You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
110 lines
3.5 KiB
110 lines
3.5 KiB
5 months ago
|
import math
|
||
|
from numbers import Number, Real
|
||
|
|
||
|
import torch
|
||
|
from torch.distributions import constraints
|
||
|
from torch.distributions.exp_family import ExponentialFamily
|
||
|
from torch.distributions.utils import _standard_normal, broadcast_all
|
||
|
|
||
|
__all__ = ["Normal"]
|
||
|
|
||
|
|
||
|
class Normal(ExponentialFamily):
|
||
|
r"""
|
||
|
Creates a normal (also called Gaussian) distribution parameterized by
|
||
|
:attr:`loc` and :attr:`scale`.
|
||
|
|
||
|
Example::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = Normal(torch.tensor([0.0]), torch.tensor([1.0]))
|
||
|
>>> m.sample() # normally distributed with loc=0 and scale=1
|
||
|
tensor([ 0.1046])
|
||
|
|
||
|
Args:
|
||
|
loc (float or Tensor): mean of the distribution (often referred to as mu)
|
||
|
scale (float or Tensor): standard deviation of the distribution
|
||
|
(often referred to as sigma)
|
||
|
"""
|
||
|
arg_constraints = {"loc": constraints.real, "scale": constraints.positive}
|
||
|
support = constraints.real
|
||
|
has_rsample = True
|
||
|
_mean_carrier_measure = 0
|
||
|
|
||
|
@property
|
||
|
def mean(self):
|
||
|
return self.loc
|
||
|
|
||
|
@property
|
||
|
def mode(self):
|
||
|
return self.loc
|
||
|
|
||
|
@property
|
||
|
def stddev(self):
|
||
|
return self.scale
|
||
|
|
||
|
@property
|
||
|
def variance(self):
|
||
|
return self.stddev.pow(2)
|
||
|
|
||
|
def __init__(self, loc, scale, validate_args=None):
|
||
|
self.loc, self.scale = broadcast_all(loc, scale)
|
||
|
if isinstance(loc, Number) and isinstance(scale, Number):
|
||
|
batch_shape = torch.Size()
|
||
|
else:
|
||
|
batch_shape = self.loc.size()
|
||
|
super().__init__(batch_shape, validate_args=validate_args)
|
||
|
|
||
|
def expand(self, batch_shape, _instance=None):
|
||
|
new = self._get_checked_instance(Normal, _instance)
|
||
|
batch_shape = torch.Size(batch_shape)
|
||
|
new.loc = self.loc.expand(batch_shape)
|
||
|
new.scale = self.scale.expand(batch_shape)
|
||
|
super(Normal, new).__init__(batch_shape, validate_args=False)
|
||
|
new._validate_args = self._validate_args
|
||
|
return new
|
||
|
|
||
|
def sample(self, sample_shape=torch.Size()):
|
||
|
shape = self._extended_shape(sample_shape)
|
||
|
with torch.no_grad():
|
||
|
return torch.normal(self.loc.expand(shape), self.scale.expand(shape))
|
||
|
|
||
|
def rsample(self, sample_shape=torch.Size()):
|
||
|
shape = self._extended_shape(sample_shape)
|
||
|
eps = _standard_normal(shape, dtype=self.loc.dtype, device=self.loc.device)
|
||
|
return self.loc + eps * self.scale
|
||
|
|
||
|
def log_prob(self, value):
|
||
|
if self._validate_args:
|
||
|
self._validate_sample(value)
|
||
|
# compute the variance
|
||
|
var = self.scale**2
|
||
|
log_scale = (
|
||
|
math.log(self.scale) if isinstance(self.scale, Real) else self.scale.log()
|
||
|
)
|
||
|
return (
|
||
|
-((value - self.loc) ** 2) / (2 * var)
|
||
|
- log_scale
|
||
|
- math.log(math.sqrt(2 * math.pi))
|
||
|
)
|
||
|
|
||
|
def cdf(self, value):
|
||
|
if self._validate_args:
|
||
|
self._validate_sample(value)
|
||
|
return 0.5 * (
|
||
|
1 + torch.erf((value - self.loc) * self.scale.reciprocal() / math.sqrt(2))
|
||
|
)
|
||
|
|
||
|
def icdf(self, value):
|
||
|
return self.loc + self.scale * torch.erfinv(2 * value - 1) * math.sqrt(2)
|
||
|
|
||
|
def entropy(self):
|
||
|
return 0.5 + 0.5 * math.log(2 * math.pi) + torch.log(self.scale)
|
||
|
|
||
|
@property
|
||
|
def _natural_params(self):
|
||
|
return (self.loc / self.scale.pow(2), -0.5 * self.scale.pow(2).reciprocal())
|
||
|
|
||
|
def _log_normalizer(self, x, y):
|
||
|
return -0.25 * x.pow(2) / y + 0.5 * torch.log(-math.pi / y)
|