the OpInfo for the test
|
||
|
to have `gradcheck_nondet_tol=<tol>`.
|
||
|
- is a Module test (e.g., in common_nn.py), then modify the corresponding
|
||
|
module_test entry to have `gradcheck_nondet_tol=<tol>`
|
||
|
"""
|
||
|
|
||
|
|
||
|
def _check_analytical_jacobian_attributes(
|
||
|
inputs, output, nondet_tol, check_grad_dtypes, fast_mode=False, v=None
|
||
|
) -> Tuple[torch.Tensor, ...]:
|
||
|
# This is used by both fast and slow mode:
|
||
|
# - For slow mode, vjps[i][j] is the jth row of the Jacobian wrt the ith
|
||
|
# input.
|
||
|
# - For fast mode, vjps[i][0] is a linear combination of the rows
|
||
|
# of the Jacobian wrt the ith input
|
||
|
diff_input_list = list(_iter_tensors(inputs, True))
|
||
|
|
||
|
def vjp_fn(grad_output):
|
||
|
return torch.autograd.grad(
|
||
|
output, diff_input_list, grad_output, retain_graph=True, allow_unused=True
|
||
|
)
|
||
|
|
||
|
# Compute everything twice to check for nondeterminism (which we call reentrancy)
|
||
|
if fast_mode:
|
||
|
vjps1 = _get_analytical_vjps_wrt_specific_output(vjp_fn, output.clone(), v)
|
||
|
vjps2 = _get_analytical_vjps_wrt_specific_output(vjp_fn, output.clone(), v)
|
||
|
else:
|
||
|
vjps1 = _compute_analytical_jacobian_rows(vjp_fn, output.clone())
|
||
|
vjps2 = _compute_analytical_jacobian_rows(vjp_fn, output.clone())
|
||
|
|
||
|
output_numel = output.numel() if not fast_mode else 1
|
||
|
jacobians1, types_ok, sizes_ok = _stack_and_check_tensors(
|
||
|
vjps1, inputs, output_numel
|
||
|
)
|
||
|
jacobians2, _, _ = _stack_and_check_tensors(vjps2, inputs, output_numel)
|
||
|
reentrant = _check_jacobians_equal(jacobians1, jacobians2, nondet_tol)
|
||
|
|
||
|
if not types_ok and check_grad_dtypes:
|
||
|
raise GradcheckError("Gradient has dtype mismatch")
|
||
|
if not sizes_ok:
|
||
|
raise GradcheckError("Analytical gradient has incorrect size")
|
||
|
if not reentrant:
|
||
|
raise GradcheckError(
|
||
|
"Backward is not reentrant, i.e., running backward with "
|
||
|
"same input and grad_output multiple times gives different values, "
|
||
|
"although analytical gradient matches numerical gradient."
|
||
|
f"The tolerance for nondeterminism was {nondet_tol}." + FAILED_NONDET_MSG
|
||
|
)
|
||
|
return jacobians1
|
||
|
|
||
|
|
||
|
def _get_analytical_vJu_backward_mode(
|
||
|
inputs, outputs, nondet_tol, check_grad_dtypes, all_v, all_u
|
||
|
):
|
||
|
reduced_jacobians: List[List[torch.Tensor]] = []
|
||
|
for output, v in zip(outputs, all_v):
|
||
|
all_vJ = _check_analytical_jacobian_attributes(
|
||
|
inputs, output, nondet_tol, check_grad_dtypes, fast_mode=True, v=v
|
||
|
)
|
||
|
jacobian_scalars: List[torch.Tensor] = []
|
||
|
for vJ, u in zip(all_vJ, all_u):
|
||
|
# Why do we need squeeze here? vJ is a 2-d tensor so that we can reuse
|
||
|
# the error checking logic from slow mode
|
||
|
vJ = vJ.T.squeeze(0)
|
||
|
if vJ.is_complex(): # C -> R
|
||
|
tv = torch.view_as_real(vJ.resolve_conj())
|
||
|
tr = tv.select(-1, 0)
|
||
|
ti = tv.select(-1, 1)
|
||
|
jacobian_scalars.append(tr.dot(u[0]) + 1j * ti.dot(u[1]))
|
||
|
else: # R -> R
|
||
|
jacobian_scalars.append(vJ.dot(u))
|
||
|
reduced_jacobians.append(jacobian_scalars)
|
||
|
return reduced_jacobians
|
||
|
|
||
|
|
||
|
def get_analytical_jacobian(inputs, output, nondet_tol=0.0, grad_out=1.0):
|
||
|
# Replicates the behavior of the old get_analytical_jacobian before the refactor
|
||
|
# This shares much of its code with _check_analytical_jacobian_attributes
|
||
|
warnings.warn(
|
||
|
"get_analytical_jacobian was part of PyTorch's private API and not "
|
||
|
"meant to be exposed. We are deprecating it and it will be removed "
|
||
|
"in a future version of PyTorch. If you have a specific use for "
|
||
|
"this or feature request for this to be a stable API, please file "
|
||
|
"us an issue at https://github.com/pytorch/pytorch/issues/new"
|
||
|
)
|
||
|
if (
|
||
|
grad_out != 1.0
|
||
|
): # grad_out param is only kept for backward compatibility reasons
|
||
|
raise ValueError(
|
||
|
"Expected grad_out to be 1.0. get_analytical_jacobian no longer "
|
||
|
"supports values of grad_out != 1.0."
|
||
|
)
|
||
|
if output.is_complex():
|
||
|
raise ValueError(
|
||
|
"Expected output to be non-complex. get_analytical_jacobian no "
|
||
|
"longer supports functions that return complex outputs."
|
||
|
)
|
||
|
diff_input_list = list(_iter_tensors(inputs, True))
|
||
|
|
||
|
def vjp_fn(grad_output):
|
||
|
return torch.autograd.grad(
|
||
|
output, diff_input_list, grad_output, retain_graph=True, allow_unused=True
|
||
|
)
|
||
|
|
||
|
# Compute everything twice to check for nondeterminism (which we call reentrancy)
|
||
|
vjps1 = _compute_analytical_jacobian_rows(vjp_fn, output.clone())
|
||
|
vjps2 = _compute_analytical_jacobian_rows(vjp_fn, output.clone())
|
||
|
|
||
|
output_numel = output.numel()
|
||
|
jacobians1, types_ok, sizes_ok = _stack_and_check_tensors(
|
||
|
vjps1, inputs, output_numel
|
||
|
)
|
||
|
jacobians2, _, _ = _stack_and_check_tensors(vjps2, inputs, output_numel)
|
||
|
reentrant = _check_jacobians_equal(jacobians1, jacobians2, nondet_tol)
|
||
|
|
||
|
return jacobians1, reentrant, sizes_ok, types_ok
|
||
|
|
||
|
|
||
|
def _get_analytical_jacobian(inputs, outputs, input_idx, output_idx):
|
||
|
# Computes the analytical Jacobian in slow mode for a single input-output pair.
|
||
|
# Forgoes performing checks on dtype, shape, and reentrancy.
|
||
|
jacobians = _check_analytical_jacobian_attributes(
|
||
|
inputs, outputs[output_idx], nondet_tol=float("inf"), check_grad_dtypes=False
|
||
|
)
|
||
|
return jacobians[input_idx]
|
||
|
|
||
|
|
||
|
def _compute_analytical_jacobian_rows(
|
||
|
vjp_fn, sample_output
|
||
|
) -> List[List[Optional[torch.Tensor]]]:
|
||
|
# Computes Jacobian row-by-row by projecting `vjp_fn` = v^T J on standard basis
|
||
|
# vectors: vjp_fn(e) = e^T J is a corresponding row of the Jacobian.
|
||
|
# NB: this function does not assume vjp_fn(v) to return tensors with the same
|
||
|
# number of elements for different v. This is checked when we later combine the
|
||
|
# rows into a single tensor.
|
||
|
grad_out_base = torch.zeros_like(
|
||
|
sample_output, memory_format=torch.legacy_contiguous_format
|
||
|
)
|
||
|
flat_grad_out = grad_out_base.view(-1)
|
||
|
# jacobians_rows[i][j] is the Jacobian jth row for the ith input
|
||
|
jacobians_rows: List[List[Optional[torch.Tensor]]] = []
|
||
|
for j in range(flat_grad_out.numel()):
|
||
|
flat_grad_out.zero_()
|
||
|
flat_grad_out[j] = 1.0 # projection for jth row of Jacobian
|
||
|
grad_inputs = vjp_fn(grad_out_base)
|
||
|
for i, d_x in enumerate(grad_inputs):
|
||
|
if j == 0:
|
||
|
jacobians_rows.append([])
|
||
|
jacobians_rows[i] += [
|
||
|
d_x.clone() if isinstance(d_x, torch.Tensor) else None
|
||
|
]
|
||
|
return jacobians_rows
|
||
|
|
||
|
|
||
|
def _get_analytical_vjps_wrt_specific_output(
|
||
|
vjp_fn, sample_output, v
|
||
|
) -> List[List[Optional[torch.Tensor]]]:
|
||
|
vjps: List[List[Optional[torch.Tensor]]] = []
|
||
|
grad_inputs = vjp_fn(v.reshape(sample_output.shape))
|
||
|
for vjp in grad_inputs:
|
||
|
vjps.append([vjp.clone() if isinstance(vjp, torch.Tensor) else None])
|
||
|
return vjps
|
||
|
|
||
|
|
||
|
def _check_inputs(tupled_inputs) -> bool:
|
||
|
# Make sure that gradients are saved for at least one input
|
||
|
any_input_requiring_grad = False
|
||
|
for idx, inp in enumerate(tupled_inputs):
|
||
|
if is_tensor_like(inp) and inp.requires_grad:
|
||
|
if not (inp.dtype == torch.float64 or inp.dtype == torch.complex128):
|
||
|
warnings.warn(
|
||
|
f"Input #{idx} requires gradient and "
|
||
|
"is not a double precision floating point or complex. "
|
||
|
"This check will likely fail if all the inputs are "
|
||
|
"not of double precision floating point or complex. "
|
||
|
)
|
||
|
if inp.is_sparse:
|
||
|
content = inp._values()
|
||
|
elif _is_sparse_compressed_tensor(inp):
|
||
|
content = inp.values()
|
||
|
else:
|
||
|
content = inp
|
||
|
# TODO: To cover more problematic cases, replace stride = 0 check with
|
||
|
# "any overlap in memory" once we have a proper function to check it.
|
||
|
if content.layout is not torch._mkldnn: # type: ignore[attr-defined]
|
||
|
if not all(
|
||
|
st > 0 or sz <= 1
|
||
|
for st, sz in zip(content.stride(), content.size())
|
||
|
):
|
||
|
raise RuntimeError(
|
||
|
f"The {idx}th input has a dimension with stride 0. gradcheck only "
|
||
|
"supports inputs that are non-overlapping to be able to "
|
||
|
"compute the numerical gradients correctly. You should call "
|
||
|
".contiguous on the input before passing it to gradcheck."
|
||
|
)
|
||
|
any_input_requiring_grad = True
|
||
|
|
||
|
if not any_input_requiring_grad:
|
||
|
raise ValueError(
|
||
|
"gradcheck expects at least one input tensor to require gradient, "
|
||
|
"but none of the them have requires_grad=True."
|
||
|
)
|
||
|
return True
|
||
|
|
||
|
|
||
|
def _check_outputs(outputs) -> None:
|
||
|
if any(_is_sparse_any_tensor(t) for t in outputs if isinstance(t, torch.Tensor)):
|
||
|
# it is easier to call to_dense() on the sparse output than
|
||
|
# to modify analytical jacobian
|
||
|
raise ValueError(
|
||
|
"Sparse output is not supported at gradcheck yet. "
|
||
|
"Please call to_dense(masked_grad=...) on the output of fn for gradcheck."
|
||
|
)
|
||
|
if any(t.layout == torch._mkldnn for t in outputs if isinstance(t, torch.Tensor)): # type: ignore[attr-defined]
|
||
|
raise ValueError(
|
||
|
"MKLDNN output is not supported at gradcheck yet. "
|
||
|
"Please call to_dense(masked_grad=...) on the output of fn for gradcheck."
|
||
|
)
|
||
|
|
||
|
|
||
|
def _check_no_differentiable_outputs(
|
||
|
func, inputs, func_out, eps, *, is_forward_ad
|
||
|
) -> bool:
|
||
|
# When there are no differentiable outputs, numerical gradient for a function is
|
||
|
# expected to be zero.
|
||
|
jacobians_all_inputs_outputs = _get_numerical_jacobian(
|
||
|
func, inputs, func_out, eps=eps, is_forward_ad=is_forward_ad
|
||
|
)
|
||
|
for jacobians_all_outputs_and_fixed_input in jacobians_all_inputs_outputs:
|
||
|
for jacobian in jacobians_all_outputs_and_fixed_input:
|
||
|
if torch.ne(jacobian, 0).sum() > 0:
|
||
|
raise GradcheckError(
|
||
|
"Numerical gradient for function expected to be zero"
|
||
|
)
|
||
|
return True
|
||
|
|
||
|
|
||
|
def _check_no_differentiable_outputs_fast(
|
||
|
func, func_out, all_inputs, inputs_indices, all_u, eps, nondet_tol
|
||
|
):
|
||
|
for inp_idx, u in zip(inputs_indices, all_u):
|
||
|
jvps = _get_numerical_jvp_wrt_specific_input(func, inp_idx, all_inputs, u, eps)
|
||
|
for jvp in jvps:
|
||
|
if jvp.numel() == 0:
|
||
|
continue
|
||
|
if (jvp - torch.zeros_like(jvp)).abs().max() > nondet_tol:
|
||
|
raise GradcheckError(
|
||
|
"Numerical gradient for function expected to be zero"
|
||
|
)
|
||
|
return True
|
||
|
|
||
|
|
||
|
FAILED_BATCHED_GRAD_MSG = """
|
||
|
gradcheck or gradgradcheck failed while testing batched gradient computation.
|
||
|
This could have been invoked in a number of ways (via a test that calls
|
||
|
gradcheck/gradgradcheck directly or via an autogenerated test).
|
||
|
|
||
|
If you are adding a new operator, please file an issue and then use one of the
|
||
|
workarounds. The workaround depends on how your test invokes gradcheck/gradgradcheck.
|
||
|
If the test
|
||
|
- manually invokes gradcheck/gradgradcheck, then call gradcheck/gradgradcheck
|
||
|
with `check_batched_grad=False` as a keyword argument.
|
||
|
- is OpInfo-based (e.g., in test_ops_gradients.py), then modify the OpInfo for the test
|
||
|
to have `check_batched_grad=False` and/or `check_batched_gradgrad=False`.
|
||
|
|
||
|
If you're modifying an existing operator that supports batched grad computation,
|
||
|
or wish to make a new operator work with batched grad computation, please read
|
||
|
the following.
|
||
|
|
||
|
To compute batched grads (e.g., jacobians, hessians), we vmap over the backward
|
||
|
computation. The most common failure case is if there is a 'vmap-incompatible
|
||
|
operation' in the backward pass. Please see
|
||
|
NOTE: [How to write vmap-compatible backward formulas]
|
||
|
in the codebase for an explanation of how to fix this.
|
||
|
""".strip()
|
||
|
|
||
|
FAILED_BATCHED_GRAD_MSG_FWD_AD = """
|
||
|
gradcheck failed while testing batched gradient computation with forward-mode AD.
|
||
|
This test is enabled automatically when both `check_batched_grad=True`
|
||
|
and `check_forward_ad=True`, but can be disabled in the following ways
|
||
|
dependong on how the test was invoked (via a test that calls gradcheck
|
||
|
directly or via an autogenerated test).
|
||
|
|
||
|
If you are adding a new operator, please file an issue and then use one of the
|
||
|
workarounds. The workaround depends on how your test invokes gradcheck/gradgradcheck.
|
||
|
If the test
|
||
|
- manually invokes gradcheck/gradgradcheck, then call gradcheck/gradgradcheck
|
||
|
with `check_batched_forward_grad=False` as a keyword argument.
|
||
|
- is OpInfo-based (e.g., in test_ops_gradients.py), then modify the OpInfo for the test
|
||
|
to have `check_batched_forward_grad=False`
|
||
|
"""
|
||
|
|
||
|
|
||
|
def _get_failed_batched_grad_test_msg(
|
||
|
output_idx, input_idx, res, exp, is_forward_ad=False
|
||
|
):
|
||
|
return f"""
|
||
|
For output {output_idx} and input {input_idx}:
|
||
|
|
||
|
{FAILED_BATCHED_GRAD_MSG_FWD_AD if is_forward_ad else FAILED_BATCHED_GRAD_MSG}
|
||
|
|
||
|
Got:
|
||
|
{res}
|
||
|
|
||
|
Expected:
|
||
|
{exp}
|
||
|
""".strip()
|
||
|
|
||
|
|
||
|
def _test_batched_grad_forward_ad(func, inputs) -> bool:
|
||
|
fwAD = torch.autograd.forward_ad # To avoid early import issues (do we need this?)
|
||
|
assert isinstance(inputs, tuple)
|
||
|
|
||
|
for input_idx, current_input in enumerate(inputs):
|
||
|
if not (is_tensor_like(current_input) and current_input.requires_grad):
|
||
|
continue
|
||
|
|
||
|
def jvp(tangent: torch.Tensor):
|
||
|
with fwAD.dual_level():
|
||
|
dual = fwAD.make_dual(current_input.detach(), tangent)
|
||
|
inputs_with_dual = tuple(
|
||
|
dual
|
||
|
if idx == input_idx
|
||
|
else (inp.detach() if is_tensor_like(inp) else inp)
|
||
|
for idx, inp in enumerate(inputs)
|
||
|
)
|
||
|
dual_outputs = _as_tuple(func(*inputs_with_dual))
|
||
|
ret = []
|
||
|
for dual_output in dual_outputs:
|
||
|
if dual_output is None:
|
||
|
continue
|
||
|
primal_out, tangent_out = fwAD.unpack_dual(dual_output)
|
||
|
if tangent_out is not None:
|
||
|
ret.append(tangent_out)
|
||
|
else:
|
||
|
ret.append(
|
||
|
torch.zeros(
|
||
|
[], dtype=primal_out.dtype, device=primal_out.device
|
||
|
).expand(primal_out.shape)
|
||
|
)
|
||
|
return tuple(ret)
|
||
|
|
||
|
if not _is_float_or_complex_tensor(current_input):
|
||
|
continue
|
||
|
|
||
|
tangents = [torch.randn_like(current_input) for _ in range(2)]
|
||
|
expected = [jvp(t) for t in tangents]
|
||
|
expected = [torch.stack(shards) for shards in zip(*expected)]
|
||
|
|
||
|
try:
|
||
|
result = _vmap(jvp)(torch.stack(tangents))
|
||
|
except RuntimeError as ex:
|
||
|
# Rethrow to provide a better error message
|
||
|
raise GradcheckError(
|
||
|
f"While computing batched gradients, got: {ex}\n\n{FAILED_BATCHED_GRAD_MSG_FWD_AD}"
|
||
|
) from ex
|
||
|
|
||
|
for input_idx, (res, exp) in enumerate(zip(result, expected)):
|
||
|
if torch.allclose(res, exp):
|
||
|
continue
|
||
|
raise GradcheckError(
|
||
|
_get_failed_batched_grad_test_msg(
|
||
|
input_idx, input_idx, res, exp, is_forward_ad=True
|
||
|
)
|
||
|
)
|
||
|
return True
|
||
|
|
||
|
|
||
|
def _test_batched_grad(input, output, output_idx) -> bool:
|
||
|
# NB: _test_batched_grad compares two autograd.grad invocations with a single
|
||
|
# vmap(autograd.grad) invocation. It's not exactly a "gradcheck" in the
|
||
|
# sense that we're not comparing an analytical jacobian with a numeric one,
|
||
|
# but it is morally similar (we could have computed a full analytic jac
|
||
|
# via vmap, but that is potentially slow)
|
||
|
diff_input_list = list(_iter_tensors(input, True))
|
||
|
grad = functools.partial(
|
||
|
torch.autograd.grad,
|
||
|
output,
|
||
|
diff_input_list,
|
||
|
retain_graph=True,
|
||
|
allow_unused=True,
|
||
|
)
|
||
|
|
||
|
def vjp(v):
|
||
|
results = grad(v)
|
||
|
results = tuple(
|
||
|
grad
|
||
|
if grad is not None
|
||
|
else torch.zeros([], dtype=inp.dtype, device=inp.device).expand(inp.shape)
|
||
|
for grad, inp in zip(results, diff_input_list)
|
||
|
)
|
||
|
return results
|
||
|
|
||
|
grad_outputs = [torch.randn_like(output) for _ in range(2)]
|
||
|
|
||
|
expected = [vjp(gO) for gO in grad_outputs]
|
||
|
expected = [torch.stack(shards) for shards in zip(*expected)]
|
||
|
|
||
|
# Squash warnings since these are expected to happen in most cases
|
||
|
# NB: this doesn't work for CUDA tests: https://github.com/pytorch/pytorch/issues/50209
|
||
|
with warnings.catch_warnings():
|
||
|
warnings.filterwarnings("ignore", message="There is a performance drop")
|
||
|
warnings.filterwarnings("ignore", message="Please use torch.vmap")
|
||
|
try:
|
||
|
result = vmap(vjp)(torch.stack(grad_outputs))
|
||
|
except RuntimeError as ex:
|
||
|
# It's OK that we're not raising the error at the correct callsite.
|
||
|
# That's because the callsite is always going to inside the Python
|
||
|
# autograd.grad instead of the C++ traceback of what line in the
|
||
|
# backward formula
|
||
|
raise GradcheckError(
|
||
|
f"While computing batched gradients, got: {ex}\n\n{FAILED_BATCHED_GRAD_MSG}"
|
||
|
) from ex
|
||
|
|
||
|
for input_idx, (res, exp) in enumerate(zip(result, expected)):
|
||
|
if torch.allclose(res, exp):
|
||
|
continue
|
||
|
raise GradcheckError(
|
||
|
_get_failed_batched_grad_test_msg(output_idx, input_idx, res, exp)
|
||
|
)
|
||
|
return True
|
||
|
|
||
|
|
||
|
def _test_backward_mul_by_grad_output(outputs, inputs, masked) -> bool:
|
||
|
# Tests that backward is multiplied by grad_output
|
||
|
diff_input_list: List[torch.Tensor] = list(_iter_tensors(inputs, True))
|
||
|
if not diff_input_list:
|
||
|
raise GradcheckError("no Tensors requiring grad found in input")
|
||
|
grads_input = torch.autograd.grad(
|
||
|
outputs,
|
||
|
diff_input_list,
|
||
|
[
|
||
|
torch.zeros_like(o, memory_format=torch.legacy_contiguous_format)
|
||
|
for o in outputs
|
||
|
],
|
||
|
allow_unused=True,
|
||
|
)
|
||
|
for gi, di in zip(grads_input, diff_input_list):
|
||
|
if gi is None:
|
||
|
continue
|
||
|
if isinstance(gi, torch.Tensor) and gi.layout != torch.strided:
|
||
|
if gi.layout != di.layout:
|
||
|
raise GradcheckError(
|
||
|
"grad is incorrect layout ("
|
||
|
+ str(gi.layout)
|
||
|
+ " is not "
|
||
|
+ str(di.layout)
|
||
|
+ ")"
|
||
|
)
|
||
|
if _is_sparse_any_tensor(gi):
|
||
|
sparse_kind = str(gi.layout).replace("torch.", "").replace("_coo", "")
|
||
|
if gi.sparse_dim() != di.sparse_dim():
|
||
|
raise GradcheckError(
|
||
|
f"grad is {sparse_kind} tensor, but has incorrect sparse_dim"
|
||
|
f" {gi.sparse_dim()}, expected {di.sparse_dim()}"
|
||
|
)
|
||
|
if gi.dense_dim() != di.dense_dim():
|
||
|
raise GradcheckError(
|
||
|
f"grad is {sparse_kind} tensor, but has incorrect dense_dim"
|
||
|
f" {gi.dense_dim()}, expected {di.dense_dim()}"
|
||
|
)
|
||
|
gi = gi.to_dense()
|
||
|
di = di.to_dense()
|
||
|
if masked:
|
||
|
if not torch.allclose(gi, torch.zeros_like(gi)):
|
||
|
raise GradcheckError("backward not multiplied by grad_output")
|
||
|
elif not gi.eq(0).all():
|
||
|
raise GradcheckError("backward not multiplied by grad_output")
|
||
|
if gi.dtype != di.dtype:
|
||
|
raise GradcheckError("grad is incorrect type")
|
||
|
if gi.device != di.device:
|
||
|
raise GradcheckError("grad is incorrect device")
|
||
|
if gi.size() != di.size():
|
||
|
raise GradcheckError("grad is incorrect size")
|
||
|
return True
|
||
|
|
||
|
|
||
|
def _test_undefined_forward_mode(func, outputs, inputs):
|
||
|
fwAD = torch.autograd.forward_ad
|
||
|
|
||
|
inp_tensors_idx, inp_tensors = _get_inp_tensors(inputs)
|
||
|
all_v, all_u, all_u_dense = _make_vectors(inp_tensors, outputs, use_forward_ad=True)
|
||
|
|
||
|
tensor_inputs = tuple(i for i in inputs if is_tensor_like(i) and i.requires_grad)
|
||
|
|
||
|
with fwAD.dual_level():
|
||
|
fw_grads = []
|
||
|
dual_inputs = []
|
||
|
tensor_indices = set()
|
||
|
for i, inp in enumerate(inputs):
|
||
|
if is_tensor_like(inp) and inp.requires_grad:
|
||
|
if inp.layout == torch._mkldnn: # type: ignore[attr-defined]
|
||
|
raise ValueError(
|
||
|
"MKLDNN inputs are not support for forward AD gradcheck."
|
||
|
)
|
||
|
|
||
|
inp = fwAD.make_dual(inp.detach(), torch.zeros_like(inp))
|
||
|
# If inp is a differentiable view, the dual might not be the tangent given to
|
||
|
# make_dual, so read it explicitly from the dual tensor
|
||
|
fw_grads.append(fwAD.unpack_dual(inp)[1])
|
||
|
tensor_indices.add(i)
|
||
|
dual_inputs.append(inp)
|
||
|
|
||
|
for i, (fw_grad, u) in enumerate(zip(fw_grads, all_u)):
|
||
|
fw_grad.copy_(u.view_as(fw_grad))
|
||
|
|
||
|
for idx, inp in enumerate(inputs):
|
||
|
if idx not in tensor_indices:
|
||
|
continue
|
||
|
dual_inp_obj = dual_inputs[idx]
|
||
|
|
||
|
# case 1 (Materialized Zero Tensor Tangent)
|
||
|
dual_inputs[idx] = fwAD.make_dual(inp.detach(), torch.zeros_like(inp))
|
||
|
raw_outputs = _as_tuple(func(*dual_inputs))
|
||
|
dual_outputs1 = filter(_is_float_or_complex_tensor, raw_outputs)
|
||
|
|
||
|
# case 2 (Efficient Zero Tensor Tangent since we don't make a dual object and pass a regular tensor)
|
||
|
dual_inputs[idx] = inp.detach()
|
||
|
raw_outputs = _as_tuple(func(*dual_inputs))
|
||
|
dual_outputs2 = filter(_is_float_or_complex_tensor, raw_outputs)
|
||
|
|
||
|
# reset
|
||
|
dual_inputs[idx] = dual_inp_obj
|
||
|
|
||
|
for index_o, (d_o1, d_o2) in enumerate(zip(dual_outputs1, dual_outputs2)):
|
||
|
val1, res1 = fwAD.unpack_dual(d_o1)
|
||
|
val2, res2 = fwAD.unpack_dual(d_o2)
|
||
|
|
||
|
if not (res1 is None or res2 is None):
|
||
|
if not torch.allclose(res1, res2):
|
||
|
raise GradcheckError(
|
||
|
"Mismatch in tangent values for output with index: ",
|
||
|
index_o,
|
||
|
" when input: ",
|
||
|
inp,
|
||
|
" has an undefined tangent value. ",
|
||
|
" Got: ",
|
||
|
res1,
|
||
|
" but expected: ",
|
||
|
res2,
|
||
|
)
|
||
|
return True
|
||
|
|
||
|
|
||
|
def _test_undefined_backward_mode(func, outputs, inputs) -> bool:
|
||
|
diff_input_list: List[torch.Tensor] = list(_iter_tensors(inputs, True))
|
||
|
if not diff_input_list:
|
||
|
raise GradcheckError("no Tensors requiring grad found in input")
|
||
|
|
||
|
def warn_bc_breaking():
|
||
|
warnings.warn(
|
||
|
"Backwards compatibility: New undefined gradient support checking "
|
||
|
"feature is enabled by default, but it may break existing callers "
|
||
|
"of this function. If this is true for you, you can call this "
|
||
|
'function with "check_undefined_grad=False" to disable the feature'
|
||
|
)
|
||
|
|
||
|
def check_undefined_grad_support(output_to_check):
|
||
|
grads_output = [
|
||
|
torch.zeros_like(o, memory_format=torch.legacy_contiguous_format)
|
||
|
for o in output_to_check
|
||
|
]
|
||
|
try:
|
||
|
grads_input = torch.autograd.grad(
|
||
|
output_to_check, diff_input_list, grads_output, allow_unused=True
|
||
|
)
|
||
|
except RuntimeError as e:
|
||
|
warn_bc_breaking()
|
||
|
raise GradcheckError(
|
||
|
"Expected backward function to handle undefined output grads. "
|
||
|
'Please look at "Notes about undefined output gradients" in '
|
||
|
'"tools/autograd/derivatives.yaml"'
|
||
|
) from e
|
||
|
|
||
|
for gi, i in zip(grads_input, diff_input_list):
|
||
|
if (gi is not None) and (not gi.eq(0).all()):
|
||
|
warn_bc_breaking()
|
||
|
raise GradcheckError(
|
||
|
"Expected all input grads to be undefined or zero when all output grads are undefined "
|
||
|
'or zero. Please look at "Notes about undefined output gradients" in '
|
||
|
'"tools/autograd/derivatives.yaml"'
|
||
|
)
|
||
|
return True
|
||
|
|
||
|
# All backward functions must work properly if all output grads are undefined
|
||
|
outputs_to_check = [
|
||
|
[
|
||
|
torch._C._functions.UndefinedGrad()(o)
|
||
|
for o in _differentiable_outputs(func(*inputs))
|
||
|
# This check filters out Tensor-likes that aren't instances of Tensor.
|
||
|
if isinstance(o, torch.Tensor)
|
||
|
]
|
||
|
]
|
||
|
|
||
|
# If there are multiple output grads, we should be able to undef one at a time without error
|
||
|
if len(outputs_to_check[0]) > 1:
|
||
|
for undef_grad_idx in range(len(outputs)):
|
||
|
output_to_check = _differentiable_outputs(func(*inputs))
|
||
|
outputs_to_check.append(
|
||
|
[
|
||
|
torch._C._functions.UndefinedGrad()(o)
|
||
|
if idx == undef_grad_idx
|
||
|
else o
|
||
|
for idx, o in enumerate(output_to_check)
|
||
|
]
|
||
|
)
|
||
|
|
||
|
return all(check_undefined_grad_support(output) for output in outputs_to_check)
|
||
|
|
||
|
|
||
|
def _as_tuple(x):
|
||
|
if isinstance(x, tuple):
|
||
|
return x
|
||
|
elif isinstance(x, list):
|
||
|
return tuple(x)
|
||
|
else:
|
||
|
return (x,)
|
||
|
|
||
|
|
||
|
def _differentiable_outputs(x):
|
||
|
return tuple(o for o in _as_tuple(x) if o.requires_grad)
|
||
|
|
||
|
|
||
|
def _get_notallclose_msg(
|
||
|
analytical,
|
||
|
numerical,
|
||
|
output_idx,
|
||
|
input_idx,
|
||
|
complex_indices,
|
||
|
test_imag=False,
|
||
|
is_forward_ad=False,
|
||
|
) -> str:
|
||
|
out_is_complex = (
|
||
|
(not is_forward_ad) and complex_indices and output_idx in complex_indices
|
||
|
)
|
||
|
inp_is_complex = is_forward_ad and complex_indices and input_idx in complex_indices
|
||
|
part = "imaginary" if test_imag else "real"
|
||
|
element = "inputs" if is_forward_ad else "outputs"
|
||
|
prefix = (
|
||
|
""
|
||
|
if not (out_is_complex or inp_is_complex)
|
||
|
else f"While considering the {part} part of complex {element} only, "
|
||
|
)
|
||
|
mode = "computed with forward mode " if is_forward_ad else ""
|
||
|
return (
|
||
|
prefix + "Jacobian %smismatch for output %d with respect to input %d,\n"
|
||
|
"numerical:%s\nanalytical:%s\n"
|
||
|
% (mode, output_idx, input_idx, numerical, analytical)
|
||
|
)
|
||
|
|
||
|
|
||
|
def _transpose(matrix_of_tensors):
|
||
|
# returns list of tuples
|
||
|
return list(zip(*matrix_of_tensors))
|
||
|
|
||
|
|
||
|
def _real_and_imag_output(fn):
|
||
|
# returns new functions real(fn), and imag(fn) where real(fn) and imag(fn) behave the same as
|
||
|
# the original fn, except torch.real or torch.imag are applied to the complex outputs
|
||
|
def apply_to_c_outs(fn, fn_to_apply):
|
||
|
def wrapped_fn(*inputs):
|
||
|
outs = _as_tuple(fn(*inputs))
|
||
|
return tuple(fn_to_apply(o) if o.is_complex() else o for o in outs)
|
||
|
|
||
|
return wrapped_fn
|
||
|
|
||
|
return apply_to_c_outs(fn, torch.real), apply_to_c_outs(fn, torch.imag)
|
||
|
|
||
|
|
||
|
def _real_and_imag_input(fn, complex_inp_indices, tupled_inputs):
|
||
|
# returns new functions that take real inputs instead of complex inputs as
|
||
|
# (x, y) -> fn(x + y * 1j). And it computes: inp -> fn(inp + y * 1j) and inp -> fn(x + inp * 1j).
|
||
|
# In each case, the other part is considered constant.
|
||
|
# We do not use 0 for the constant here to make sure we always call the user function with a valid input.
|
||
|
def apply_to_c_inps(fn, fn_to_apply):
|
||
|
def wrapped_fn(*inputs):
|
||
|
new_inputs = list(inputs)
|
||
|
for should_be_complex in complex_inp_indices:
|
||
|
new_inputs[should_be_complex] = fn_to_apply(
|
||
|
new_inputs[should_be_complex], tupled_inputs[should_be_complex]
|
||
|
)
|
||
|
return _as_tuple(fn(*new_inputs))
|
||
|
|
||
|
return wrapped_fn
|
||
|
|
||
|
real_fn = apply_to_c_inps(fn, lambda inp, orig: inp + orig.imag * 1j)
|
||
|
imag_fn = apply_to_c_inps(fn, lambda inp, orig: orig.real + inp * 1j)
|
||
|
return real_fn, imag_fn
|
||
|
|
||
|
|
||
|
def _gradcheck_real_imag(
|
||
|
gradcheck_fn,
|
||
|
func,
|
||
|
func_out,
|
||
|
tupled_inputs,
|
||
|
outputs,
|
||
|
eps,
|
||
|
rtol,
|
||
|
atol,
|
||
|
check_grad_dtypes,
|
||
|
check_forward_ad,
|
||
|
check_backward_ad,
|
||
|
nondet_tol,
|
||
|
check_undefined_grad,
|
||
|
):
|
||
|
complex_out_indices = [i for i, o in enumerate(outputs) if o.is_complex()]
|
||
|
has_any_complex_output = any(o.is_complex() for o in _as_tuple(func_out))
|
||
|
if check_backward_ad:
|
||
|
if has_any_complex_output:
|
||
|
real_fn, imag_fn = _real_and_imag_output(func)
|
||
|
|
||
|
imag_func_out = imag_fn(*tupled_inputs)
|
||
|
imag_outputs = _differentiable_outputs(imag_func_out)
|
||
|
gradcheck_fn(
|
||
|
imag_fn,
|
||
|
imag_func_out,
|
||
|
tupled_inputs,
|
||
|
imag_outputs,
|
||
|
eps,
|
||
|
rtol,
|
||
|
atol,
|
||
|
check_grad_dtypes,
|
||
|
nondet_tol,
|
||
|
complex_indices=complex_out_indices,
|
||
|
test_imag=True,
|
||
|
)
|
||
|
|
||
|
real_func_out = real_fn(*tupled_inputs)
|
||
|
real_outputs = _differentiable_outputs(real_func_out)
|
||
|
gradcheck_fn(
|
||
|
real_fn,
|
||
|
real_func_out,
|
||
|
tupled_inputs,
|
||
|
real_outputs,
|
||
|
eps,
|
||
|
rtol,
|
||
|
atol,
|
||
|
check_grad_dtypes,
|
||
|
nondet_tol,
|
||
|
complex_indices=complex_out_indices,
|
||
|
)
|
||
|
else:
|
||
|
gradcheck_fn(
|
||
|
func,
|
||
|
func_out,
|
||
|
tupled_inputs,
|
||
|
outputs,
|
||
|
eps,
|
||
|
rtol,
|
||
|
atol,
|
||
|
check_grad_dtypes,
|
||
|
nondet_tol,
|
||
|
)
|
||
|
|
||
|
if check_forward_ad:
|
||
|
complex_inp_indices = [
|
||
|
i
|
||
|
for i, inp in enumerate(tupled_inputs)
|
||
|
if is_tensor_like(inp) and inp.is_complex()
|
||
|
]
|
||
|
if complex_inp_indices:
|
||
|
real_fn, imag_fn = _real_and_imag_input(
|
||
|
func, complex_inp_indices, tupled_inputs
|
||
|
)
|
||
|
|
||
|
imag_inputs = [
|
||
|
inp.imag if is_tensor_like(inp) and inp.is_complex() else inp
|
||
|
for inp in tupled_inputs
|
||
|
]
|
||
|
imag_func_out = imag_fn(*imag_inputs)
|
||
|
diff_imag_func_out = _differentiable_outputs(imag_func_out)
|
||
|
gradcheck_fn(
|
||
|
imag_fn,
|
||
|
imag_func_out,
|
||
|
imag_inputs,
|
||
|
diff_imag_func_out,
|
||
|
eps,
|
||
|
rtol,
|
||
|
atol,
|
||
|
check_grad_dtypes,
|
||
|
nondet_tol,
|
||
|
complex_indices=complex_inp_indices,
|
||
|
test_imag=True,
|
||
|
use_forward_ad=True,
|
||
|
)
|
||
|
|
||
|
real_inputs = [
|
||
|
inp.real if is_tensor_like(inp) and inp.is_complex() else inp
|
||
|
for inp in tupled_inputs
|
||
|
]
|
||
|
real_func_out = real_fn(*real_inputs)
|
||
|
diff_real_func_out = _differentiable_outputs(real_func_out)
|
||
|
gradcheck_fn(
|
||
|
real_fn,
|
||
|
real_func_out,
|
||
|
real_inputs,
|
||
|
diff_real_func_out,
|
||
|
eps,
|
||
|
rtol,
|
||
|
atol,
|
||
|
check_grad_dtypes,
|
||
|
nondet_tol,
|
||
|
complex_indices=complex_inp_indices,
|
||
|
use_forward_ad=True,
|
||
|
)
|
||
|
if check_undefined_grad:
|
||
|
_test_undefined_forward_mode(imag_fn, imag_func_out, imag_inputs)
|
||
|
_test_undefined_forward_mode(real_fn, real_func_out, real_inputs)
|
||
|
else:
|
||
|
gradcheck_fn(
|
||
|
func,
|
||
|
func_out,
|
||
|
tupled_inputs,
|
||
|
outputs,
|
||
|
eps,
|
||
|
rtol,
|
||
|
atol,
|
||
|
check_grad_dtypes,
|
||
|
nondet_tol,
|
||
|
use_forward_ad=True,
|
||
|
)
|
||
|
if check_undefined_grad:
|
||
|
_test_undefined_forward_mode(func, outputs, tupled_inputs)
|
||
|
|
||
|
|
||
|
def _slow_gradcheck(
|
||
|
func,
|
||
|
func_out,
|
||
|
tupled_inputs,
|
||
|
outputs,
|
||
|
eps,
|
||
|
rtol,
|
||
|
atol,
|
||
|
check_grad_dtypes,
|
||
|
nondet_tol,
|
||
|
*,
|
||
|
use_forward_ad=False,
|
||
|
complex_indices=None,
|
||
|
test_imag=False,
|
||
|
masked=False,
|
||
|
):
|
||
|
func_out = _as_tuple(func_out)
|
||
|
if not outputs:
|
||
|
return _check_no_differentiable_outputs(
|
||
|
func, tupled_inputs, func_out, eps=eps, is_forward_ad=use_forward_ad
|
||
|
)
|
||
|
tupled_inputs_numerical = tupled_inputs if masked else _densify(tupled_inputs)
|
||
|
|
||
|
numerical = _transpose(
|
||
|
_get_numerical_jacobian(
|
||
|
func,
|
||
|
tupled_inputs_numerical,
|
||
|
func_out,
|
||
|
eps=eps,
|
||
|
is_forward_ad=use_forward_ad,
|
||
|
)
|
||
|
)
|
||
|
# Note: [numerical vs analytical output length]
|
||
|
# The numerical path returns jacobian quantity for all outputs, even if requires_grad of that
|
||
|
# output is False. This behavior is necessary for _check_no_differentiable_outputs to work.
|
||
|
numerical = [nj for o, nj in zip(func_out, numerical) if o.requires_grad]
|
||
|
if use_forward_ad:
|
||
|
analytical_forward = _get_analytical_jacobian_forward_ad(
|
||
|
func, tupled_inputs, func_out, check_grad_dtypes=check_grad_dtypes
|
||
|
)
|
||
|
|
||
|
for i, n_per_out in enumerate(numerical):
|
||
|
for j, n in enumerate(n_per_out):
|
||
|
a = analytical_forward[j][i]
|
||
|
if not _allclose_with_type_promotion(a, n.to(a.device), rtol, atol):
|
||
|
raise GradcheckError(
|
||
|
_get_notallclose_msg(
|
||
|
a, n, i, j, complex_indices, test_imag, is_forward_ad=True
|
||
|
)
|
||
|
)
|
||
|
else:
|
||
|
for i, o in enumerate(outputs):
|
||
|
analytical = _check_analytical_jacobian_attributes(
|
||
|
tupled_inputs, o, nondet_tol, check_grad_dtypes
|
||
|
)
|
||
|
|
||
|
for j, (a, n) in enumerate(zip(analytical, numerical[i])):
|
||
|
if not _allclose_with_type_promotion(a, n.to(a.device), rtol, atol):
|
||
|
raise GradcheckError(
|
||
|
_get_notallclose_msg(a, n, i, j, complex_indices, test_imag)
|
||
|
)
|
||
|
|
||
|
return True
|
||
|
|
||
|
|
||
|
def _dot_with_type_promotion(u, v):
|
||
|
assert u.dim() == 1 and v.dim() == 1
|
||
|
return (u * v).sum()
|
||
|
|
||
|
|
||
|
def _allclose_with_type_promotion(a, b, rtol, atol):
|
||
|
promoted_type = torch.promote_types(a.dtype, b.dtype)
|
||
|
a = a.to(dtype=promoted_type)
|
||
|
b = b.to(dtype=promoted_type)
|
||
|
return torch.allclose(a, b, rtol, atol)
|
||
|
|
||
|
|
||
|
def _to_real_dtype(dtype):
|
||
|
if dtype == torch.complex128:
|
||
|
return torch.float64
|
||
|
elif dtype == torch.complex64:
|
||
|
return torch.float32
|
||
|
else:
|
||
|
return dtype
|
||
|
|
||
|
|
||
|
def _vec_from_tensor(x, generator, downcast_complex=False):
|
||
|
# Create a random vector with the same number of elements as x and the same
|
||
|
# dtype/device. If x is complex and downcast_complex is False, we create a
|
||
|
# complex tensor with only real component.
|
||
|
if x.layout == torch.sparse_coo:
|
||
|
# For sparse, create a random sparse vec with random values in the same
|
||
|
# indices. Make sure size is set so that it isn't inferred to be smaller.
|
||
|
x_values = x._values()
|
||
|
dtype = _to_real_dtype(x.dtype) if downcast_complex else x.dtype
|
||
|
values = (
|
||
|
torch.rand(x_values.numel(), generator=generator)
|
||
|
.to(dtype=dtype, device=x.device)
|
||
|
.view(x_values.shape)
|
||
|
)
|
||
|
values /= values.norm()
|
||
|
vec = torch.sparse_coo_tensor(x._indices(), values, x.size(), device=x.device)
|
||
|
elif _is_sparse_compressed_tensor(x):
|
||
|
if x.layout in {torch.sparse_csr, torch.sparse_bsr}:
|
||
|
compressed_indices, plain_indices = x.crow_indices(), x.col_indices()
|
||
|
else:
|
||
|
compressed_indices, plain_indices = x.ccol_indices(), x.row_indices()
|
||
|
x_values = x.values()
|
||
|
dtype = _to_real_dtype(x.dtype) if downcast_complex else x.dtype
|
||
|
values = (
|
||
|
torch.rand(x_values.numel(), generator=generator)
|
||
|
.to(dtype=dtype, device=x.device)
|
||
|
.view(x_values.shape)
|
||
|
)
|
||
|
values /= values.norm()
|
||
|
vec = torch.sparse_compressed_tensor(
|
||
|
compressed_indices,
|
||
|
plain_indices,
|
||
|
values,
|
||
|
x.size(),
|
||
|
layout=x.layout,
|
||
|
device=x.device,
|
||
|
)
|
||
|
else:
|
||
|
dtype = _to_real_dtype(x.dtype) if downcast_complex else x.dtype
|
||
|
vec = torch.rand(x.numel(), generator=generator).to(
|
||
|
dtype=dtype, device=x.device
|
||
|
)
|
||
|
vec /= vec.norm()
|
||
|
return vec
|
||
|
|
||
|
|
||
|
def _get_inp_tensors(tupled_inputs):
|
||
|
inp_idx_tup = [
|
||
|
(i, t)
|
||
|
for i, t in enumerate(tupled_inputs)
|
||
|
if is_tensor_like(t) and t.requires_grad
|
||
|
]
|
||
|
return [tup[0] for tup in inp_idx_tup], [tup[1] for tup in inp_idx_tup]
|
||
|
|
||
|
|
||
|
def _adjusted_atol(atol, u, v):
|
||
|
# In slow gradcheck, we compare A and B element-wise, i.e., for some a, b we
|
||
|
# allow: |a - b| < atol + rtol * b. But since we now compare q1 = v^T A u and
|
||
|
# q2 = v^T B u, we must allow |q1 - q2| < v^T E u + rtol * v^T B u, where E is
|
||
|
# the correctly sized matrix in which each entry is atol.
|
||
|
#
|
||
|
# We see that atol needs to be scaled by v^T M u (where M is an all-ones M x N
|
||
|
# matrix): v^T M u = \sum_{i} \sum_{j} u_i * v_j = (\sum_{i} u_i)(\sum_{i} v_i)
|
||
|
# TODO: properly handle case when u is tuple instead of only taking first element
|
||
|
u = u[0] if isinstance(u, tuple) else u
|
||
|
sum_u = u.sum()
|
||
|
sum_v = 1.0 if v is None else v.sum()
|
||
|
return atol * float(sum_u) * float(sum_v)
|
||
|
|
||
|
|
||
|
FAST_FAIL_SLOW_OK_MSG = """
|
||
|
Fast gradcheck failed but element-wise differences are small. This means that the
|
||
|
test might've passed in slow_mode!
|
||
|
|
||
|
If you are adding a new operator, please file an issue and then use one of the
|
||
|
workarounds. The workaround depends on how your test invokes gradcheck/gradgradcheck:
|
||
|
|
||
|
If the test
|
||
|
- manually invokes gradcheck/gradgradcheck, then call gradcheck/gradgradcheck
|
||
|
with `fast_mode=False` as a keyword argument.
|
||
|
- is OpInfo-based (e.g., in test_ops_gradients.py), then modify the OpInfo for the test
|
||
|
to have `gradcheck_fast_mode=False`
|
||
|
- is a Module test (e.g., in common_nn.py), then modify the corresponding
|
||
|
module_test entry to have `gradcheck_fast_mode=False`
|
||
|
""".strip()
|
||
|
|
||
|
|
||
|
def _run_slow_mode_and_get_error(
|
||
|
func, tupled_inputs, outputs, input_idx, output_idx, rtol, atol, eps, is_forward_ad
|
||
|
):
|
||
|
# Compute jacobians in slow mode for better error message
|
||
|
slow_numerical = _get_numerical_jacobian(
|
||
|
func, tupled_inputs, outputs, eps=eps, is_forward_ad=is_forward_ad
|
||
|
)[input_idx][output_idx]
|
||
|
if is_forward_ad:
|
||
|
|
||
|
def new_fn(inp):
|
||
|
new_inputs = list(tupled_inputs)
|
||
|
new_inputs[input_idx] = inp
|
||
|
return _as_tuple(func(*new_inputs))[output_idx]
|
||
|
|
||
|
slow_analytical = _get_analytical_jacobian_forward_ad(
|
||
|
new_fn, (tupled_inputs[input_idx],), (outputs[output_idx],)
|
||
|
)[0][0]
|
||
|
else:
|
||
|
slow_analytical = _get_analytical_jacobian(
|
||
|
tupled_inputs, outputs, input_idx, output_idx
|
||
|
)
|
||
|
|
||
|
# Assume jacobians are non-empty and have the same shape
|
||
|
slow_max_diff = (slow_numerical - slow_analytical).abs().max()
|
||
|
|
||
|
slow_allclose = torch.allclose(slow_analytical, slow_numerical, rtol, atol)
|
||
|
msg = (
|
||
|
"\nThe above quantities relating the numerical and analytical jacobians are computed \n"
|
||
|
"in fast mode. See: https://github.com/pytorch/pytorch/issues/53876 for more background \n"
|
||
|
"about fast mode. Below, we recompute numerical and analytical jacobians in slow mode:\n\n"
|
||
|
f"Numerical:\n {slow_numerical}\n"
|
||
|
f"Analytical:\n{slow_analytical}\n\n"
|
||
|
f"The max per-element difference (slow mode) is: {slow_max_diff}.\n"
|
||
|
)
|
||
|
if slow_allclose:
|
||
|
# Slow gradcheck would've passed!
|
||
|
msg += FAST_FAIL_SLOW_OK_MSG
|
||
|
return msg
|
||
|
|
||
|
|
||
|
def _to_flat_dense_if_sparse(tensor):
|
||
|
if _is_sparse_any_tensor(tensor):
|
||
|
return tensor.to_dense().reshape(-1)
|
||
|
else:
|
||
|
return tensor
|
||
|
|
||
|
|
||
|
def _make_vectors(inp_tensors, outputs, *, use_forward_ad):
|
||
|
# Use our own generator to avoid messing with the user's RNG state
|
||
|
g_cpu = torch.Generator()
|
||
|
|
||
|
def _vec_from_tensor_cpu(*args):
|
||
|
# Default allocate all tensors on CPU, so they are on the same device as the generator
|
||
|
# even if the user specified a default device
|
||
|
with torch.device("cpu"):
|
||
|
return _vec_from_tensor(*args)
|
||
|
|
||
|
all_u = []
|
||
|
all_u_dense = []
|
||
|
for inp in inp_tensors:
|
||
|
ur = _vec_from_tensor_cpu(inp, g_cpu, True)
|
||
|
ur_dense = _to_flat_dense_if_sparse(ur)
|
||
|
if inp.is_complex():
|
||
|
ui = _vec_from_tensor_cpu(inp, g_cpu, True)
|
||
|
all_u.append((ur, ui))
|
||
|
ui_dense = _to_flat_dense_if_sparse(ui)
|
||
|
all_u_dense.append((ur_dense, ui_dense))
|
||
|
else:
|
||
|
all_u.append(ur)
|
||
|
all_u_dense.append(ur_dense)
|
||
|
all_v = (
|
||
|
None
|
||
|
if use_forward_ad
|
||
|
else [_vec_from_tensor_cpu(out, g_cpu) for out in outputs]
|
||
|
)
|
||
|
return all_v, all_u, all_u_dense
|
||
|
|
||
|
|
||
|
def _check_analytical_numerical_equal(
|
||
|
all_analytical,
|
||
|
all_numerical,
|
||
|
complex_indices,
|
||
|
tupled_inputs,
|
||
|
outputs,
|
||
|
func,
|
||
|
all_v,
|
||
|
all_u,
|
||
|
rtol,
|
||
|
atol,
|
||
|
eps,
|
||
|
test_imag,
|
||
|
*,
|
||
|
is_forward_ad=False,
|
||
|
):
|
||
|
for i, all_numerical_for_input_i in enumerate(all_numerical):
|
||
|
for j, n in enumerate(all_numerical_for_input_i):
|
||
|
# Forward AD generates the transpose of what this function expects
|
||
|
if is_forward_ad:
|
||
|
a = all_analytical[i][j]
|
||
|
else:
|
||
|
a = all_analytical[j][i]
|
||
|
n = n.to(device=a.device)
|
||
|
updated_atol = _adjusted_atol(atol, all_u[i], all_v[j] if all_v else None)
|
||
|
if not _allclose_with_type_promotion(a, n.to(a.device), rtol, updated_atol):
|
||
|
jacobians_str = _run_slow_mode_and_get_error(
|
||
|
func, tupled_inputs, outputs, i, j, rtol, atol, eps, is_forward_ad
|
||
|
)
|
||
|
raise GradcheckError(
|
||
|
_get_notallclose_msg(
|
||
|
a, n, j, i, complex_indices, test_imag, is_forward_ad
|
||
|
)
|
||
|
+ jacobians_str
|
||
|
)
|
||
|
|
||
|
|
||
|
def _fast_gradcheck(
|
||
|
func,
|
||
|
func_out,
|
||
|
inputs,
|
||
|
outputs,
|
||
|
eps,
|
||
|
rtol,
|
||
|
atol,
|
||
|
check_grad_dtypes,
|
||
|
nondet_tol,
|
||
|
*,
|
||
|
use_forward_ad=False,
|
||
|
complex_indices=None,
|
||
|
test_imag=False,
|
||
|
masked=False,
|
||
|
):
|
||
|
# See https://github.com/pytorch/pytorch/issues/53876 for details
|
||
|
inp_tensors_idx, inp_tensors = _get_inp_tensors(inputs)
|
||
|
# Backward mode computes v^T * J (VJP)
|
||
|
# Since we computed J * u (JVP) through finite difference method, we perform an equality check
|
||
|
# between VJP * u, v * JVP
|
||
|
# ----
|
||
|
# Forward mode computes J * u (JVP)
|
||
|
# Since we already compute JVP through finite difference method,
|
||
|
# we don't need v for correctness check here as asserted below
|
||
|
all_v, all_u, all_u_dense = _make_vectors(
|
||
|
inp_tensors, outputs, use_forward_ad=use_forward_ad
|
||
|
)
|
||
|
|
||
|
inputs_numerical, all_u_numerical, all_v_numerical = (
|
||
|
(inputs, all_u, all_v) if masked else _densify((inputs, all_u, all_v))
|
||
|
)
|
||
|
|
||
|
numerical_vJu = _get_numerical_vJu(
|
||
|
func,
|
||
|
inputs_numerical,
|
||
|
inp_tensors_idx,
|
||
|
func_out,
|
||
|
all_u_numerical,
|
||
|
all_v_numerical,
|
||
|
eps,
|
||
|
is_forward_ad=use_forward_ad,
|
||
|
)
|
||
|
# TODO: replicate https://github.com/pytorch/pytorch/pull/77743 for fast gradcheck as well
|
||
|
if use_forward_ad:
|
||
|
assert all_v is None
|
||
|
analytical_vJu = _get_analytical_jacobian_forward_ad(
|
||
|
func,
|
||
|
inputs,
|
||
|
_as_tuple(func_out),
|
||
|
all_u=all_u,
|
||
|
check_grad_dtypes=check_grad_dtypes,
|
||
|
)
|
||
|
else:
|
||
|
if not outputs:
|
||
|
_check_no_differentiable_outputs_fast(
|
||
|
func, func_out, inputs, inp_tensors_idx, all_u, eps, nondet_tol
|
||
|
)
|
||
|
|
||
|
analytical_vJu = _get_analytical_vJu_backward_mode(
|
||
|
inputs, outputs, nondet_tol, check_grad_dtypes, all_v, all_u_dense
|
||
|
)
|
||
|
|
||
|
_check_analytical_numerical_equal(
|
||
|
analytical_vJu,
|
||
|
numerical_vJu,
|
||
|
complex_indices,
|
||
|
inputs,
|
||
|
outputs,
|
||
|
func,
|
||
|
all_v,
|
||
|
all_u,
|
||
|
rtol,
|
||
|
atol,
|
||
|
eps,
|
||
|
test_imag,
|
||
|
is_forward_ad=use_forward_ad,
|
||
|
)
|
||
|
|
||
|
return True
|
||
|
|
||
|
|
||
|
# Note [VarArg of Tensors]
|
||
|
# ~~~~~~~~~~~~~~~~~~~~~~~~
|
||
|
# 'func' accepts a vararg of tensors, which isn't expressable in the type system at the moment.
|
||
|
# If https://mypy.readthedocs.io/en/latest/additional_features.html?highlight=callable#extended-callable-types is accepted,
|
||
|
# the '...' first argument of Callable can be replaced with VarArg(Tensor).
|
||
|
# For now, we permit any input.
|
||
|
def gradcheck(
|
||
|
func: Callable[..., Union[_TensorOrTensors]], # See Note [VarArg of Tensors]
|
||
|
inputs: _TensorOrTensors,
|
||
|
*,
|
||
|
eps: float = 1e-6,
|
||
|
atol: float = 1e-5,
|
||
|
rtol: float = 1e-3,
|
||
|
raise_exception: bool = True,
|
||
|
nondet_tol: float = 0.0,
|
||
|
check_undefined_grad: bool = True,
|
||
|
check_grad_dtypes: bool = False,
|
||
|
check_batched_grad: bool = False,
|
||
|
check_batched_forward_grad: bool = False,
|
||
|
check_forward_ad: bool = False,
|
||
|
check_backward_ad: bool = True,
|
||
|
fast_mode: bool = False,
|
||
|
masked: Optional[bool] = None,
|
||
|
) -> bool: # noqa: D400,D205
|
||
|
r"""Check gradients computed via small finite differences against analytical
|
||
|
gradients wrt tensors in :attr:`inputs` that are of floating point or complex type
|
||
|
and with ``requires_grad=True``.
|
||
|
|
||
|
The check between numerical and analytical gradients uses :func:`~torch.allclose`.
|
||
|
|
||
|
For most of the complex functions we consider for optimization purposes, no notion of
|
||
|
Jacobian exists. Instead, gradcheck verifies if the numerical and analytical values of
|
||
|
the Wirtinger and Conjugate Wirtinger derivatives are consistent. Because the gradient
|
||
|
computation is done under the assumption that the overall function has a real-valued
|
||
|
output, we treat functions with complex output in a special way. For these functions,
|
||
|
gradcheck is applied to two real-valued functions corresponding to taking the real
|
||
|
components of the complex outputs for the first, and taking the imaginary components
|
||
|
of the complex outputs for the second. For more details, check out
|
||
|
:ref:`complex_autograd-doc`.
|
||
|
|
||
|
.. note::
|
||
|
The default values are designed for :attr:`input` of double precision.
|
||
|
This check will likely fail if :attr:`input` is of less precision, e.g.,
|
||
|
``FloatTensor``.
|
||
|
|
||
|
.. note::
|
||
|
Gradcheck may fail when evaluated on non-differentiable points
|
||
|
because the numerically computed gradients via finite differencing may differ
|
||
|
those computed analytically (not necessarily because either is incorrect).
|
||
|
For more context, see :ref:`non-differentiable-func-grad`.
|
||
|
|
||
|
.. warning::
|
||
|
If any checked tensor in :attr:`input` has overlapping memory, i.e.,
|
||
|
different indices pointing to the same memory address (e.g., from
|
||
|
:func:`torch.expand`), this check will likely fail because the numerical
|
||
|
gradients computed by point perturbation at such indices will change
|
||
|
values at all other indices that share the same memory address.
|
||
|
|
||
|
Args:
|
||
|
func (function): a Python function that takes Tensor inputs and returns
|
||
|
a Tensor or a tuple of Tensors
|
||
|
inputs (tuple of Tensor or Tensor): inputs to the function
|
||
|
eps (float, optional): perturbation for finite differences
|
||
|
atol (float, optional): absolute tolerance
|
||
|
rtol (float, optional): relative tolerance
|
||
|
raise_exception (bool, optional): indicating whether to raise an exception if
|
||
|
the check fails. The exception gives more information about the
|
||
|
exact nature of the failure. This is helpful when debugging gradchecks.
|
||
|
nondet_tol (float, optional): tolerance for non-determinism. When running
|
||
|
identical inputs through the differentiation, the results must either match
|
||
|
exactly (default, 0.0) or be within this tolerance.
|
||
|
check_undefined_grad (bool, optional): if ``True``, check if undefined output grads
|
||
|
are supported and treated as zeros, for ``Tensor`` outputs.
|
||
|
check_batched_grad (bool, optional): if ``True``, check if we can compute
|
||
|
batched gradients using prototype vmap support. Defaults to False.
|
||
|
check_batched_forward_grad (bool, optional): if ``True``, checks if we can compute
|
||
|
batched forward gradients using forward ad and prototype vmap support. Defaults to ``False``.
|
||
|
check_forward_ad (bool, optional): if ``True``, check that the gradients computed with forward
|
||
|
mode AD match the numerical ones. Defaults to ``False``.
|
||
|
check_backward_ad (bool, optional): if ``False``, do not perform any checks that rely on
|
||
|
backward mode AD to be implemented. Defaults to ``True``.
|
||
|
fast_mode (bool, optional): Fast mode for gradcheck and gradgradcheck is currently only
|
||
|
implemented for R to R functions. If none of the inputs and outputs are complex
|
||
|
a faster implementation of gradcheck that no longer computes the entire jacobian
|
||
|
is run; otherwise, we fall back to the slow implementation.
|
||
|
masked (bool, optional): if ``True``, the gradients of unspecified elements of
|
||
|
sparse tensors are ignored. Defaults to ``False``.
|
||
|
Returns:
|
||
|
``True`` if all differences satisfy allclose condition
|
||
|
|
||
|
"""
|
||
|
assert (
|
||
|
check_forward_ad or check_backward_ad
|
||
|
), "Expected at least one of check_forward_ad or check_backward_ad to be True"
|
||
|
assert not (
|
||
|
check_batched_grad and not check_backward_ad
|
||
|
), "Setting check_batched_grad=True requires check_backward_ad to be True"
|
||
|
assert not (
|
||
|
check_batched_forward_grad and not check_forward_ad
|
||
|
), "Setting check_batched_forward_grad=True requires check_forward_ad to be True"
|
||
|
args = locals().copy()
|
||
|
args.pop("raise_exception")
|
||
|
if not raise_exception:
|
||
|
try:
|
||
|
return _gradcheck_helper(**args)
|
||
|
except GradcheckError as e:
|
||
|
return False
|
||
|
else:
|
||
|
return _gradcheck_helper(**args)
|
||
|
|
||
|
|
||
|
def _gradcheck_helper(
|
||
|
func,
|
||
|
inputs,
|
||
|
eps,
|
||
|
atol,
|
||
|
rtol,
|
||
|
nondet_tol,
|
||
|
check_undefined_grad,
|
||
|
check_grad_dtypes,
|
||
|
check_batched_grad,
|
||
|
check_batched_forward_grad,
|
||
|
check_forward_ad,
|
||
|
check_backward_ad,
|
||
|
fast_mode,
|
||
|
masked,
|
||
|
):
|
||
|
tupled_inputs = _as_tuple(inputs)
|
||
|
_check_inputs(tupled_inputs)
|
||
|
|
||
|
func_out = func(*tupled_inputs)
|
||
|
outputs = _differentiable_outputs(func_out)
|
||
|
_check_outputs(outputs)
|
||
|
|
||
|
gradcheck_fn = functools.partial(
|
||
|
_fast_gradcheck if fast_mode else _slow_gradcheck, masked=masked
|
||
|
)
|
||
|
_gradcheck_real_imag(
|
||
|
gradcheck_fn,
|
||
|
func,
|
||
|
func_out,
|
||
|
tupled_inputs,
|
||
|
outputs,
|
||
|
eps,
|
||
|
rtol,
|
||
|
atol,
|
||
|
check_grad_dtypes,
|
||
|
check_forward_ad=check_forward_ad,
|
||
|
check_backward_ad=check_backward_ad,
|
||
|
nondet_tol=nondet_tol,
|
||
|
check_undefined_grad=check_undefined_grad,
|
||
|
)
|
||
|
|
||
|
if check_batched_forward_grad:
|
||
|
_test_batched_grad_forward_ad(func, tupled_inputs)
|
||
|
|
||
|
# Short circuit because remaining tests rely on backward AD to be implemented
|
||
|
if not check_backward_ad:
|
||
|
return True
|
||
|
|
||
|
for i, o in enumerate(outputs):
|
||
|
if check_batched_grad:
|
||
|
_test_batched_grad(tupled_inputs, o, i)
|
||
|
|
||
|
_test_backward_mul_by_grad_output(outputs, tupled_inputs, masked)
|
||
|
|
||
|
if check_undefined_grad and check_backward_ad:
|
||
|
_test_undefined_backward_mode(func, outputs, tupled_inputs)
|
||
|
return True
|
||
|
|
||
|
|
||
|
def gradgradcheck(
|
||
|
func: Callable[..., _TensorOrTensors], # See Note [VarArg of Tensors]
|
||
|
inputs: _TensorOrTensors,
|
||
|
grad_outputs: Optional[_TensorOrTensors] = None,
|
||
|
*,
|
||
|
eps: float = 1e-6,
|
||
|
atol: float = 1e-5,
|
||
|
rtol: float = 1e-3,
|
||
|
gen_non_contig_grad_outputs: bool = False,
|
||
|
raise_exception: bool = True,
|
||
|
nondet_tol: float = 0.0,
|
||
|
check_undefined_grad: bool = True,
|
||
|
check_grad_dtypes: bool = False,
|
||
|
check_batched_grad: bool = False,
|
||
|
check_fwd_over_rev: bool = False,
|
||
|
check_rev_over_rev: bool = True,
|
||
|
fast_mode: bool = False,
|
||
|
masked: bool = False,
|
||
|
) -> bool: # noqa: D400,D205
|
||
|
r"""Check gradients of gradients computed via small finite differences
|
||
|
against analytical gradients wrt tensors in :attr:`inputs` and
|
||
|
:attr:`grad_outputs` that are of floating point or complex type and with
|
||
|
``requires_grad=True``.
|
||
|
|
||
|
This function checks that backpropagating through the gradients computed
|
||
|
to the given :attr:`grad_outputs` are correct.
|
||
|
|
||
|
The check between numerical and analytical gradients uses :func:`~torch.allclose`.
|
||
|
|
||
|
.. note::
|
||
|
The default values are designed for :attr:`input` and
|
||
|
:attr:`grad_outputs` of double precision. This check will likely fail if
|
||
|
they are of less precision, e.g., ``FloatTensor``.
|
||
|
|
||
|
.. warning::
|
||
|
If any checked tensor in :attr:`input` and :attr:`grad_outputs` has
|
||
|
overlapping memory, i.e., different indices pointing to the same memory
|
||
|
address (e.g., from :func:`torch.expand`), this check will likely fail
|
||
|
because the numerical gradients computed by point perturbation at such
|
||
|
indices will change values at all other indices that share the same
|
||
|
memory address.
|
||
|
|
||
|
Args:
|
||
|
func (function): a Python function that takes Tensor inputs and returns
|
||
|
a Tensor or a tuple of Tensors
|
||
|
inputs (tuple of Tensor or Tensor): inputs to the function
|
||
|
grad_outputs (tuple of Tensor or Tensor, optional): The gradients with
|
||
|
respect to the function's outputs.
|
||
|
eps (float, optional): perturbation for finite differences
|
||
|
atol (float, optional): absolute tolerance
|
||
|
rtol (float, optional): relative tolerance
|
||
|
gen_non_contig_grad_outputs (bool, optional): if :attr:`grad_outputs` is
|
||
|
``None`` and :attr:`gen_non_contig_grad_outputs` is ``True``, the
|
||
|
randomly generated gradient outputs are made to be noncontiguous
|
||
|
raise_exception (bool, optional): indicating whether to raise an exception if
|
||
|
the check fails. The exception gives more information about the
|
||
|
exact nature of the failure. This is helpful when debugging gradchecks.
|
||
|
nondet_tol (float, optional): tolerance for non-determinism. When running
|
||
|
identical inputs through the differentiation, the results must either match
|
||
|
exactly (default, 0.0) or be within this tolerance. Note that a small amount
|
||
|
of nondeterminism in the gradient will lead to larger inaccuracies in
|
||
|
the second derivative.
|
||
|
check_undefined_grad (bool, optional): if True, check if undefined output grads
|
||
|
are supported and treated as zeros
|
||
|
check_batched_grad (bool, optional): if True, check if we can compute
|
||
|
batched gradients using prototype vmap support. Defaults to False.
|
||
|
fast_mode (bool, optional): if True, run a faster implementation of gradgradcheck that
|
||
|
no longer computes the entire jacobian.
|
||
|
masked (bool, optional): if True, the gradients of unspecified elements of
|
||
|
sparse tensors are ignored (default, False).
|
||
|
Returns:
|
||
|
True if all differences satisfy allclose condition
|
||
|
"""
|
||
|
assert (
|
||
|
check_fwd_over_rev or check_rev_over_rev
|
||
|
), "Expected at least one of check_fwd_over_rev or check_rev_over_rev to be True"
|
||
|
assert not (
|
||
|
check_undefined_grad and not check_rev_over_rev
|
||
|
), "Setting check_undefined_grad=True requires check_rev_over_rev to be True"
|
||
|
assert not (
|
||
|
check_batched_grad and not check_rev_over_rev
|
||
|
), "Setting check_batched_grad=True requires check_rev_over_rev to be True"
|
||
|
# TODO: do we want to test this too?
|
||
|
# assert not (check_batched_forward_grad and not check_fwd_over_rev), (
|
||
|
# "Setting check_batched_forward_grad=True requires check_fwd_over_rev to be True")
|
||
|
tupled_inputs = _as_tuple(inputs)
|
||
|
|
||
|
if grad_outputs is None:
|
||
|
# If grad_outputs is not specified, create random Tensors of the same shape, type, and device as the outputs
|
||
|
|
||
|
outputs = _differentiable_outputs(func(*tupled_inputs))
|
||
|
tupled_grad_outputs = tuple(
|
||
|
torch.testing.make_tensor(
|
||
|
x.shape,
|
||
|
dtype=x.dtype
|
||
|
if x.is_floating_point() or x.is_complex()
|
||
|
else torch.double,
|
||
|
device=x.device,
|
||
|
low=-1,
|
||
|
high=1,
|
||
|
requires_grad=True,
|
||
|
noncontiguous=gen_non_contig_grad_outputs,
|
||
|
)
|
||
|
for x in outputs
|
||
|
)
|
||
|
else:
|
||
|
tupled_grad_outputs = _as_tuple(grad_outputs)
|
||
|
|
||
|
num_outputs = len(tupled_grad_outputs)
|
||
|
|
||
|
# NB: We need to save the requires_grad information about the inputs here because gradcheck detaches inputs
|
||
|
# before running forward mode AD
|
||
|
diff_input_args_indices = {
|
||
|
i for i, x in enumerate(tupled_inputs) if is_tensor_like(x) and x.requires_grad
|
||
|
}
|
||
|
diff_grad_output_indices = {
|
||
|
i for i, x in enumerate(tupled_grad_outputs) if x.requires_grad
|
||
|
}
|
||
|
|
||
|
def new_func(*args):
|
||
|
# Restore the requires_grad information
|
||
|
input_args = tuple(
|
||
|
x.requires_grad_() if i in diff_input_args_indices else x
|
||
|
for i, x in enumerate(args[:-num_outputs])
|
||
|
)
|
||
|
outputs = _differentiable_outputs(func(*input_args))
|
||
|
grad_outputs = tuple(
|
||
|
x.requires_grad_() if i in diff_grad_output_indices else x
|
||
|
for i, x in enumerate(args[-num_outputs:])
|
||
|
)
|
||
|
diff_input_args = tuple(
|
||
|
x for i, x in enumerate(input_args) if i in diff_input_args_indices
|
||
|
)
|
||
|
grad_inputs = torch.autograd.grad(
|
||
|
outputs, diff_input_args, grad_outputs, create_graph=True, allow_unused=True
|
||
|
)
|
||
|
grad_inputs = tuple(g for g in grad_inputs if g is not None)
|
||
|
return grad_inputs
|
||
|
|
||
|
return gradcheck(
|
||
|
new_func,
|
||
|
tupled_inputs + tupled_grad_outputs,
|
||
|
eps=eps,
|
||
|
atol=atol,
|
||
|
rtol=rtol,
|
||
|
raise_exception=raise_exception,
|
||
|
nondet_tol=nondet_tol,
|
||
|
check_undefined_grad=check_undefined_grad,
|
||
|
check_grad_dtypes=check_grad_dtypes,
|
||
|
check_batched_grad=check_batched_grad,
|
||
|
fast_mode=fast_mode,
|
||
|
check_forward_ad=check_fwd_over_rev,
|
||
|
check_backward_ad=check_rev_over_rev,
|
||
|
masked=masked,
|
||
|
)
|