You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3100 lines
814 KiB
3100 lines
814 KiB
5 months ago
|
// This file contains all native_functions that can be registered to
|
||
|
// and the schema string that they should be registered with
|
||
|
|
||
|
Tensor _cast_Byte(const Tensor & self, bool non_blocking); // {"schema": "aten::_cast_Byte(Tensor self, bool non_blocking=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _cast_Char(const Tensor & self, bool non_blocking); // {"schema": "aten::_cast_Char(Tensor self, bool non_blocking=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _cast_Double(const Tensor & self, bool non_blocking); // {"schema": "aten::_cast_Double(Tensor self, bool non_blocking=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _cast_Float(const Tensor & self, bool non_blocking); // {"schema": "aten::_cast_Float(Tensor self, bool non_blocking=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _cast_Int(const Tensor & self, bool non_blocking); // {"schema": "aten::_cast_Int(Tensor self, bool non_blocking=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _cast_Long(const Tensor & self, bool non_blocking); // {"schema": "aten::_cast_Long(Tensor self, bool non_blocking=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _cast_Short(const Tensor & self, bool non_blocking); // {"schema": "aten::_cast_Short(Tensor self, bool non_blocking=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _cast_Half(const Tensor & self, bool non_blocking); // {"schema": "aten::_cast_Half(Tensor self, bool non_blocking=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
void _backward(const Tensor & self, TensorList inputs, const c10::optional<Tensor> & gradient, c10::optional<bool> retain_graph, bool create_graph); // {"schema": "aten::_backward(Tensor self, Tensor[] inputs, Tensor? gradient=None, bool? retain_graph=None, bool create_graph=False) -> ()", "dispatch": "False", "default": "True"}
|
||
|
void set_data(Tensor & self, const Tensor & new_data); // {"schema": "aten::set_data(Tensor(a!) self, Tensor new_data) -> ()", "dispatch": "False", "default": "True"}
|
||
|
Tensor data(const Tensor & self); // {"schema": "aten::data(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
bool is_leaf(const Tensor & self); // {"schema": "aten::is_leaf(Tensor self) -> bool", "dispatch": "False", "default": "True"}
|
||
|
int64_t output_nr(const Tensor & self); // {"schema": "aten::output_nr(Tensor self) -> int", "dispatch": "False", "default": "True"}
|
||
|
int64_t _version(const Tensor & self); // {"schema": "aten::_version(Tensor self) -> int", "dispatch": "False", "default": "True"}
|
||
|
Tensor & requires_grad_(Tensor & self, bool requires_grad); // {"schema": "aten::requires_grad_(Tensor(a!) self, bool requires_grad=True) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
void retain_grad(Tensor & self); // {"schema": "aten::retain_grad(Tensor(a!) self) -> ()", "dispatch": "False", "default": "True"}
|
||
|
bool retains_grad(const Tensor & self); // {"schema": "aten::retains_grad(Tensor self) -> bool", "dispatch": "False", "default": "True"}
|
||
|
Tensor _fw_primal(const Tensor & self, int64_t level); // {"schema": "aten::_fw_primal(Tensor(a) self, int level) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor _make_dual(const Tensor & primal, const Tensor & tangent, int64_t level); // {"schema": "aten::_make_dual(Tensor(a) primal, Tensor tangent, int level) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> _unpack_dual(const Tensor & dual, int64_t level); // {"schema": "aten::_unpack_dual(Tensor(a) dual, int level) -> (Tensor(a) primal, Tensor tangent)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _new_zeros_with_same_feature_meta(const Tensor & self, const Tensor & other, int64_t self_num_batch_dims); // {"schema": "aten::_new_zeros_with_same_feature_meta(Tensor self, Tensor other, *, int self_num_batch_dims=0) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
bool _has_same_storage_numel(const Tensor & self, const Tensor & other); // {"schema": "aten::_has_same_storage_numel(Tensor self, Tensor other) -> bool", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rename_(Tensor & self, c10::optional<DimnameList> names); // {"schema": "aten::rename_(Tensor(a!) self, Dimname[]? names) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor rename(const Tensor & self, c10::optional<DimnameList> names); // {"schema": "aten::rename(Tensor(a) self, Dimname[]? names) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor align_to(const Tensor & self, DimnameList names); // {"schema": "aten::align_to(Tensor(a) self, Dimname[] names) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor align_to(const Tensor & self, DimnameList order, int64_t ellipsis_idx); // {"schema": "aten::align_to.ellipsis_idx(Tensor(a) self, Dimname[] order, int ellipsis_idx) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor align_as(const Tensor & self, const Tensor & other); // {"schema": "aten::align_as(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> align_tensors(TensorList tensors); // {"schema": "aten::align_tensors(Tensor[] tensors) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
void _assert_async(const Tensor & self); // {"schema": "aten::_assert_async(Tensor self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _assert_async(const Tensor & self, c10::string_view assert_msg); // {"schema": "aten::_assert_async.msg(Tensor self, str assert_msg) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _assert_scalar(const Scalar & self, c10::string_view assert_msg); // {"schema": "aten::_assert_scalar(Scalar self, str assert_msg) -> ()", "dispatch": "True", "default": "True"}
|
||
|
Tensor _functional_assert_scalar(const Scalar & self, c10::string_view assert_msg, const Tensor & dep_token); // {"schema": "aten::_functional_assert_scalar(Scalar self, str assert_msg, Tensor dep_token) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _functional_assert_async(const Tensor & self, c10::string_view assert_msg, const Tensor & dep_token); // {"schema": "aten::_functional_assert_async.msg(Tensor self, str assert_msg, Tensor dep_token) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
void _assert_tensor_metadata(const Tensor & a, OptionalSymIntArrayRef size, OptionalSymIntArrayRef stride, c10::optional<ScalarType> dtype); // {"schema": "aten::_assert_tensor_metadata(Tensor a, SymInt[]? size=None, SymInt[]? stride=None, ScalarType? dtype=None) -> ()", "dispatch": "False", "default": "True"}
|
||
|
void _print(c10::string_view s); // {"schema": "aten::_print(str s) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void sym_constrain_range(const Scalar & size, c10::optional<int64_t> min, c10::optional<int64_t> max); // {"schema": "aten::sym_constrain_range(Scalar size, *, int? min=None, int? max=None) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void sym_constrain_range_for_size(const Scalar & size, c10::optional<int64_t> min, c10::optional<int64_t> max); // {"schema": "aten::sym_constrain_range_for_size(Scalar size, *, int? min=None, int? max=None) -> ()", "dispatch": "True", "default": "True"}
|
||
|
Tensor _functional_sym_constrain_range(const Scalar & size, c10::optional<int64_t> min, c10::optional<int64_t> max, const Tensor & dep_token); // {"schema": "aten::_functional_sym_constrain_range(Scalar size, int? min, int? max, Tensor dep_token) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _functional_sym_constrain_range_for_size(const Scalar & size, c10::optional<int64_t> min, c10::optional<int64_t> max, const Tensor & dep_token); // {"schema": "aten::_functional_sym_constrain_range_for_size(Scalar size, int? min, int? max, Tensor dep_token) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _make_dep_token(c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::_make_dep_token(*, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor refine_names(const Tensor & self, DimnameList names); // {"schema": "aten::refine_names(Tensor(a) self, Dimname[] names) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
bool _use_cudnn_ctc_loss(const Tensor & log_probs, const Tensor & targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank); // {"schema": "aten::_use_cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank) -> bool", "dispatch": "True", "default": "False"}
|
||
|
bool _use_cudnn_ctc_loss(const Tensor & log_probs, const Tensor & targets, const Tensor & input_lengths, const Tensor & target_lengths, int64_t blank); // {"schema": "aten::_use_cudnn_ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank) -> bool", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _cudnn_ctc_loss(const Tensor & log_probs, const Tensor & targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank, bool deterministic, bool zero_infinity); // {"schema": "aten::_cudnn_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank, bool deterministic, bool zero_infinity) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _cudnn_ctc_loss(const Tensor & log_probs, const Tensor & targets, const Tensor & input_lengths, const Tensor & target_lengths, int64_t blank, bool deterministic, bool zero_infinity); // {"schema": "aten::_cudnn_ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank, bool deterministic, bool zero_infinity) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
bool _use_cudnn_rnn_flatten_weight(); // {"schema": "aten::_use_cudnn_rnn_flatten_weight() -> bool", "dispatch": "False", "default": "True"}
|
||
|
Tensor _cudnn_rnn_flatten_weight(TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional); // {"schema": "aten::_cudnn_rnn_flatten_weight(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor> _cudnn_rnn(const Tensor & input, TensorList weight, int64_t weight_stride0, const c10::optional<Tensor> & weight_buf, const Tensor & hx, const c10::optional<Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<Tensor> & dropout_state); // {"schema": "aten::_cudnn_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,::std::vector<Tensor>> _cudnn_rnn_backward(const Tensor & input, TensorList weight, int64_t weight_stride0, const Tensor & weight_buf, const Tensor & hx, const c10::optional<Tensor> & cx, const Tensor & output, const c10::optional<Tensor> & grad_output, const c10::optional<Tensor> & grad_hy, const c10::optional<Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<Tensor> & dropout_state, const Tensor & reserve, ::std::array<bool,4> output_mask); // {"schema": "aten::_cudnn_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[])", "dispatch": "True", "default": "False"}
|
||
|
Tensor _cudnn_init_dropout_state(double dropout, bool train, int64_t dropout_seed, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::_cudnn_init_dropout_state(float dropout, bool train, int dropout_seed, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
int64_t _debug_has_internal_overlap(const Tensor & self); // {"schema": "aten::_debug_has_internal_overlap(Tensor self) -> int", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> _fused_dropout(const Tensor & self, double p, c10::optional<Generator> generator); // {"schema": "aten::_fused_dropout(Tensor self, float p, Generator? generator=None) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _masked_scale(const Tensor & self, const Tensor & mask, double scale); // {"schema": "aten::_masked_scale(Tensor self, Tensor mask, float scale) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> native_dropout(const Tensor & input, double p, c10::optional<bool> train); // {"schema": "aten::native_dropout(Tensor input, float p, bool? train) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor native_dropout_backward(const Tensor & grad_output, const Tensor & mask, double scale); // {"schema": "aten::native_dropout_backward(Tensor grad_output, Tensor mask, float scale) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _sobol_engine_draw(const Tensor & quasi, int64_t n, const Tensor & sobolstate, int64_t dimension, int64_t num_generated, c10::optional<ScalarType> dtype); // {"schema": "aten::_sobol_engine_draw(Tensor quasi, int n, Tensor sobolstate, int dimension, int num_generated, ScalarType? dtype) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & _sobol_engine_ff_(Tensor & self, int64_t n, const Tensor & sobolstate, int64_t dimension, int64_t num_generated); // {"schema": "aten::_sobol_engine_ff_(Tensor(a!) self, int n, Tensor sobolstate, int dimension, int num_generated) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & _sobol_engine_scramble_(Tensor & self, const Tensor & ltm, int64_t dimension); // {"schema": "aten::_sobol_engine_scramble_(Tensor(a!) self, Tensor ltm, int dimension) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & _sobol_engine_initialize_state_(Tensor & self, int64_t dimension); // {"schema": "aten::_sobol_engine_initialize_state_(Tensor(a!) self, int dimension) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _reshape_from_tensor(const Tensor & self, const Tensor & shape); // {"schema": "aten::_reshape_from_tensor(Tensor self, Tensor shape) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _shape_as_tensor(const Tensor & self); // {"schema": "aten::_shape_as_tensor(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor dropout(const Tensor & input, double p, bool train); // {"schema": "aten::dropout(Tensor input, float p, bool train) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & dropout_(Tensor & self, double p, bool train); // {"schema": "aten::dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor feature_dropout(const Tensor & input, double p, bool train); // {"schema": "aten::feature_dropout(Tensor input, float p, bool train) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & feature_dropout_(Tensor & self, double p, bool train); // {"schema": "aten::feature_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor alpha_dropout(const Tensor & input, double p, bool train); // {"schema": "aten::alpha_dropout(Tensor input, float p, bool train) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & alpha_dropout_(Tensor & self, double p, bool train); // {"schema": "aten::alpha_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor feature_alpha_dropout(const Tensor & input, double p, bool train); // {"schema": "aten::feature_alpha_dropout(Tensor input, float p, bool train) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & feature_alpha_dropout_(Tensor & self, double p, bool train); // {"schema": "aten::feature_alpha_dropout_(Tensor(a!) self, float p, bool train) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor abs(const Tensor & self); // {"schema": "aten::abs(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & abs_(Tensor & self); // {"schema": "aten::abs_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & abs_out(const Tensor & self, Tensor & out); // {"schema": "aten::abs.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor absolute(const Tensor & self); // {"schema": "aten::absolute(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & absolute_(Tensor & self); // {"schema": "aten::absolute_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & absolute_out(const Tensor & self, Tensor & out); // {"schema": "aten::absolute.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor angle(const Tensor & self); // {"schema": "aten::angle(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & angle_out(const Tensor & self, Tensor & out); // {"schema": "aten::angle.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor view_as_real(const Tensor & self); // {"schema": "aten::view_as_real(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "False"}
|
||
|
Tensor view_as_complex(const Tensor & self); // {"schema": "aten::view_as_complex(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "False"}
|
||
|
Tensor sgn(const Tensor & self); // {"schema": "aten::sgn(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sgn_(Tensor & self); // {"schema": "aten::sgn_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sgn_out(const Tensor & self, Tensor & out); // {"schema": "aten::sgn.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor chalf(const Tensor & self, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::chalf(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor real(const Tensor & self); // {"schema": "aten::real(Tensor(a) self) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor imag(const Tensor & self); // {"schema": "aten::imag(Tensor(a) self) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _conj(const Tensor & self); // {"schema": "aten::_conj(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor conj(const Tensor & self); // {"schema": "aten::conj(Tensor(a) self) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _conj_physical(const Tensor & self); // {"schema": "aten::_conj_physical(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor conj_physical(const Tensor & self); // {"schema": "aten::conj_physical(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & conj_physical_out(const Tensor & self, Tensor & out); // {"schema": "aten::conj_physical.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & conj_physical_(Tensor & self); // {"schema": "aten::conj_physical_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor resolve_conj(const Tensor & self); // {"schema": "aten::resolve_conj(Tensor(a) self) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor resolve_neg(const Tensor & self); // {"schema": "aten::resolve_neg(Tensor(a) self) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _neg_view(const Tensor & self); // {"schema": "aten::_neg_view(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor acos(const Tensor & self); // {"schema": "aten::acos(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & acos_(Tensor & self); // {"schema": "aten::acos_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & acos_out(const Tensor & self, Tensor & out); // {"schema": "aten::acos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor arccos(const Tensor & self); // {"schema": "aten::arccos(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arccos_(Tensor & self); // {"schema": "aten::arccos_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arccos_out(const Tensor & self, Tensor & out); // {"schema": "aten::arccos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor avg_pool1d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad); // {"schema": "aten::avg_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, bool ceil_mode=False, bool count_include_pad=True) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor adaptive_avg_pool1d(const Tensor & self, IntArrayRef output_size); // {"schema": "aten::adaptive_avg_pool1d(Tensor self, int[1] output_size) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> adaptive_max_pool1d(const Tensor & self, IntArrayRef output_size); // {"schema": "aten::adaptive_max_pool1d(Tensor self, int[1] output_size) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor add(const Tensor & self, const Tensor & other, const Scalar & alpha); // {"schema": "aten::add.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & add_(Tensor & self, const Tensor & other, const Scalar & alpha); // {"schema": "aten::add_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & add_out(const Tensor & self, const Tensor & other, const Scalar & alpha, Tensor & out); // {"schema": "aten::add.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _add_relu(const Tensor & self, const Tensor & other, const Scalar & alpha); // {"schema": "aten::_add_relu.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _add_relu_(Tensor & self, const Tensor & other, const Scalar & alpha); // {"schema": "aten::_add_relu_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _add_relu_out(const Tensor & self, const Tensor & other, const Scalar & alpha, Tensor & out); // {"schema": "aten::_add_relu.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _add_relu(const Tensor & self, const Scalar & other, const Scalar & alpha); // {"schema": "aten::_add_relu.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _add_relu_(Tensor & self, const Scalar & other, const Scalar & alpha); // {"schema": "aten::_add_relu_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor add(const Tensor & self, const Scalar & other, const Scalar & alpha); // {"schema": "aten::add.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & add_(Tensor & self, const Scalar & other, const Scalar & alpha); // {"schema": "aten::add_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor addmv(const Tensor & self, const Tensor & mat, const Tensor & vec, const Scalar & beta, const Scalar & alpha); // {"schema": "aten::addmv(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & addmv_(Tensor & self, const Tensor & mat, const Tensor & vec, const Scalar & beta, const Scalar & alpha); // {"schema": "aten::addmv_(Tensor(a!) self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & addmv_out(const Tensor & self, const Tensor & mat, const Tensor & vec, const Scalar & beta, const Scalar & alpha, Tensor & out); // {"schema": "aten::addmv.out(Tensor self, Tensor mat, Tensor vec, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor addr(const Tensor & self, const Tensor & vec1, const Tensor & vec2, const Scalar & beta, const Scalar & alpha); // {"schema": "aten::addr(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & addr_(Tensor & self, const Tensor & vec1, const Tensor & vec2, const Scalar & beta, const Scalar & alpha); // {"schema": "aten::addr_(Tensor(a!) self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & addr_out(const Tensor & self, const Tensor & vec1, const Tensor & vec2, const Scalar & beta, const Scalar & alpha, Tensor & out); // {"schema": "aten::addr.out(Tensor self, Tensor vec1, Tensor vec2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor affine_grid_generator(const Tensor & theta, c10::SymIntArrayRef size, bool align_corners); // {"schema": "aten::affine_grid_generator(Tensor theta, SymInt[] size, bool align_corners) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor affine_grid_generator_backward(const Tensor & grad, c10::SymIntArrayRef size, bool align_corners); // {"schema": "aten::affine_grid_generator_backward(Tensor grad, SymInt[] size, bool align_corners) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _is_all_true(const Tensor & self); // {"schema": "aten::_is_all_true(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _is_any_true(const Tensor & self); // {"schema": "aten::_is_any_true(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _test_check_tensor(const Tensor & self); // {"schema": "aten::_test_check_tensor(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _test_functorch_fallback(const Tensor & self, const Tensor & other); // {"schema": "aten::_test_functorch_fallback(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor all(const Tensor & self, int64_t dim, bool keepdim); // {"schema": "aten::all.dim(Tensor self, int dim, bool keepdim=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor all(const Tensor & self, OptionalIntArrayRef dim, bool keepdim); // {"schema": "aten::all.dims(Tensor self, int[]? dim=None, bool keepdim=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & all_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & out); // {"schema": "aten::all.out(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & all_out(const Tensor & self, OptionalIntArrayRef dim, bool keepdim, Tensor & out); // {"schema": "aten::all.dims_out(Tensor self, int[]? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor all(const Tensor & self, Dimname dim, bool keepdim); // {"schema": "aten::all.dimname(Tensor self, Dimname dim, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & all_out(const Tensor & self, Dimname dim, bool keepdim, Tensor & out); // {"schema": "aten::all.dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
bool allclose(const Tensor & self, const Tensor & other, double rtol, double atol, bool equal_nan); // {"schema": "aten::allclose(Tensor self, Tensor other, float rtol=1e-05, float atol=1e-08, bool equal_nan=False) -> bool", "dispatch": "True", "default": "True"}
|
||
|
Tensor any(const Tensor & self, int64_t dim, bool keepdim); // {"schema": "aten::any.dim(Tensor self, int dim, bool keepdim=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor any(const Tensor & self, OptionalIntArrayRef dim, bool keepdim); // {"schema": "aten::any.dims(Tensor self, int[]? dim=None, bool keepdim=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & any_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & out); // {"schema": "aten::any.out(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & any_out(const Tensor & self, OptionalIntArrayRef dim, bool keepdim, Tensor & out); // {"schema": "aten::any.dims_out(Tensor self, int[]? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor any(const Tensor & self, Dimname dim, bool keepdim); // {"schema": "aten::any.dimname(Tensor self, Dimname dim, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & any_out(const Tensor & self, Dimname dim, bool keepdim, Tensor & out); // {"schema": "aten::any.dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor arange(const Scalar & end, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::arange(Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor arange(const Scalar & start, const Scalar & end, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::arange.start(Scalar start, Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor arange(const Scalar & start, const Scalar & end, const Scalar & step, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::arange.start_step(Scalar start, Scalar end, Scalar step=1, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & arange_out(const Scalar & end, Tensor & out); // {"schema": "aten::arange.out(Scalar end, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & arange_out(const Scalar & start, const Scalar & end, const Scalar & step, Tensor & out); // {"schema": "aten::arange.start_out(Scalar start, Scalar end, Scalar step=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _dim_arange(const Tensor & like, int64_t dim); // {"schema": "aten::_dim_arange(Tensor like, int dim) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor argmax(const Tensor & self, c10::optional<int64_t> dim, bool keepdim); // {"schema": "aten::argmax(Tensor self, int? dim=None, bool keepdim=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & argmax_out(const Tensor & self, c10::optional<int64_t> dim, bool keepdim, Tensor & out); // {"schema": "aten::argmax.out(Tensor self, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor argmin(const Tensor & self, c10::optional<int64_t> dim, bool keepdim); // {"schema": "aten::argmin(Tensor self, int? dim=None, bool keepdim=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & argmin_out(const Tensor & self, c10::optional<int64_t> dim, bool keepdim, Tensor & out); // {"schema": "aten::argmin.out(Tensor self, int? dim=None, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor acosh(const Tensor & self); // {"schema": "aten::acosh(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & acosh_(Tensor & self); // {"schema": "aten::acosh_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & acosh_out(const Tensor & self, Tensor & out); // {"schema": "aten::acosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor arccosh(const Tensor & self); // {"schema": "aten::arccosh(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arccosh_(Tensor & self); // {"schema": "aten::arccosh_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arccosh_out(const Tensor & self, Tensor & out); // {"schema": "aten::arccosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor asinh(const Tensor & self); // {"schema": "aten::asinh(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & asinh_(Tensor & self); // {"schema": "aten::asinh_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & asinh_out(const Tensor & self, Tensor & out); // {"schema": "aten::asinh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor arcsinh(const Tensor & self); // {"schema": "aten::arcsinh(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arcsinh_(Tensor & self); // {"schema": "aten::arcsinh_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arcsinh_out(const Tensor & self, Tensor & out); // {"schema": "aten::arcsinh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor atanh(const Tensor & self); // {"schema": "aten::atanh(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & atanh_(Tensor & self); // {"schema": "aten::atanh_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & atanh_out(const Tensor & self, Tensor & out); // {"schema": "aten::atanh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor arctanh(const Tensor & self); // {"schema": "aten::arctanh(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arctanh_(Tensor & self); // {"schema": "aten::arctanh_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arctanh_out(const Tensor & self, Tensor & out); // {"schema": "aten::arctanh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor as_strided(const Tensor & self, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset); // {"schema": "aten::as_strided(Tensor(a) self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor(a)", "dispatch": "True", "default": "False"}
|
||
|
const Tensor & as_strided_(const Tensor & self, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset); // {"schema": "aten::as_strided_(Tensor(a!) self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor asin(const Tensor & self); // {"schema": "aten::asin(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & asin_(Tensor & self); // {"schema": "aten::asin_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & asin_out(const Tensor & self, Tensor & out); // {"schema": "aten::asin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor arcsin(const Tensor & self); // {"schema": "aten::arcsin(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arcsin_(Tensor & self); // {"schema": "aten::arcsin_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arcsin_out(const Tensor & self, Tensor & out); // {"schema": "aten::arcsin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor atan(const Tensor & self); // {"schema": "aten::atan(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & atan_(Tensor & self); // {"schema": "aten::atan_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & atan_out(const Tensor & self, Tensor & out); // {"schema": "aten::atan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor arctan(const Tensor & self); // {"schema": "aten::arctan(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arctan_(Tensor & self); // {"schema": "aten::arctan_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arctan_out(const Tensor & self, Tensor & out); // {"schema": "aten::arctan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor atleast_1d(const Tensor & self); // {"schema": "aten::atleast_1d(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> atleast_1d(TensorList tensors); // {"schema": "aten::atleast_1d.Sequence(Tensor[] tensors) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
Tensor atleast_2d(const Tensor & self); // {"schema": "aten::atleast_2d(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> atleast_2d(TensorList tensors); // {"schema": "aten::atleast_2d.Sequence(Tensor[] tensors) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
Tensor atleast_3d(const Tensor & self); // {"schema": "aten::atleast_3d(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> atleast_3d(TensorList tensors); // {"schema": "aten::atleast_3d.Sequence(Tensor[] tensors) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
Tensor baddbmm(const Tensor & self, const Tensor & batch1, const Tensor & batch2, const Scalar & beta, const Scalar & alpha); // {"schema": "aten::baddbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & baddbmm_(Tensor & self, const Tensor & batch1, const Tensor & batch2, const Scalar & beta, const Scalar & alpha); // {"schema": "aten::baddbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & baddbmm_out(const Tensor & self, const Tensor & batch1, const Tensor & batch2, const Scalar & beta, const Scalar & alpha, Tensor & out); // {"schema": "aten::baddbmm.out(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor bartlett_window(int64_t window_length, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::bartlett_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor bartlett_window(int64_t window_length, bool periodic, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::bartlett_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor batch_norm(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, bool training, double momentum, double eps, bool cudnn_enabled); // {"schema": "aten::batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor quantized_batch_norm(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, const Tensor & mean, const Tensor & var, double eps, double output_scale, int64_t output_zero_point); // {"schema": "aten::quantized_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor var, float eps, float output_scale, int output_zero_point) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,int64_t> _batch_norm_impl_index(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, bool training, double momentum, double eps, bool cudnn_enabled); // {"schema": "aten::_batch_norm_impl_index(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, bool cudnn_enabled) -> (Tensor, Tensor, Tensor, Tensor, int)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _batch_norm_impl_index_backward(int64_t impl_index, const Tensor & input, const Tensor & grad_output, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, const c10::optional<Tensor> & save_mean, const c10::optional<Tensor> & save_var_transform, bool train, double eps, ::std::array<bool,3> output_mask, const Tensor & reservedSpace); // {"schema": "aten::_batch_norm_impl_index_backward(int impl_index, Tensor input, Tensor grad_output, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var_transform, bool train, float eps, bool[3] output_mask, Tensor reservedSpace) -> (Tensor, Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor bernoulli(const Tensor & self, c10::optional<Generator> generator); // {"schema": "aten::bernoulli(Tensor self, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bernoulli_out(const Tensor & self, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::bernoulli.out(Tensor self, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & bernoulli_(Tensor & self, const Tensor & p, c10::optional<Generator> generator); // {"schema": "aten::bernoulli_.Tensor(Tensor(a!) self, Tensor p, *, Generator? generator=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & bernoulli_(Tensor & self, double p, c10::optional<Generator> generator); // {"schema": "aten::bernoulli_.float(Tensor(a!) self, float p=0.5, *, Generator? generator=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor bernoulli(const Tensor & self, double p, c10::optional<Generator> generator); // {"schema": "aten::bernoulli.p(Tensor self, float p, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor bilinear(const Tensor & input1, const Tensor & input2, const Tensor & weight, const c10::optional<Tensor> & bias); // {"schema": "aten::bilinear(Tensor input1, Tensor input2, Tensor weight, Tensor? bias=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor binary_cross_entropy(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction); // {"schema": "aten::binary_cross_entropy(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & binary_cross_entropy_out(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, Tensor & out); // {"schema": "aten::binary_cross_entropy.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor binary_cross_entropy_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction); // {"schema": "aten::binary_cross_entropy_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & binary_cross_entropy_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, Tensor & grad_input); // {"schema": "aten::binary_cross_entropy_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor binary_cross_entropy_with_logits(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & pos_weight, int64_t reduction); // {"schema": "aten::binary_cross_entropy_with_logits(Tensor self, Tensor target, Tensor? weight=None, Tensor? pos_weight=None, int reduction=Mean) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor bincount(const Tensor & self, const c10::optional<Tensor> & weights, int64_t minlength); // {"schema": "aten::bincount(Tensor self, Tensor? weights=None, int minlength=0) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor bitwise_not(const Tensor & self); // {"schema": "aten::bitwise_not(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_not_(Tensor & self); // {"schema": "aten::bitwise_not_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_not_out(const Tensor & self, Tensor & out); // {"schema": "aten::bitwise_not.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & copysign_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::copysign.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor copysign(const Tensor & self, const Tensor & other); // {"schema": "aten::copysign.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & copysign_(Tensor & self, const Tensor & other); // {"schema": "aten::copysign_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor copysign(const Tensor & self, const Scalar & other); // {"schema": "aten::copysign.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & copysign_(Tensor & self, const Scalar & other); // {"schema": "aten::copysign_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & copysign_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::copysign.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor _lazy_clone(const Tensor & self); // {"schema": "aten::_lazy_clone(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor logical_not(const Tensor & self); // {"schema": "aten::logical_not(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logical_not_(Tensor & self); // {"schema": "aten::logical_not_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logical_not_out(const Tensor & self, Tensor & out); // {"schema": "aten::logical_not.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor logical_xor(const Tensor & self, const Tensor & other); // {"schema": "aten::logical_xor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logical_xor_(Tensor & self, const Tensor & other); // {"schema": "aten::logical_xor_(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logical_xor_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::logical_xor.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor logical_and(const Tensor & self, const Tensor & other); // {"schema": "aten::logical_and(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logical_and_(Tensor & self, const Tensor & other); // {"schema": "aten::logical_and_(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logical_and_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::logical_and.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor logical_or(const Tensor & self, const Tensor & other); // {"schema": "aten::logical_or(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logical_or_(Tensor & self, const Tensor & other); // {"schema": "aten::logical_or_(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logical_or_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::logical_or.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor blackman_window(int64_t window_length, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::blackman_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor blackman_window(int64_t window_length, bool periodic, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::blackman_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor bmm(const Tensor & self, const Tensor & mat2); // {"schema": "aten::bmm(Tensor self, Tensor mat2) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bmm_out(const Tensor & self, const Tensor & mat2, Tensor & out); // {"schema": "aten::bmm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> broadcast_tensors(TensorList tensors); // {"schema": "aten::broadcast_tensors(Tensor[] tensors) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
Tensor broadcast_to(const Tensor & self, c10::SymIntArrayRef size); // {"schema": "aten::broadcast_to(Tensor(a) self, SymInt[] size) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_broadcast_to(const Tensor & self, IntArrayRef size); // {"schema": "aten::_sparse_broadcast_to(Tensor(a) self, int[] size) -> Tensor(a)", "dispatch": "True", "default": "False"}
|
||
|
Tensor cat(const ITensorListRef & tensors, int64_t dim); // {"schema": "aten::cat(Tensor[] tensors, int dim=0) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cat_out(const ITensorListRef & tensors, int64_t dim, Tensor & out); // {"schema": "aten::cat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor cat(TensorList tensors, Dimname dim); // {"schema": "aten::cat.names(Tensor[] tensors, Dimname dim) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & cat_out(TensorList tensors, Dimname dim, Tensor & out); // {"schema": "aten::cat.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor concat(TensorList tensors, int64_t dim); // {"schema": "aten::concat(Tensor[] tensors, int dim=0) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & concat_out(TensorList tensors, int64_t dim, Tensor & out); // {"schema": "aten::concat.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor concat(TensorList tensors, Dimname dim); // {"schema": "aten::concat.names(Tensor[] tensors, Dimname dim) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & concat_out(TensorList tensors, Dimname dim, Tensor & out); // {"schema": "aten::concat.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor concatenate(TensorList tensors, int64_t dim); // {"schema": "aten::concatenate(Tensor[] tensors, int dim=0) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & concatenate_out(TensorList tensors, int64_t dim, Tensor & out); // {"schema": "aten::concatenate.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor concatenate(TensorList tensors, Dimname dim); // {"schema": "aten::concatenate.names(Tensor[] tensors, Dimname dim) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & concatenate_out(TensorList tensors, Dimname dim, Tensor & out); // {"schema": "aten::concatenate.names_out(Tensor[] tensors, Dimname dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor block_diag(TensorList tensors); // {"schema": "aten::block_diag(Tensor[] tensors) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor ceil(const Tensor & self); // {"schema": "aten::ceil(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & ceil_(Tensor & self); // {"schema": "aten::ceil_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & ceil_out(const Tensor & self, Tensor & out); // {"schema": "aten::ceil.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor chain_matmul(TensorList matrices); // {"schema": "aten::chain_matmul(Tensor[] matrices) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & chain_matmul_out(TensorList matrices, Tensor & out); // {"schema": "aten::chain_matmul.out(Tensor[] matrices, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> unsafe_chunk(const Tensor & self, int64_t chunks, int64_t dim); // {"schema": "aten::unsafe_chunk(Tensor self, int chunks, int dim=0) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> chunk(const Tensor & self, int64_t chunks, int64_t dim); // {"schema": "aten::chunk(Tensor(a -> *) self, int chunks, int dim=0) -> Tensor(a)[]", "dispatch": "True", "default": "True"}
|
||
|
::std::vector<Tensor> tensor_split(const Tensor & self, c10::SymInt sections, int64_t dim); // {"schema": "aten::tensor_split.sections(Tensor(a -> *) self, SymInt sections, int dim=0) -> Tensor(a)[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> tensor_split(const Tensor & self, c10::SymIntArrayRef indices, int64_t dim); // {"schema": "aten::tensor_split.indices(Tensor(a -> *) self, SymInt[] indices, int dim=0) -> Tensor(a)[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> tensor_split(const Tensor & self, const Tensor & tensor_indices_or_sections, int64_t dim); // {"schema": "aten::tensor_split.tensor_indices_or_sections(Tensor(a -> *) self, Tensor tensor_indices_or_sections, int dim=0) -> Tensor(a)[]", "dispatch": "False", "default": "True"}
|
||
|
Tensor clamp(const Tensor & self, const c10::optional<Scalar> & min, const c10::optional<Scalar> & max); // {"schema": "aten::clamp(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor clamp(const Tensor & self, const c10::optional<Tensor> & min, const c10::optional<Tensor> & max); // {"schema": "aten::clamp.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & clamp_(Tensor & self, const c10::optional<Scalar> & min, const c10::optional<Scalar> & max); // {"schema": "aten::clamp_(Tensor(a!) self, Scalar? min=None, Scalar? max=None) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & clamp_(Tensor & self, const c10::optional<Tensor> & min, const c10::optional<Tensor> & max); // {"schema": "aten::clamp_.Tensor(Tensor(a!) self, Tensor? min=None, Tensor? max=None) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & clamp_out(const Tensor & self, const c10::optional<Scalar> & min, const c10::optional<Scalar> & max, Tensor & out); // {"schema": "aten::clamp.out(Tensor self, Scalar? min=None, Scalar? max=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & clamp_out(const Tensor & self, const c10::optional<Tensor> & min, const c10::optional<Tensor> & max, Tensor & out); // {"schema": "aten::clamp.Tensor_out(Tensor self, Tensor? min=None, Tensor? max=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor clamp_max(const Tensor & self, const Scalar & max); // {"schema": "aten::clamp_max(Tensor self, Scalar max) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor clamp_max(const Tensor & self, const Tensor & max); // {"schema": "aten::clamp_max.Tensor(Tensor self, Tensor max) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & clamp_max_(Tensor & self, const Scalar & max); // {"schema": "aten::clamp_max_(Tensor(a!) self, Scalar max) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & clamp_max_(Tensor & self, const Tensor & max); // {"schema": "aten::clamp_max_.Tensor(Tensor(a!) self, Tensor max) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & clamp_max_out(const Tensor & self, const Scalar & max, Tensor & out); // {"schema": "aten::clamp_max.out(Tensor self, Scalar max, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & clamp_max_out(const Tensor & self, const Tensor & max, Tensor & out); // {"schema": "aten::clamp_max.Tensor_out(Tensor self, Tensor max, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor clamp_min(const Tensor & self, const Scalar & min); // {"schema": "aten::clamp_min(Tensor self, Scalar min) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor clamp_min(const Tensor & self, const Tensor & min); // {"schema": "aten::clamp_min.Tensor(Tensor self, Tensor min) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & clamp_min_(Tensor & self, const Scalar & min); // {"schema": "aten::clamp_min_(Tensor(a!) self, Scalar min) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & clamp_min_(Tensor & self, const Tensor & min); // {"schema": "aten::clamp_min_.Tensor(Tensor(a!) self, Tensor min) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & clamp_min_out(const Tensor & self, const Scalar & min, Tensor & out); // {"schema": "aten::clamp_min.out(Tensor self, Scalar min, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & clamp_min_out(const Tensor & self, const Tensor & min, Tensor & out); // {"schema": "aten::clamp_min.Tensor_out(Tensor self, Tensor min, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor clip(const Tensor & self, const c10::optional<Scalar> & min, const c10::optional<Scalar> & max); // {"schema": "aten::clip(Tensor self, Scalar? min=None, Scalar? max=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor clip(const Tensor & self, const c10::optional<Tensor> & min, const c10::optional<Tensor> & max); // {"schema": "aten::clip.Tensor(Tensor self, Tensor? min=None, Tensor? max=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & clip_(Tensor & self, const c10::optional<Scalar> & min, const c10::optional<Scalar> & max); // {"schema": "aten::clip_(Tensor(a!) self, Scalar? min=None, Scalar? max=None) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & clip_(Tensor & self, const c10::optional<Tensor> & min, const c10::optional<Tensor> & max); // {"schema": "aten::clip_.Tensor(Tensor(a!) self, Tensor? min=None, Tensor? max=None) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & clip_out(const Tensor & self, const c10::optional<Scalar> & min, const c10::optional<Scalar> & max, Tensor & out); // {"schema": "aten::clip.out(Tensor self, Scalar? min=None, Scalar? max=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & clip_out(const Tensor & self, const c10::optional<Tensor> & min, const c10::optional<Tensor> & max, Tensor & out); // {"schema": "aten::clip.Tensor_out(Tensor self, Tensor? min=None, Tensor? max=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
bool cudnn_is_acceptable(const Tensor & self); // {"schema": "aten::cudnn_is_acceptable(Tensor self) -> bool", "dispatch": "False", "default": "True"}
|
||
|
Tensor complex(const Tensor & real, const Tensor & imag); // {"schema": "aten::complex(Tensor real, Tensor imag) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & complex_out(const Tensor & real, const Tensor & imag, Tensor & out); // {"schema": "aten::complex.out(Tensor real, Tensor imag, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor polar(const Tensor & abs, const Tensor & angle); // {"schema": "aten::polar(Tensor abs, Tensor angle) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & polar_out(const Tensor & abs, const Tensor & angle, Tensor & out); // {"schema": "aten::polar.out(Tensor abs, Tensor angle, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor constant_pad_nd(const Tensor & self, c10::SymIntArrayRef pad, const Scalar & value); // {"schema": "aten::constant_pad_nd(Tensor self, SymInt[] pad, Scalar value=0) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor contiguous(const Tensor & self, MemoryFormat memory_format); // {"schema": "aten::contiguous(Tensor(a) self, *, MemoryFormat memory_format=contiguous_format) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor convolution(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups); // {"schema": "aten::convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> convolution_backward(const Tensor & grad_output, const Tensor & input, const Tensor & weight, OptionalSymIntArrayRef bias_sizes, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask); // {"schema": "aten::convolution_backward(Tensor grad_output, Tensor input, Tensor weight, SymInt[]? bias_sizes, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "True"}
|
||
|
Tensor convolution_overrideable(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups); // {"schema": "aten::convolution_overrideable(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> convolution_backward_overrideable(const Tensor & grad_output, const Tensor & input, const Tensor & weight, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask); // {"schema": "aten::convolution_backward_overrideable(Tensor grad_output, Tensor input, Tensor weight, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)", "dispatch": "True", "default": "True"}
|
||
|
Tensor _convolution(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32); // {"schema": "aten::_convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _convolution(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, IntArrayRef output_padding, c10::SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled); // {"schema": "aten::_convolution.deprecated(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, int[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _convolution_mode(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::_convolution_mode(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, str padding, SymInt[] dilation, SymInt groups) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _convolution_double_backward(const c10::optional<Tensor> & ggI, const c10::optional<Tensor> & ggW, const c10::optional<Tensor> & ggb, const Tensor & gO, const Tensor & weight, const Tensor & self, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask); // {"schema": "aten::_convolution_double_backward(Tensor? ggI, Tensor? ggW, Tensor? ggb, Tensor gO, Tensor weight, Tensor self, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor conv1d(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::conv1d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[1] stride=1, SymInt[1] padding=0, SymInt[1] dilation=1, SymInt groups=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor conv2d(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::conv2d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] dilation=1, SymInt groups=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor conv3d(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::conv3d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] dilation=1, SymInt groups=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor conv1d(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::conv1d.padding(Tensor input, Tensor weight, Tensor? bias=None, SymInt[1] stride=1, str padding=\"valid\", SymInt[1] dilation=1, SymInt groups=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor conv2d(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::conv2d.padding(Tensor input, Tensor weight, Tensor? bias=None, SymInt[2] stride=1, str padding=\"valid\", SymInt[2] dilation=1, SymInt groups=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor conv3d(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::string_view padding, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::conv3d.padding(Tensor input, Tensor weight, Tensor? bias=None, SymInt[3] stride=1, str padding=\"valid\", SymInt[3] dilation=1, SymInt groups=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor conv_tbc(const Tensor & self, const Tensor & weight, const Tensor & bias, int64_t pad); // {"schema": "aten::conv_tbc(Tensor self, Tensor weight, Tensor bias, int pad=0) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> conv_tbc_backward(const Tensor & self, const Tensor & input, const Tensor & weight, const Tensor & bias, int64_t pad); // {"schema": "aten::conv_tbc_backward(Tensor self, Tensor input, Tensor weight, Tensor bias, int pad) -> (Tensor, Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor conv_transpose1d(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymInt groups, c10::SymIntArrayRef dilation); // {"schema": "aten::conv_transpose1d(Tensor input, Tensor weight, Tensor? bias=None, SymInt[1] stride=1, SymInt[1] padding=0, SymInt[1] output_padding=0, SymInt groups=1, SymInt[1] dilation=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor conv_transpose2d(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymInt groups, c10::SymIntArrayRef dilation); // {"schema": "aten::conv_transpose2d.input(Tensor input, Tensor weight, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] output_padding=0, SymInt groups=1, SymInt[2] dilation=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor conv_transpose3d(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymInt groups, c10::SymIntArrayRef dilation); // {"schema": "aten::conv_transpose3d.input(Tensor input, Tensor weight, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] output_padding=0, SymInt groups=1, SymInt[3] dilation=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor copy(const Tensor & self, const Tensor & src, bool non_blocking); // {"schema": "aten::copy(Tensor self, Tensor src, bool non_blocking=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & copy_(Tensor & self, const Tensor & src, bool non_blocking); // {"schema": "aten::copy_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor _copy_from(const Tensor & self, const Tensor & dst, bool non_blocking); // {"schema": "aten::_copy_from(Tensor self, Tensor dst, bool non_blocking=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _copy_from_and_resize(const Tensor & self, const Tensor & dst); // {"schema": "aten::_copy_from_and_resize(Tensor self, Tensor dst) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor cos(const Tensor & self); // {"schema": "aten::cos(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cos_(Tensor & self); // {"schema": "aten::cos_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cos_out(const Tensor & self, Tensor & out); // {"schema": "aten::cos.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor cosh(const Tensor & self); // {"schema": "aten::cosh(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cosh_(Tensor & self); // {"schema": "aten::cosh_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cosh_out(const Tensor & self, Tensor & out); // {"schema": "aten::cosh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor cosine_embedding_loss(const Tensor & input1, const Tensor & input2, const Tensor & target, double margin, int64_t reduction); // {"schema": "aten::cosine_embedding_loss(Tensor input1, Tensor input2, Tensor target, float margin=0.0, int reduction=Mean) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor count_nonzero(const Tensor & self, IntArrayRef dim); // {"schema": "aten::count_nonzero.dim_IntList(Tensor self, int[] dim) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor count_nonzero(const Tensor & self, c10::optional<int64_t> dim); // {"schema": "aten::count_nonzero(Tensor self, int? dim=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor cov(const Tensor & self, int64_t correction, const c10::optional<Tensor> & fweights, const c10::optional<Tensor> & aweights); // {"schema": "aten::cov(Tensor self, *, int correction=1, Tensor? fweights=None, Tensor? aweights=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor corrcoef(const Tensor & self); // {"schema": "aten::corrcoef(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor cudnn_affine_grid_generator(const Tensor & theta, int64_t N, int64_t C, int64_t H, int64_t W); // {"schema": "aten::cudnn_affine_grid_generator(Tensor theta, int N, int C, int H, int W) -> Tensor grid", "dispatch": "True", "default": "False"}
|
||
|
Tensor cudnn_affine_grid_generator_backward(const Tensor & grad, int64_t N, int64_t C, int64_t H, int64_t W); // {"schema": "aten::cudnn_affine_grid_generator_backward(Tensor grad, int N, int C, int H, int W) -> Tensor grad_theta", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> cudnn_batch_norm(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, bool training, double exponential_average_factor, double epsilon); // {"schema": "aten::cudnn_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> cudnn_batch_norm_backward(const Tensor & input, const Tensor & grad_output, const Tensor & weight, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, const c10::optional<Tensor> & save_mean, const c10::optional<Tensor> & save_var, double epsilon, const Tensor & reserveSpace); // {"schema": "aten::cudnn_batch_norm_backward(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon, Tensor reserveSpace) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor cudnn_convolution(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, bool allow_tf32); // {"schema": "aten::cudnn_convolution(Tensor self, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & cudnn_convolution_out(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, bool allow_tf32, Tensor & out); // {"schema": "aten::cudnn_convolution.out(Tensor self, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, bool allow_tf32, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor cudnn_convolution_transpose(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, bool allow_tf32); // {"schema": "aten::cudnn_convolution_transpose(Tensor self, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, bool allow_tf32) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _mps_convolution_transpose(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::_mps_convolution_transpose(Tensor self, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> mps_convolution_transpose_backward(const Tensor & self, const Tensor & grad_output, const Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, ::std::array<bool,2> output_mask); // {"schema": "aten::mps_convolution_transpose_backward(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[2] output_mask) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor cudnn_convolution_relu(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::cudnn_convolution_relu(Tensor self, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor cudnn_convolution_add_relu(const Tensor & self, const Tensor & weight, const Tensor & z, const c10::optional<Scalar> & alpha, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::cudnn_convolution_add_relu(Tensor self, Tensor weight, Tensor z, Scalar? alpha, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor cudnn_grid_sampler(const Tensor & self, const Tensor & grid); // {"schema": "aten::cudnn_grid_sampler(Tensor self, Tensor grid) -> Tensor output", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> cudnn_grid_sampler_backward(const Tensor & self, const Tensor & grid, const Tensor & grad_output); // {"schema": "aten::cudnn_grid_sampler_backward(Tensor self, Tensor grid, Tensor grad_output) -> (Tensor grad_self, Tensor grad_grid)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> cummax(const Tensor & self, int64_t dim); // {"schema": "aten::cummax(Tensor self, int dim) -> (Tensor values, Tensor indices)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> cummax_out(const Tensor & self, int64_t dim, Tensor & values, Tensor & indices); // {"schema": "aten::cummax.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> cummax(const Tensor & self, Dimname dim); // {"schema": "aten::cummax.dimname(Tensor self, Dimname dim) -> (Tensor values, Tensor indices)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> cummax_out(const Tensor & self, Dimname dim, Tensor & values, Tensor & indices); // {"schema": "aten::cummax.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "False", "default": "True"}
|
||
|
void _cummax_helper(const Tensor & self, Tensor & values, Tensor & indices, int64_t dim); // {"schema": "aten::_cummax_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> cummin(const Tensor & self, int64_t dim); // {"schema": "aten::cummin(Tensor self, int dim) -> (Tensor values, Tensor indices)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> cummin_out(const Tensor & self, int64_t dim, Tensor & values, Tensor & indices); // {"schema": "aten::cummin.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> cummin(const Tensor & self, Dimname dim); // {"schema": "aten::cummin.dimname(Tensor self, Dimname dim) -> (Tensor values, Tensor indices)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> cummin_out(const Tensor & self, Dimname dim, Tensor & values, Tensor & indices); // {"schema": "aten::cummin.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "False", "default": "True"}
|
||
|
void _cummin_helper(const Tensor & self, Tensor & values, Tensor & indices, int64_t dim); // {"schema": "aten::_cummin_helper(Tensor self, Tensor(a!) values, Tensor(b!) indices, int dim) -> ()", "dispatch": "True", "default": "False"}
|
||
|
Tensor cummaxmin_backward(const Tensor & grad, const Tensor & input, const Tensor & indices, int64_t dim); // {"schema": "aten::cummaxmin_backward(Tensor grad, Tensor input, Tensor indices, int dim) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor cumprod(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype); // {"schema": "aten::cumprod(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cumprod_(Tensor & self, int64_t dim, c10::optional<ScalarType> dtype); // {"schema": "aten::cumprod_(Tensor(a!) self, int dim, *, ScalarType? dtype=None) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cumprod_out(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::cumprod.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor cumprod(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype); // {"schema": "aten::cumprod.dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & cumprod_(Tensor & self, Dimname dim, c10::optional<ScalarType> dtype); // {"schema": "aten::cumprod_.dimname(Tensor(a!) self, Dimname dim, *, ScalarType? dtype=None) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & cumprod_out(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::cumprod.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor cumprod_backward(const Tensor & grad, const Tensor & input, int64_t dim, const Tensor & output); // {"schema": "aten::cumprod_backward(Tensor grad, Tensor input, int dim, Tensor output) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor cumsum(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype); // {"schema": "aten::cumsum(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cumsum_(Tensor & self, int64_t dim, c10::optional<ScalarType> dtype); // {"schema": "aten::cumsum_(Tensor(a!) self, int dim, *, ScalarType? dtype=None) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cumsum_out(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::cumsum.out(Tensor self, int dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor cumsum(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype); // {"schema": "aten::cumsum.dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & cumsum_(Tensor & self, Dimname dim, c10::optional<ScalarType> dtype); // {"schema": "aten::cumsum_.dimname(Tensor(a!) self, Dimname dim, *, ScalarType? dtype=None) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & cumsum_out(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::cumsum.dimname_out(Tensor self, Dimname dim, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor cumulative_trapezoid(const Tensor & y, const Tensor & x, int64_t dim); // {"schema": "aten::cumulative_trapezoid.x(Tensor y, Tensor x, *, int dim=-1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor cumulative_trapezoid(const Tensor & y, const Scalar & dx, int64_t dim); // {"schema": "aten::cumulative_trapezoid.dx(Tensor y, *, Scalar dx=1, int dim=-1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor ctc_loss(const Tensor & log_probs, const Tensor & targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank, int64_t reduction, bool zero_infinity); // {"schema": "aten::ctc_loss.IntList(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor ctc_loss(const Tensor & log_probs, const Tensor & targets, const Tensor & input_lengths, const Tensor & target_lengths, int64_t blank, int64_t reduction, bool zero_infinity); // {"schema": "aten::ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, int reduction=Mean, bool zero_infinity=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> _ctc_loss(const Tensor & log_probs, const Tensor & targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank, bool zero_infinity); // {"schema": "aten::_ctc_loss(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _ctc_loss(const Tensor & log_probs, const Tensor & targets, const Tensor & input_lengths, const Tensor & target_lengths, int64_t blank, bool zero_infinity); // {"schema": "aten::_ctc_loss.Tensor(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, bool zero_infinity=False) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _ctc_loss_backward(const Tensor & grad, const Tensor & log_probs, const Tensor & targets, IntArrayRef input_lengths, IntArrayRef target_lengths, const Tensor & neg_log_likelihood, const Tensor & log_alpha, int64_t blank, bool zero_infinity); // {"schema": "aten::_ctc_loss_backward(Tensor grad, Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, Tensor neg_log_likelihood, Tensor log_alpha, int blank, bool zero_infinity=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _ctc_loss_backward(const Tensor & grad, const Tensor & log_probs, const Tensor & targets, const Tensor & input_lengths, const Tensor & target_lengths, const Tensor & neg_log_likelihood, const Tensor & log_alpha, int64_t blank, bool zero_infinity); // {"schema": "aten::_ctc_loss_backward.Tensor(Tensor grad, Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, Tensor neg_log_likelihood, Tensor log_alpha, int blank, bool zero_infinity=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor diag_embed(const Tensor & self, int64_t offset, int64_t dim1, int64_t dim2); // {"schema": "aten::diag_embed(Tensor self, int offset=0, int dim1=-2, int dim2=-1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor diagflat(const Tensor & self, int64_t offset); // {"schema": "aten::diagflat(Tensor self, int offset=0) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor diagonal(const Tensor & self, int64_t offset, int64_t dim1, int64_t dim2); // {"schema": "aten::diagonal(Tensor(a) self, int offset=0, int dim1=0, int dim2=1) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor linalg_diagonal(const Tensor & A, int64_t offset, int64_t dim1, int64_t dim2); // {"schema": "aten::linalg_diagonal(Tensor(a) A, *, int offset=0, int dim1=-2, int dim2=-1) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor diagonal(const Tensor & self, Dimname outdim, Dimname dim1, Dimname dim2, int64_t offset); // {"schema": "aten::diagonal.Dimname(Tensor(a) self, *, Dimname outdim, Dimname dim1, Dimname dim2, int offset=0) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor diagonal_backward(const Tensor & grad_output, c10::SymIntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2); // {"schema": "aten::diagonal_backward(Tensor grad_output, SymInt[] input_sizes, int offset, int dim1, int dim2) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & fill_diagonal_(Tensor & self, const Scalar & fill_value, bool wrap); // {"schema": "aten::fill_diagonal_(Tensor(a!) self, Scalar fill_value, bool wrap=False) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor diff(const Tensor & self, int64_t n, int64_t dim, const c10::optional<Tensor> & prepend, const c10::optional<Tensor> & append); // {"schema": "aten::diff(Tensor self, int n=1, int dim=-1, Tensor? prepend=None, Tensor? append=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & diff_out(const Tensor & self, int64_t n, int64_t dim, const c10::optional<Tensor> & prepend, const c10::optional<Tensor> & append, Tensor & out); // {"schema": "aten::diff.out(Tensor self, int n=1, int dim=-1, Tensor? prepend=None, Tensor? append=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> gradient(const Tensor & self, const c10::optional<Scalar> & spacing, c10::optional<int64_t> dim, int64_t edge_order); // {"schema": "aten::gradient.scalarint(Tensor self, *, Scalar? spacing=None, int? dim=None, int edge_order=1) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> gradient(const Tensor & self, const Scalar & spacing, IntArrayRef dim, int64_t edge_order); // {"schema": "aten::gradient.scalararray(Tensor self, *, Scalar spacing, int[] dim, int edge_order=1) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> gradient(const Tensor & self, IntArrayRef dim, int64_t edge_order); // {"schema": "aten::gradient.array(Tensor self, *, int[] dim, int edge_order=1) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> gradient(const Tensor & self, ArrayRef<Scalar> spacing, c10::optional<int64_t> dim, int64_t edge_order); // {"schema": "aten::gradient.scalarrayint(Tensor self, *, Scalar[] spacing, int? dim=None, int edge_order=1) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> gradient(const Tensor & self, ArrayRef<Scalar> spacing, IntArrayRef dim, int64_t edge_order); // {"schema": "aten::gradient.scalarrayarray(Tensor self, *, Scalar[] spacing, int[] dim, int edge_order=1) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> gradient(const Tensor & self, TensorList spacing, c10::optional<int64_t> dim, int64_t edge_order); // {"schema": "aten::gradient.tensorarrayint(Tensor self, *, Tensor[] spacing, int? dim=None, int edge_order=1) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> gradient(const Tensor & self, TensorList spacing, IntArrayRef dim, int64_t edge_order); // {"schema": "aten::gradient.tensorarray(Tensor self, *, Tensor[] spacing, int[] dim, int edge_order=1) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
Tensor div(const Tensor & self, const Tensor & other); // {"schema": "aten::div.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & div_(Tensor & self, const Tensor & other); // {"schema": "aten::div_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & div_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::div.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor div(const Tensor & self, const Tensor & other, c10::optional<c10::string_view> rounding_mode); // {"schema": "aten::div.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & div_(Tensor & self, const Tensor & other, c10::optional<c10::string_view> rounding_mode); // {"schema": "aten::div_.Tensor_mode(Tensor(a!) self, Tensor other, *, str? rounding_mode) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & div_out(const Tensor & self, const Tensor & other, c10::optional<c10::string_view> rounding_mode, Tensor & out); // {"schema": "aten::div.out_mode(Tensor self, Tensor other, *, str? rounding_mode, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor div(const Tensor & self, const Scalar & other); // {"schema": "aten::div.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & div_(Tensor & self, const Scalar & other); // {"schema": "aten::div_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor div(const Tensor & self, const Scalar & other, c10::optional<c10::string_view> rounding_mode); // {"schema": "aten::div.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & div_(Tensor & self, const Scalar & other, c10::optional<c10::string_view> rounding_mode); // {"schema": "aten::div_.Scalar_mode(Tensor(a!) self, Scalar other, *, str? rounding_mode) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor divide(const Tensor & self, const Tensor & other); // {"schema": "aten::divide.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & divide_(Tensor & self, const Tensor & other); // {"schema": "aten::divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & divide_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor divide(const Tensor & self, const Scalar & other); // {"schema": "aten::divide.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & divide_(Tensor & self, const Scalar & other); // {"schema": "aten::divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor divide(const Tensor & self, const Tensor & other, c10::optional<c10::string_view> rounding_mode); // {"schema": "aten::divide.Tensor_mode(Tensor self, Tensor other, *, str? rounding_mode) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & divide_(Tensor & self, const Tensor & other, c10::optional<c10::string_view> rounding_mode); // {"schema": "aten::divide_.Tensor_mode(Tensor(a!) self, Tensor other, *, str? rounding_mode) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & divide_out(const Tensor & self, const Tensor & other, c10::optional<c10::string_view> rounding_mode, Tensor & out); // {"schema": "aten::divide.out_mode(Tensor self, Tensor other, *, str? rounding_mode, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor divide(const Tensor & self, const Scalar & other, c10::optional<c10::string_view> rounding_mode); // {"schema": "aten::divide.Scalar_mode(Tensor self, Scalar other, *, str? rounding_mode) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & divide_(Tensor & self, const Scalar & other, c10::optional<c10::string_view> rounding_mode); // {"schema": "aten::divide_.Scalar_mode(Tensor(a!) self, Scalar other, *, str? rounding_mode) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor true_divide(const Tensor & self, const Tensor & other); // {"schema": "aten::true_divide.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & true_divide_(Tensor & self, const Tensor & other); // {"schema": "aten::true_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & true_divide_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::true_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor true_divide(const Tensor & self, const Scalar & other); // {"schema": "aten::true_divide.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & true_divide_(Tensor & self, const Scalar & other); // {"schema": "aten::true_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor dot(const Tensor & self, const Tensor & tensor); // {"schema": "aten::dot(Tensor self, Tensor tensor) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & dot_out(const Tensor & self, const Tensor & tensor, Tensor & out); // {"schema": "aten::dot.out(Tensor self, Tensor tensor, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor vdot(const Tensor & self, const Tensor & other); // {"schema": "aten::vdot(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & vdot_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::vdot.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor einsum(c10::string_view equation, TensorList tensors, OptionalIntArrayRef path); // {"schema": "aten::einsum(str equation, Tensor[] tensors, *, int[]? path=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor embedding(const Tensor & weight, const Tensor & indices, c10::SymInt padding_idx, bool scale_grad_by_freq, bool sparse); // {"schema": "aten::embedding(Tensor weight, Tensor indices, SymInt padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor embedding_backward(const Tensor & grad, const Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq, bool sparse); // {"schema": "aten::embedding_backward(Tensor grad, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq, bool sparse) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor embedding_dense_backward(const Tensor & grad_output, const Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq); // {"schema": "aten::embedding_dense_backward(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & embedding_renorm_(Tensor & self, const Tensor & indices, double max_norm, double norm_type); // {"schema": "aten::embedding_renorm_(Tensor(a!) self, Tensor indices, float max_norm, float norm_type) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor embedding_sparse_backward(const Tensor & grad, const Tensor & indices, int64_t num_weights, int64_t padding_idx, bool scale_grad_by_freq); // {"schema": "aten::embedding_sparse_backward(Tensor grad, Tensor indices, int num_weights, int padding_idx, bool scale_grad_by_freq) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> _embedding_bag_forward_only(const Tensor & weight, const Tensor & indices, const Tensor & offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, const c10::optional<Tensor> & per_sample_weights, bool include_last_offset, int64_t padding_idx); // {"schema": "aten::_embedding_bag_forward_only(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1) -> (Tensor, Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _rowwise_prune(const Tensor & weight, const Tensor & mask, ScalarType compressed_indices_dtype); // {"schema": "aten::_rowwise_prune(Tensor weight, Tensor mask, ScalarType compressed_indices_dtype) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor row_stack(TensorList tensors); // {"schema": "aten::row_stack(Tensor[] tensors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & row_stack_out(TensorList tensors, Tensor & out); // {"schema": "aten::row_stack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> embedding_bag(const Tensor & weight, const Tensor & indices, const Tensor & offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, const c10::optional<Tensor> & per_sample_weights, bool include_last_offset); // {"schema": "aten::embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False) -> (Tensor, Tensor, Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> embedding_bag(const Tensor & weight, const Tensor & indices, const Tensor & offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, const c10::optional<Tensor> & per_sample_weights, bool include_last_offset, c10::optional<int64_t> padding_idx); // {"schema": "aten::embedding_bag.padding_idx(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq, int mode, bool sparse, Tensor? per_sample_weights, bool include_last_offset, int? padding_idx) -> (Tensor, Tensor, Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> _embedding_bag(const Tensor & weight, const Tensor & indices, const Tensor & offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, const c10::optional<Tensor> & per_sample_weights, bool include_last_offset, int64_t padding_idx); // {"schema": "aten::_embedding_bag(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1) -> (Tensor, Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _embedding_bag_backward(const Tensor & grad, const Tensor & indices, const Tensor & offsets, const Tensor & offset2bag, const Tensor & bag_size, const Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, bool sparse, const c10::optional<Tensor> & per_sample_weights, int64_t padding_idx); // {"schema": "aten::_embedding_bag_backward(Tensor grad, Tensor indices, Tensor offsets, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, bool sparse, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _embedding_bag_sparse_backward(const Tensor & grad, const Tensor & indices, const Tensor & offsets, const Tensor & offset2bag, const Tensor & bag_size, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<Tensor> & per_sample_weights, int64_t padding_idx); // {"schema": "aten::_embedding_bag_sparse_backward(Tensor grad, Tensor indices, Tensor offsets, Tensor offset2bag, Tensor bag_size, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _embedding_bag_dense_backward(const Tensor & grad, const Tensor & indices, const Tensor & offset2bag, const Tensor & bag_size, const Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<Tensor> & per_sample_weights, int64_t padding_idx); // {"schema": "aten::_embedding_bag_dense_backward(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _embedding_bag_per_sample_weights_backward(const Tensor & grad, const Tensor & weight, const Tensor & indices, const Tensor & offsets, const Tensor & offset2bag, int64_t mode, int64_t padding_idx); // {"schema": "aten::_embedding_bag_per_sample_weights_backward(Tensor grad, Tensor weight, Tensor indices, Tensor offsets, Tensor offset2bag, int mode, int padding_idx=-1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor empty(IntArrayRef size, c10::optional<DimnameList> names, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::empty.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor empty(c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::empty.memory_format(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor empty_permuted(c10::SymIntArrayRef size, IntArrayRef physical_layout, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::empty_permuted(SymInt[] size, int[] physical_layout, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor new_empty(const Tensor & self, c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::new_empty(Tensor self, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor new_empty_strided(const Tensor & self, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::new_empty_strided(Tensor self, SymInt[] size, SymInt[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor new_full(const Tensor & self, c10::SymIntArrayRef size, const Scalar & fill_value, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::new_full(Tensor self, SymInt[] size, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor new_zeros(const Tensor & self, c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::new_zeros(Tensor self, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor new_ones(const Tensor & self, c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::new_ones(Tensor self, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _empty_affine_quantized(c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, double scale, int64_t zero_point, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::_empty_affine_quantized(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _empty_per_channel_affine_quantized(c10::SymIntArrayRef size, const Tensor & scales, const Tensor & zero_points, int64_t axis, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::_empty_per_channel_affine_quantized(SymInt[] size, *, Tensor scales, Tensor zero_points, int axis, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=contiguous_format) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
const Tensor & resize_(const Tensor & self, c10::SymIntArrayRef size, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::resize_(Tensor(a!) self, SymInt[] size, *, MemoryFormat? memory_format=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
const Tensor & _resize_output_(const Tensor & self, c10::SymIntArrayRef size, Device device); // {"schema": "aten::_resize_output_(Tensor(a!) self, SymInt[] size, Device device) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor empty_quantized(IntArrayRef size, const Tensor & qtensor, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::empty_quantized(int[] size, Tensor qtensor, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & empty_out(c10::SymIntArrayRef size, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::empty.out(SymInt[] size, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor empty_like(const Tensor & self, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::empty_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor empty_strided(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::empty_strided(SymInt[] size, SymInt[] stride, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor erf(const Tensor & self); // {"schema": "aten::erf(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & erf_(Tensor & self); // {"schema": "aten::erf_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & erf_out(const Tensor & self, Tensor & out); // {"schema": "aten::erf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor erfc(const Tensor & self); // {"schema": "aten::erfc(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & erfc_(Tensor & self); // {"schema": "aten::erfc_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & erfc_out(const Tensor & self, Tensor & out); // {"schema": "aten::erfc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor exp(const Tensor & self); // {"schema": "aten::exp(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & exp_(Tensor & self); // {"schema": "aten::exp_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & exp_out(const Tensor & self, Tensor & out); // {"schema": "aten::exp.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor exp2(const Tensor & self); // {"schema": "aten::exp2(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & exp2_(Tensor & self); // {"schema": "aten::exp2_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & exp2_out(const Tensor & self, Tensor & out); // {"schema": "aten::exp2.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor expm1(const Tensor & self); // {"schema": "aten::expm1(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & expm1_(Tensor & self); // {"schema": "aten::expm1_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & expm1_out(const Tensor & self, Tensor & out); // {"schema": "aten::expm1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor expand(const Tensor & self, c10::SymIntArrayRef size, bool implicit); // {"schema": "aten::expand(Tensor(a) self, SymInt[] size, *, bool implicit=False) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor expand_as(const Tensor & self, const Tensor & other); // {"schema": "aten::expand_as(Tensor(a) self, Tensor other) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor eye(c10::SymInt n, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::eye(SymInt n, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor eye(c10::SymInt n, c10::SymInt m, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::eye.m(SymInt n, SymInt m, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & eye_out(c10::SymInt n, Tensor & out); // {"schema": "aten::eye.out(SymInt n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & eye_out(c10::SymInt n, c10::SymInt m, Tensor & out); // {"schema": "aten::eye.m_out(SymInt n, SymInt m, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor flatten(const Tensor & self, int64_t start_dim, int64_t end_dim); // {"schema": "aten::flatten.using_ints(Tensor(a) self, int start_dim=0, int end_dim=-1) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor flatten(const Tensor & self, int64_t start_dim, int64_t end_dim, Dimname out_dim); // {"schema": "aten::flatten.named_out_dim(Tensor(a) self, int start_dim, int end_dim, Dimname out_dim) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor flatten(const Tensor & self, Dimname start_dim, Dimname end_dim, Dimname out_dim); // {"schema": "aten::flatten.using_names(Tensor(a) self, Dimname start_dim, Dimname end_dim, Dimname out_dim) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor flatten(const Tensor & self, DimnameList dims, Dimname out_dim); // {"schema": "aten::flatten.DimnameList(Tensor(a) self, Dimname[] dims, Dimname out_dim) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor unflatten(const Tensor & self, int64_t dim, c10::SymIntArrayRef sizes); // {"schema": "aten::unflatten.int(Tensor(a) self, int dim, SymInt[] sizes) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor unflatten(const Tensor & self, Dimname dim, c10::SymIntArrayRef sizes, DimnameList names); // {"schema": "aten::unflatten.Dimname(Tensor(a) self, Dimname dim, SymInt[] sizes, Dimname[] names) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fill(const Tensor & self, const Scalar & value); // {"schema": "aten::fill.Scalar(Tensor self, Scalar value) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor fill(const Tensor & self, const Tensor & value); // {"schema": "aten::fill.Tensor(Tensor self, Tensor value) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & fill_(Tensor & self, const Scalar & value); // {"schema": "aten::fill_.Scalar(Tensor(a!) self, Scalar value) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & fill_(Tensor & self, const Tensor & value); // {"schema": "aten::fill_.Tensor(Tensor(a!) self, Tensor value) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor floor(const Tensor & self); // {"schema": "aten::floor(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & floor_(Tensor & self); // {"schema": "aten::floor_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & floor_out(const Tensor & self, Tensor & out); // {"schema": "aten::floor.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor floor_divide(const Tensor & self, const Tensor & other); // {"schema": "aten::floor_divide(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & floor_divide_(Tensor & self, const Tensor & other); // {"schema": "aten::floor_divide_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & floor_divide_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::floor_divide.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor floor_divide(const Tensor & self, const Scalar & other); // {"schema": "aten::floor_divide.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & floor_divide_(Tensor & self, const Scalar & other); // {"schema": "aten::floor_divide_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor frac(const Tensor & self); // {"schema": "aten::frac(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & frac_(Tensor & self); // {"schema": "aten::frac_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & frac_out(const Tensor & self, Tensor & out); // {"schema": "aten::frac.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor full(IntArrayRef size, const Scalar & fill_value, c10::optional<DimnameList> names, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::full.names(int[] size, Scalar fill_value, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor full(c10::SymIntArrayRef size, const Scalar & fill_value, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::full(SymInt[] size, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & full_out(c10::SymIntArrayRef size, const Scalar & fill_value, Tensor & out); // {"schema": "aten::full.out(SymInt[] size, Scalar fill_value, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor full_like(const Tensor & self, const Scalar & fill_value, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::full_like(Tensor self, Scalar fill_value, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor from_file(c10::string_view filename, c10::optional<bool> shared, c10::optional<int64_t> size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::from_file(str filename, bool? shared=None, int? size=0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & gcd_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::gcd.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor gcd(const Tensor & self, const Tensor & other); // {"schema": "aten::gcd(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & gcd_(Tensor & self, const Tensor & other); // {"schema": "aten::gcd_(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & lcm_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::lcm.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor lcm(const Tensor & self, const Tensor & other); // {"schema": "aten::lcm(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & lcm_(Tensor & self, const Tensor & other); // {"schema": "aten::lcm_(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor grid_sampler(const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners); // {"schema": "aten::grid_sampler(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor grid_sampler_2d(const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners); // {"schema": "aten::grid_sampler_2d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> grid_sampler_2d_backward(const Tensor & grad_output, const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask); // {"schema": "aten::grid_sampler_2d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, bool[2] output_mask) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _grid_sampler_2d_cpu_fallback(const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners); // {"schema": "aten::_grid_sampler_2d_cpu_fallback(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> _grid_sampler_2d_cpu_fallback_backward(const Tensor & grad_output, const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners); // {"schema": "aten::_grid_sampler_2d_cpu_fallback_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor grid_sampler_3d(const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners); // {"schema": "aten::grid_sampler_3d(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> grid_sampler_3d_backward(const Tensor & grad_output, const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask); // {"schema": "aten::grid_sampler_3d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, bool[2] output_mask) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor hann_window(int64_t window_length, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::hann_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor hann_window(int64_t window_length, bool periodic, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::hann_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor hamming_window(int64_t window_length, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::hamming_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor hamming_window(int64_t window_length, bool periodic, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::hamming_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor hamming_window(int64_t window_length, bool periodic, double alpha, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::hamming_window.periodic_alpha(int window_length, bool periodic, float alpha, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor hamming_window(int64_t window_length, bool periodic, double alpha, double beta, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::hamming_window.periodic_alpha_beta(int window_length, bool periodic, float alpha, float beta, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor kaiser_window(int64_t window_length, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::kaiser_window(int window_length, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor kaiser_window(int64_t window_length, bool periodic, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::kaiser_window.periodic(int window_length, bool periodic, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor kaiser_window(int64_t window_length, bool periodic, double beta, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::kaiser_window.beta(int window_length, bool periodic, float beta, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor hinge_embedding_loss(const Tensor & self, const Tensor & target, double margin, int64_t reduction); // {"schema": "aten::hinge_embedding_loss(Tensor self, Tensor target, float margin=1.0, int reduction=Mean) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor group_norm(const Tensor & input, int64_t num_groups, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, double eps, bool cudnn_enabled); // {"schema": "aten::group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enabled=True) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> native_group_norm(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, c10::SymInt N, c10::SymInt C, c10::SymInt HxW, int64_t group, double eps); // {"schema": "aten::native_group_norm(Tensor input, Tensor? weight, Tensor? bias, SymInt N, SymInt C, SymInt HxW, int group, float eps) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> native_group_norm_backward(const Tensor & grad_out, const Tensor & input, const Tensor & mean, const Tensor & rstd, const c10::optional<Tensor> & weight, c10::SymInt N, c10::SymInt C, c10::SymInt HxW, int64_t group, ::std::array<bool,3> output_mask); // {"schema": "aten::native_group_norm_backward(Tensor grad_out, Tensor input, Tensor mean, Tensor rstd, Tensor? weight, SymInt N, SymInt C, SymInt HxW, int group, bool[3] output_mask) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _fft_r2c(const Tensor & self, IntArrayRef dim, int64_t normalization, bool onesided); // {"schema": "aten::_fft_r2c(Tensor self, int[] dim, int normalization, bool onesided) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _fft_r2c_out(const Tensor & self, IntArrayRef dim, int64_t normalization, bool onesided, Tensor & out); // {"schema": "aten::_fft_r2c.out(Tensor self, int[] dim, int normalization, bool onesided, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _fft_c2r(const Tensor & self, IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size); // {"schema": "aten::_fft_c2r(Tensor self, int[] dim, int normalization, SymInt last_dim_size) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _fft_c2r_out(const Tensor & self, IntArrayRef dim, int64_t normalization, c10::SymInt last_dim_size, Tensor & out); // {"schema": "aten::_fft_c2r.out(Tensor self, int[] dim, int normalization, SymInt last_dim_size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _fft_c2c(const Tensor & self, c10::SymIntArrayRef dim, int64_t normalization, bool forward); // {"schema": "aten::_fft_c2c(Tensor self, SymInt[] dim, int normalization, bool forward) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _fft_c2c_out(const Tensor & self, c10::SymIntArrayRef dim, int64_t normalization, bool forward, Tensor & out); // {"schema": "aten::_fft_c2c.out(Tensor self, SymInt[] dim, int normalization, bool forward, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
void _validate_compressed_sparse_indices(bool is_crow, const Tensor & compressed_idx, const Tensor & plain_idx, int64_t cdim, int64_t dim, int64_t nnz); // {"schema": "aten::_validate_compressed_sparse_indices(bool is_crow, Tensor compressed_idx, Tensor plain_idx, int cdim, int dim, int nnz) -> ()", "dispatch": "True", "default": "False"}
|
||
|
int64_t _cufft_get_plan_cache_size(DeviceIndex device_index); // {"schema": "aten::_cufft_get_plan_cache_size(DeviceIndex device_index) -> int", "dispatch": "False", "default": "True"}
|
||
|
int64_t _cufft_get_plan_cache_max_size(DeviceIndex device_index); // {"schema": "aten::_cufft_get_plan_cache_max_size(DeviceIndex device_index) -> int", "dispatch": "False", "default": "True"}
|
||
|
void _cufft_set_plan_cache_max_size(DeviceIndex device_index, int64_t max_size); // {"schema": "aten::_cufft_set_plan_cache_max_size(DeviceIndex device_index, int max_size) -> ()", "dispatch": "False", "default": "True"}
|
||
|
void _cufft_clear_plan_cache(DeviceIndex device_index); // {"schema": "aten::_cufft_clear_plan_cache(DeviceIndex device_index) -> ()", "dispatch": "False", "default": "True"}
|
||
|
Tensor index(const Tensor & self, const c10::List<c10::optional<Tensor>> & indices); // {"schema": "aten::index.Tensor(Tensor self, Tensor?[] indices) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & index_out(const Tensor & self, const c10::List<c10::optional<Tensor>> & indices, Tensor & out); // {"schema": "aten::index.Tensor_out(Tensor self, Tensor?[] indices, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _unsafe_index(const Tensor & self, const c10::List<c10::optional<Tensor>> & indices); // {"schema": "aten::_unsafe_index.Tensor(Tensor self, Tensor?[] indices) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & index_copy_out(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source, Tensor & out); // {"schema": "aten::index_copy.out(Tensor self, int dim, Tensor index, Tensor source, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & index_copy_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & source); // {"schema": "aten::index_copy_(Tensor(a!) self, int dim, Tensor index, Tensor source) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor index_copy(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source); // {"schema": "aten::index_copy(Tensor self, int dim, Tensor index, Tensor source) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & index_copy_(Tensor & self, Dimname dim, const Tensor & index, const Tensor & source); // {"schema": "aten::index_copy_.dimname(Tensor(a!) self, Dimname dim, Tensor index, Tensor source) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor index_copy(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & source); // {"schema": "aten::index_copy.dimname(Tensor self, Dimname dim, Tensor index, Tensor source) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & index_put_(Tensor & self, const c10::List<c10::optional<Tensor>> & indices, const Tensor & values, bool accumulate); // {"schema": "aten::index_put_(Tensor(a!) self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor index_put(const Tensor & self, const c10::List<c10::optional<Tensor>> & indices, const Tensor & values, bool accumulate); // {"schema": "aten::index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _unsafe_index_put(const Tensor & self, const c10::List<c10::optional<Tensor>> & indices, const Tensor & values, bool accumulate); // {"schema": "aten::_unsafe_index_put(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _index_put_impl_(Tensor & self, const c10::List<c10::optional<Tensor>> & indices, const Tensor & values, bool accumulate, bool unsafe); // {"schema": "aten::_index_put_impl_(Tensor(a!) self, Tensor?[] indices, Tensor values, bool accumulate=False, bool unsafe=False) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor instance_norm(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, bool use_input_stats, double momentum, double eps, bool cudnn_enabled); // {"schema": "aten::instance_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool use_input_stats, float momentum, float eps, bool cudnn_enabled) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor isclose(const Tensor & self, const Tensor & other, double rtol, double atol, bool equal_nan); // {"schema": "aten::isclose(Tensor self, Tensor other, float rtol=1e-05, float atol=1e-08, bool equal_nan=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & isin_out(const Tensor & elements, const Tensor & test_elements, bool assume_unique, bool invert, Tensor & out); // {"schema": "aten::isin.Tensor_Tensor_out(Tensor elements, Tensor test_elements, *, bool assume_unique=False, bool invert=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor isin(const Tensor & elements, const Tensor & test_elements, bool assume_unique, bool invert); // {"schema": "aten::isin.Tensor_Tensor(Tensor elements, Tensor test_elements, *, bool assume_unique=False, bool invert=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & isin_out(const Tensor & elements, const Scalar & test_element, bool assume_unique, bool invert, Tensor & out); // {"schema": "aten::isin.Tensor_Scalar_out(Tensor elements, Scalar test_element, *, bool assume_unique=False, bool invert=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor isin(const Tensor & elements, const Scalar & test_element, bool assume_unique, bool invert); // {"schema": "aten::isin.Tensor_Scalar(Tensor elements, Scalar test_element, *, bool assume_unique=False, bool invert=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & isin_out(const Scalar & element, const Tensor & test_elements, bool assume_unique, bool invert, Tensor & out); // {"schema": "aten::isin.Scalar_Tensor_out(Scalar element, Tensor test_elements, *, bool assume_unique=False, bool invert=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor isin(const Scalar & element, const Tensor & test_elements, bool assume_unique, bool invert); // {"schema": "aten::isin.Scalar_Tensor(Scalar element, Tensor test_elements, *, bool assume_unique=False, bool invert=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor isnan(const Tensor & self); // {"schema": "aten::isnan(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
bool is_distributed(const Tensor & self); // {"schema": "aten::is_distributed(Tensor self) -> bool", "dispatch": "False", "default": "True"}
|
||
|
bool is_floating_point(const Tensor & self); // {"schema": "aten::is_floating_point(Tensor self) -> bool", "dispatch": "False", "default": "True"}
|
||
|
bool is_complex(const Tensor & self); // {"schema": "aten::is_complex(Tensor self) -> bool", "dispatch": "False", "default": "True"}
|
||
|
bool is_conj(const Tensor & self); // {"schema": "aten::is_conj(Tensor self) -> bool", "dispatch": "False", "default": "True"}
|
||
|
bool _is_zerotensor(const Tensor & self); // {"schema": "aten::_is_zerotensor(Tensor self) -> bool", "dispatch": "False", "default": "True"}
|
||
|
bool is_neg(const Tensor & self); // {"schema": "aten::is_neg(Tensor self) -> bool", "dispatch": "False", "default": "True"}
|
||
|
Tensor isreal(const Tensor & self); // {"schema": "aten::isreal(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
bool is_nonzero(const Tensor & self); // {"schema": "aten::is_nonzero(Tensor self) -> bool", "dispatch": "False", "default": "True"}
|
||
|
bool is_same_size(const Tensor & self, const Tensor & other); // {"schema": "aten::is_same_size(Tensor self, Tensor other) -> bool", "dispatch": "True", "default": "True"}
|
||
|
bool is_signed(const Tensor & self); // {"schema": "aten::is_signed(Tensor self) -> bool", "dispatch": "False", "default": "True"}
|
||
|
bool is_inference(const Tensor & self); // {"schema": "aten::is_inference(Tensor self) -> bool", "dispatch": "False", "default": "True"}
|
||
|
Tensor kl_div(const Tensor & self, const Tensor & target, int64_t reduction, bool log_target); // {"schema": "aten::kl_div(Tensor self, Tensor target, int reduction=Mean, *, bool log_target=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor kron(const Tensor & self, const Tensor & other); // {"schema": "aten::kron(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & kron_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::kron.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> kthvalue(const Tensor & self, int64_t k, int64_t dim, bool keepdim); // {"schema": "aten::kthvalue(Tensor self, int k, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> kthvalue_out(const Tensor & self, int64_t k, int64_t dim, bool keepdim, Tensor & values, Tensor & indices); // {"schema": "aten::kthvalue.values(Tensor self, int k, int dim=-1, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> kthvalue(const Tensor & self, int64_t k, Dimname dim, bool keepdim); // {"schema": "aten::kthvalue.dimname(Tensor self, int k, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> kthvalue_out(const Tensor & self, int64_t k, Dimname dim, bool keepdim, Tensor & values, Tensor & indices); // {"schema": "aten::kthvalue.dimname_out(Tensor self, int k, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "False", "default": "True"}
|
||
|
Tensor layer_norm(const Tensor & input, c10::SymIntArrayRef normalized_shape, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, double eps, bool cudnn_enable); // {"schema": "aten::layer_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enable=True) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> native_layer_norm(const Tensor & input, c10::SymIntArrayRef normalized_shape, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, double eps); // {"schema": "aten::native_layer_norm(Tensor input, SymInt[] normalized_shape, Tensor? weight, Tensor? bias, float eps) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> native_layer_norm_backward(const Tensor & grad_out, const Tensor & input, c10::SymIntArrayRef normalized_shape, const Tensor & mean, const Tensor & rstd, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, ::std::array<bool,3> output_mask); // {"schema": "aten::native_layer_norm_backward(Tensor grad_out, Tensor input, SymInt[] normalized_shape, Tensor mean, Tensor rstd, Tensor? weight, Tensor? bias, bool[3] output_mask) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor nan_to_num(const Tensor & self, c10::optional<double> nan, c10::optional<double> posinf, c10::optional<double> neginf); // {"schema": "aten::nan_to_num(Tensor self, float? nan=None, float? posinf=None, float? neginf=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & nan_to_num_(Tensor & self, c10::optional<double> nan, c10::optional<double> posinf, c10::optional<double> neginf); // {"schema": "aten::nan_to_num_(Tensor(a!) self, float? nan=None, float? posinf=None, float? neginf=None) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & nan_to_num_out(const Tensor & self, c10::optional<double> nan, c10::optional<double> posinf, c10::optional<double> neginf, Tensor & out); // {"schema": "aten::nan_to_num.out(Tensor self, float? nan=None, float? posinf=None, float? neginf=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor linear(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias); // {"schema": "aten::linear(Tensor input, Tensor weight, Tensor? bias=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> linear_backward(const Tensor & self, const Tensor & grad_output, const Tensor & weight, ::std::array<bool,3> output_mask); // {"schema": "aten::linear_backward(Tensor self, Tensor grad_output, Tensor weight, bool[3] output_mask) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & linear_out(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, Tensor & out); // {"schema": "aten::linear.out(Tensor input, Tensor weight, Tensor? bias=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor mkldnn_linear(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias); // {"schema": "aten::mkldnn_linear(Tensor self, Tensor weight, Tensor? bias=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor mkldnn_linear_backward_input(IntArrayRef input_size, const Tensor & grad_output, const Tensor & weight); // {"schema": "aten::mkldnn_linear_backward_input(int[] input_size, Tensor grad_output, Tensor weight) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> mkldnn_linear_backward_weights(const Tensor & grad_output, const Tensor & input, const Tensor & weight, bool bias_defined); // {"schema": "aten::mkldnn_linear_backward_weights(Tensor grad_output, Tensor input, Tensor weight, bool bias_defined) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> mkldnn_linear_backward(const Tensor & self, const Tensor & grad_output, const Tensor & weight, ::std::array<bool,3> output_mask); // {"schema": "aten::mkldnn_linear_backward(Tensor self, Tensor grad_output, Tensor weight, bool[3] output_mask) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _cslt_compress(const Tensor & input); // {"schema": "aten::_cslt_compress(Tensor input) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _cslt_sparse_mm(const Tensor & compressed_A, const Tensor & dense_B, const c10::optional<Tensor> & bias, const c10::optional<Tensor> & alpha, c10::optional<ScalarType> out_dtype, bool transpose_result, int64_t alg_id); // {"schema": "aten::_cslt_sparse_mm(Tensor compressed_A, Tensor dense_B, Tensor? bias=None, Tensor? alpha=None, ScalarType? out_dtype=None, bool transpose_result=False, int alg_id=0) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
int64_t _cslt_sparse_mm_search(const Tensor & compressed_A, const Tensor & dense_B, const c10::optional<Tensor> & bias, const c10::optional<Tensor> & alpha, c10::optional<ScalarType> out_dtype, bool transpose_result); // {"schema": "aten::_cslt_sparse_mm_search(Tensor compressed_A, Tensor dense_B, Tensor? bias=None, Tensor? alpha=None, ScalarType? out_dtype=None, bool transpose_result=False) -> int", "dispatch": "True", "default": "False"}
|
||
|
Tensor _sparse_semi_structured_linear(const Tensor & input, const Tensor & weight, const Tensor & meta, const c10::optional<Tensor> & bias, c10::optional<c10::string_view> activation, c10::optional<ScalarType> out_dtype); // {"schema": "aten::_sparse_semi_structured_linear(Tensor input, Tensor weight, Tensor meta, *, Tensor? bias=None, str? activation=None, ScalarType? out_dtype=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _mixed_dtypes_linear(const Tensor & input, const Tensor & weight, const Tensor & scale, const c10::optional<Tensor> & bias, c10::optional<c10::string_view> activation); // {"schema": "aten::_mixed_dtypes_linear(Tensor input, Tensor weight, Tensor scale, *, Tensor? bias=None, str? activation=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor fbgemm_linear_int8_weight_fp32_activation(const Tensor & input, const Tensor & weight, const Tensor & packed, const Tensor & col_offsets, const Scalar & weight_scale, const Scalar & weight_zero_point, const Tensor & bias); // {"schema": "aten::fbgemm_linear_int8_weight_fp32_activation(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor fbgemm_linear_int8_weight(const Tensor & input, const Tensor & weight, const Tensor & packed, const Tensor & col_offsets, const Scalar & weight_scale, const Scalar & weight_zero_point, const Tensor & bias); // {"schema": "aten::fbgemm_linear_int8_weight(Tensor input, Tensor weight, Tensor packed, Tensor col_offsets, Scalar weight_scale, Scalar weight_zero_point, Tensor bias) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,double,int64_t> fbgemm_linear_quantize_weight(const Tensor & input); // {"schema": "aten::fbgemm_linear_quantize_weight(Tensor input) -> (Tensor, Tensor, float, int)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fbgemm_pack_gemm_matrix_fp16(const Tensor & input); // {"schema": "aten::fbgemm_pack_gemm_matrix_fp16(Tensor input) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor fbgemm_linear_fp16_weight_fp32_activation(const Tensor & input, const Tensor & packed_weight, const Tensor & bias); // {"schema": "aten::fbgemm_linear_fp16_weight_fp32_activation(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor fbgemm_linear_fp16_weight(const Tensor & input, const Tensor & packed_weight, const Tensor & bias); // {"schema": "aten::fbgemm_linear_fp16_weight(Tensor input, Tensor packed_weight, Tensor bias) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor fbgemm_pack_quantized_matrix(const Tensor & input); // {"schema": "aten::fbgemm_pack_quantized_matrix(Tensor input) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor fbgemm_pack_quantized_matrix(const Tensor & input, int64_t K, int64_t N); // {"schema": "aten::fbgemm_pack_quantized_matrix.KN(Tensor input, int K, int N) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor ldexp(const Tensor & self, const Tensor & other); // {"schema": "aten::ldexp.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & ldexp_(Tensor & self, const Tensor & other); // {"schema": "aten::ldexp_(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & ldexp_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::ldexp.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linspace(const Scalar & start, const Scalar & end, int64_t steps, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::linspace(Scalar start, Scalar end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor linspace(const Tensor & start, const Tensor & end, int64_t steps, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::linspace.Tensor_Tensor(Tensor start, Tensor end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor linspace(const Tensor & start, const Scalar & end, int64_t steps, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::linspace.Tensor_Scalar(Tensor start, Scalar end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor linspace(const Scalar & start, const Tensor & end, int64_t steps, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::linspace.Scalar_Tensor(Scalar start, Tensor end, int steps, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & linspace_out(const Scalar & start, const Scalar & end, int64_t steps, Tensor & out); // {"schema": "aten::linspace.out(Scalar start, Scalar end, int steps, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & linspace_out(const Tensor & start, const Tensor & end, int64_t steps, Tensor & out); // {"schema": "aten::linspace.Tensor_Tensor_out(Tensor start, Tensor end, int steps, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & linspace_out(const Tensor & start, const Scalar & end, int64_t steps, Tensor & out); // {"schema": "aten::linspace.Tensor_Scalar_out(Tensor start, Scalar end, int steps, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & linspace_out(const Scalar & start, const Tensor & end, int64_t steps, Tensor & out); // {"schema": "aten::linspace.Scalar_Tensor_out(Scalar start, Tensor end, int steps, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor log(const Tensor & self); // {"schema": "aten::log(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & log_(Tensor & self); // {"schema": "aten::log_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & log_out(const Tensor & self, Tensor & out); // {"schema": "aten::log.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor log10(const Tensor & self); // {"schema": "aten::log10(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & log10_(Tensor & self); // {"schema": "aten::log10_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & log10_out(const Tensor & self, Tensor & out); // {"schema": "aten::log10.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor log1p(const Tensor & self); // {"schema": "aten::log1p(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & log1p_(Tensor & self); // {"schema": "aten::log1p_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & log1p_out(const Tensor & self, Tensor & out); // {"schema": "aten::log1p.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor log2(const Tensor & self); // {"schema": "aten::log2(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & log2_(Tensor & self); // {"schema": "aten::log2_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & log2_out(const Tensor & self, Tensor & out); // {"schema": "aten::log2.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & logaddexp_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::logaddexp.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor logaddexp(const Tensor & self, const Tensor & other); // {"schema": "aten::logaddexp(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logaddexp2_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::logaddexp2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor logaddexp2(const Tensor & self, const Tensor & other); // {"schema": "aten::logaddexp2(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor xlogy(const Tensor & self, const Tensor & other); // {"schema": "aten::xlogy.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor xlogy(const Scalar & self, const Tensor & other); // {"schema": "aten::xlogy.Scalar_Self(Scalar self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor xlogy(const Tensor & self, const Scalar & other); // {"schema": "aten::xlogy.Scalar_Other(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & xlogy_(Tensor & self, const Tensor & other); // {"schema": "aten::xlogy_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & xlogy_(Tensor & self, const Scalar & other); // {"schema": "aten::xlogy_.Scalar_Other(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & xlogy_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::xlogy.OutTensor(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & xlogy_out(const Scalar & self, const Tensor & other, Tensor & out); // {"schema": "aten::xlogy.OutScalar_Self(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & xlogy_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::xlogy.OutScalar_Other(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor logspace(const Scalar & start, const Scalar & end, int64_t steps, double base, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::logspace(Scalar start, Scalar end, int steps, float base=10.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor logspace(const Tensor & start, const Tensor & end, int64_t steps, double base, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::logspace.Tensor_Tensor(Tensor start, Tensor end, int steps, float base=10.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor logspace(const Tensor & start, const Scalar & end, int64_t steps, double base, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::logspace.Tensor_Scalar(Tensor start, Scalar end, int steps, float base=10.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor logspace(const Scalar & start, const Tensor & end, int64_t steps, double base, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::logspace.Scalar_Tensor(Scalar start, Tensor end, int steps, float base=10.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logspace_out(const Scalar & start, const Scalar & end, int64_t steps, double base, Tensor & out); // {"schema": "aten::logspace.out(Scalar start, Scalar end, int steps, float base=10.0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & logspace_out(const Tensor & start, const Tensor & end, int64_t steps, double base, Tensor & out); // {"schema": "aten::logspace.Tensor_Tensor_out(Tensor start, Tensor end, int steps, float base=10.0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logspace_out(const Tensor & start, const Scalar & end, int64_t steps, double base, Tensor & out); // {"schema": "aten::logspace.Tensor_Scalar_out(Tensor start, Scalar end, int steps, float base=10.0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logspace_out(const Scalar & start, const Tensor & end, int64_t steps, double base, Tensor & out); // {"schema": "aten::logspace.Scalar_Tensor_out(Scalar start, Tensor end, int steps, float base=10.0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor log_softmax(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype); // {"schema": "aten::log_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & log_softmax_out(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::log_softmax.int_out(Tensor self, int dim, ScalarType? dtype=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor log_softmax(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype); // {"schema": "aten::log_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _log_softmax(const Tensor & self, int64_t dim, bool half_to_float); // {"schema": "aten::_log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _log_softmax_out(const Tensor & self, int64_t dim, bool half_to_float, Tensor & out); // {"schema": "aten::_log_softmax.out(Tensor self, int dim, bool half_to_float, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _log_softmax_backward_data(const Tensor & grad_output, const Tensor & output, int64_t dim, ScalarType input_dtype); // {"schema": "aten::_log_softmax_backward_data(Tensor grad_output, Tensor output, int dim, ScalarType input_dtype) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _log_softmax_backward_data_out(const Tensor & grad_output, const Tensor & output, int64_t dim, ScalarType input_dtype, Tensor & out); // {"schema": "aten::_log_softmax_backward_data.out(Tensor grad_output, Tensor output, int dim, ScalarType input_dtype, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _logcumsumexp(const Tensor & self, int64_t dim); // {"schema": "aten::_logcumsumexp(Tensor self, int dim) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _logcumsumexp_out(const Tensor & self, int64_t dim, Tensor & out); // {"schema": "aten::_logcumsumexp.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor logcumsumexp(const Tensor & self, int64_t dim); // {"schema": "aten::logcumsumexp(Tensor self, int dim) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logcumsumexp_out(const Tensor & self, int64_t dim, Tensor & out); // {"schema": "aten::logcumsumexp.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor logcumsumexp(const Tensor & self, Dimname dim); // {"schema": "aten::logcumsumexp.dimname(Tensor self, Dimname dim) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & logcumsumexp_out(const Tensor & self, Dimname dim, Tensor & out); // {"schema": "aten::logcumsumexp.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor logsumexp(const Tensor & self, IntArrayRef dim, bool keepdim); // {"schema": "aten::logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logsumexp_out(const Tensor & self, IntArrayRef dim, bool keepdim, Tensor & out); // {"schema": "aten::logsumexp.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor logsumexp(const Tensor & self, DimnameList dim, bool keepdim); // {"schema": "aten::logsumexp.names(Tensor self, Dimname[1] dim, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & logsumexp_out(const Tensor & self, DimnameList dim, bool keepdim, Tensor & out); // {"schema": "aten::logsumexp.names_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor margin_ranking_loss(const Tensor & input1, const Tensor & input2, const Tensor & target, double margin, int64_t reduction); // {"schema": "aten::margin_ranking_loss(Tensor input1, Tensor input2, Tensor target, float margin=0.0, int reduction=Mean) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor matmul(const Tensor & self, const Tensor & other); // {"schema": "aten::matmul(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> matmul_backward(const Tensor & grad, const Tensor & self, const Tensor & other, ::std::array<bool,2> mask); // {"schema": "aten::matmul_backward(Tensor grad, Tensor self, Tensor other, bool[2] mask) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & matmul_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::matmul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor matrix_power(const Tensor & self, int64_t n); // {"schema": "aten::matrix_power(Tensor self, int n) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & matrix_power_out(const Tensor & self, int64_t n, Tensor & out); // {"schema": "aten::matrix_power.out(Tensor self, int n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor matrix_exp(const Tensor & self); // {"schema": "aten::matrix_exp(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor matrix_exp_backward(const Tensor & self, const Tensor & grad); // {"schema": "aten::matrix_exp_backward(Tensor self, Tensor grad) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> _aminmax(const Tensor & self); // {"schema": "aten::_aminmax(Tensor self) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _aminmax(const Tensor & self, int64_t dim, bool keepdim); // {"schema": "aten::_aminmax.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> aminmax(const Tensor & self, c10::optional<int64_t> dim, bool keepdim); // {"schema": "aten::aminmax(Tensor self, *, int? dim=None, bool keepdim=False) -> (Tensor min, Tensor max)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> aminmax_out(const Tensor & self, c10::optional<int64_t> dim, bool keepdim, Tensor & min, Tensor & max); // {"schema": "aten::aminmax.out(Tensor self, *, int? dim=None, bool keepdim=False, Tensor(a!) min, Tensor(b!) max) -> (Tensor(a!) min, Tensor(b!) max)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _compute_linear_combination(const Tensor & input, const Tensor & coefficients); // {"schema": "aten::_compute_linear_combination(Tensor input, Tensor coefficients) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _compute_linear_combination_out(const Tensor & input, const Tensor & coefficients, Tensor & out); // {"schema": "aten::_compute_linear_combination.out(Tensor input, Tensor coefficients, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> max(const Tensor & self, int64_t dim, bool keepdim); // {"schema": "aten::max.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> max_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & max, Tensor & max_values); // {"schema": "aten::max.dim_max(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> max(const Tensor & self, Dimname dim, bool keepdim); // {"schema": "aten::max.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> max_out(const Tensor & self, Dimname dim, bool keepdim, Tensor & max, Tensor & max_values); // {"schema": "aten::max.names_dim_max(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) max, Tensor(b!) max_values) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "False", "default": "True"}
|
||
|
Tensor value_selecting_reduction_backward(const Tensor & grad, int64_t dim, const Tensor & indices, c10::SymIntArrayRef sizes, bool keepdim); // {"schema": "aten::value_selecting_reduction_backward(Tensor grad, int dim, Tensor indices, SymInt[] sizes, bool keepdim) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor amax(const Tensor & self, IntArrayRef dim, bool keepdim); // {"schema": "aten::amax(Tensor self, int[1] dim=[], bool keepdim=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & amax_out(const Tensor & self, IntArrayRef dim, bool keepdim, Tensor & out); // {"schema": "aten::amax.out(Tensor self, int[1] dim=[], bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> max_pool1d_with_indices(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::max_pool1d_with_indices(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor max_pool1d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor max_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor max_pool2d_backward(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::max_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor mkldnn_max_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::mkldnn_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor mkldnn_max_pool2d_backward(const Tensor & grad_output, const Tensor & output, const Tensor & input, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::mkldnn_max_pool2d_backward(Tensor grad_output, Tensor output, Tensor input, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor mkldnn_max_pool3d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::mkldnn_max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor mkldnn_max_pool3d_backward(const Tensor & grad_output, const Tensor & output, const Tensor & input, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::mkldnn_max_pool3d_backward(Tensor grad_output, Tensor output, Tensor input, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor quantized_max_pool1d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::quantized_max_pool1d(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor quantized_max_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::quantized_max_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor quantized_max_pool3d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::quantized_max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor max_pool3d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::max_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor mean(const Tensor & self, c10::optional<ScalarType> dtype); // {"schema": "aten::mean(Tensor self, *, ScalarType? dtype=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor mean(const Tensor & self, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::mean.dim(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mean_out(const Tensor & self, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::mean.out(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor mean(const Tensor & self, DimnameList dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::mean.names_dim(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & mean_out(const Tensor & self, DimnameList dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::mean.names_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor nanmean(const Tensor & self, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::nanmean(Tensor self, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & nanmean_out(const Tensor & self, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::nanmean.out(Tensor self, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor median(const Tensor & self); // {"schema": "aten::median(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> median(const Tensor & self, int64_t dim, bool keepdim); // {"schema": "aten::median.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> median_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & values, Tensor & indices); // {"schema": "aten::median.dim_values(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> median(const Tensor & self, Dimname dim, bool keepdim); // {"schema": "aten::median.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> median_out(const Tensor & self, Dimname dim, bool keepdim, Tensor & values, Tensor & indices); // {"schema": "aten::median.names_dim_values(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "False", "default": "True"}
|
||
|
Tensor nanmedian(const Tensor & self); // {"schema": "aten::nanmedian(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> nanmedian(const Tensor & self, int64_t dim, bool keepdim); // {"schema": "aten::nanmedian.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> nanmedian_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & values, Tensor & indices); // {"schema": "aten::nanmedian.dim_values(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> nanmedian(const Tensor & self, Dimname dim, bool keepdim); // {"schema": "aten::nanmedian.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> nanmedian_out(const Tensor & self, Dimname dim, bool keepdim, Tensor & values, Tensor & indices); // {"schema": "aten::nanmedian.names_dim_values(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> min(const Tensor & self, int64_t dim, bool keepdim); // {"schema": "aten::min.dim(Tensor self, int dim, bool keepdim=False) -> (Tensor values, Tensor indices)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> min_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & min, Tensor & min_indices); // {"schema": "aten::min.dim_min(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> min(const Tensor & self, Dimname dim, bool keepdim); // {"schema": "aten::min.names_dim(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> min_out(const Tensor & self, Dimname dim, bool keepdim, Tensor & min, Tensor & min_indices); // {"schema": "aten::min.names_dim_min(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) min, Tensor(b!) min_indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "False", "default": "True"}
|
||
|
Tensor amin(const Tensor & self, IntArrayRef dim, bool keepdim); // {"schema": "aten::amin(Tensor self, int[1] dim=[], bool keepdim=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & amin_out(const Tensor & self, IntArrayRef dim, bool keepdim, Tensor & out); // {"schema": "aten::amin.out(Tensor self, int[1] dim=[], bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _mps_convolution(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::_mps_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> mps_convolution_backward(const Tensor & self, const Tensor & grad_output, const Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, ::std::array<bool,3> output_mask); // {"schema": "aten::mps_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor mkldnn_convolution(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::mkldnn_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> mkldnn_rnn_layer(const Tensor & input, const Tensor & weight0, const Tensor & weight1, const Tensor & weight2, const Tensor & weight3, const Tensor & hx_, const Tensor & cx_, bool reverse, IntArrayRef batch_sizes, int64_t mode, int64_t hidden_size, int64_t num_layers, bool has_biases, bool bidirectional, bool batch_first, bool train); // {"schema": "aten::mkldnn_rnn_layer(Tensor input, Tensor weight0, Tensor weight1, Tensor weight2, Tensor weight3, Tensor hx_, Tensor cx_, bool reverse, int[] batch_sizes, int mode, int hidden_size, int num_layers, bool has_biases, bool bidirectional, bool batch_first, bool train) -> (Tensor, Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor,Tensor,Tensor> mkldnn_rnn_layer_backward(const Tensor & input, const Tensor & weight1, const Tensor & weight2, const Tensor & weight3, const Tensor & weight4, const Tensor & hx_, const Tensor & cx_tmp, const Tensor & output, const Tensor & hy_, const Tensor & cy_, const c10::optional<Tensor> & grad_output, const c10::optional<Tensor> & grad_hy, const c10::optional<Tensor> & grad_cy, bool reverse, int64_t mode, int64_t hidden_size, int64_t num_layers, bool has_biases, bool train, bool bidirectional, IntArrayRef batch_sizes, bool batch_first, const Tensor & workspace); // {"schema": "aten::mkldnn_rnn_layer_backward(Tensor input, Tensor weight1, Tensor weight2, Tensor weight3, Tensor weight4, Tensor hx_, Tensor cx_tmp, Tensor output, Tensor hy_, Tensor cy_, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, bool reverse, int mode, int hidden_size, int num_layers, bool has_biases, bool train, bool bidirectional, int[] batch_sizes, bool batch_first, Tensor workspace) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> miopen_batch_norm(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, bool training, double exponential_average_factor, double epsilon); // {"schema": "aten::miopen_batch_norm(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> miopen_batch_norm_backward(const Tensor & input, const Tensor & grad_output, const Tensor & weight, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, const c10::optional<Tensor> & save_mean, const c10::optional<Tensor> & save_var, double epsilon); // {"schema": "aten::miopen_batch_norm_backward(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor miopen_convolution(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic); // {"schema": "aten::miopen_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor miopen_convolution_transpose(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic); // {"schema": "aten::miopen_convolution_transpose(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor miopen_depthwise_convolution(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic); // {"schema": "aten::miopen_depthwise_convolution(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor miopen_convolution_relu(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::miopen_convolution_relu(Tensor self, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor miopen_convolution_add_relu(const Tensor & self, const Tensor & weight, const Tensor & z, const c10::optional<Scalar> & alpha, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::miopen_convolution_add_relu(Tensor self, Tensor weight, Tensor z, Scalar? alpha, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor> miopen_rnn(const Tensor & input, TensorList weight, int64_t weight_stride0, const Tensor & hx, const c10::optional<Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, IntArrayRef batch_sizes, const c10::optional<Tensor> & dropout_state); // {"schema": "aten::miopen_rnn(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state) -> (Tensor, Tensor, Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,::std::vector<Tensor>> miopen_rnn_backward(const Tensor & input, TensorList weight, int64_t weight_stride0, const Tensor & weight_buf, const Tensor & hx, const c10::optional<Tensor> & cx, const Tensor & output, const c10::optional<Tensor> & grad_output, const c10::optional<Tensor> & grad_hy, const c10::optional<Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, IntArrayRef batch_sizes, const c10::optional<Tensor> & dropout_state, const Tensor & reserve, ::std::array<bool,4> output_mask); // {"schema": "aten::miopen_rnn_backward(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask) -> (Tensor, Tensor, Tensor, Tensor[])", "dispatch": "True", "default": "False"}
|
||
|
Tensor mm(const Tensor & self, const Tensor & mat2); // {"schema": "aten::mm(Tensor self, Tensor mat2) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mm_out(const Tensor & self, const Tensor & mat2, Tensor & out); // {"schema": "aten::mm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _int_mm(const Tensor & self, const Tensor & mat2); // {"schema": "aten::_int_mm(Tensor self, Tensor mat2) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _int_mm_out(const Tensor & self, const Tensor & mat2, Tensor & out); // {"schema": "aten::_int_mm.out(Tensor self, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _convert_weight_to_int4pack(const Tensor & self, int64_t innerKTiles); // {"schema": "aten::_convert_weight_to_int4pack(Tensor self, int innerKTiles) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _weight_int4pack_mm(const Tensor & self, const Tensor & mat2, int64_t qGroupSize, const Tensor & qScaleAndZeros); // {"schema": "aten::_weight_int4pack_mm(Tensor self, Tensor mat2, int qGroupSize, Tensor qScaleAndZeros) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _weight_int8pack_mm(const Tensor & self, const Tensor & mat2, const Tensor & scales); // {"schema": "aten::_weight_int8pack_mm(Tensor self, Tensor mat2, Tensor scales) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _sparse_mm(const Tensor & sparse, const Tensor & dense); // {"schema": "aten::_sparse_mm(Tensor sparse, Tensor dense) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_mm(const Tensor & sparse, const Tensor & dense, c10::string_view reduce); // {"schema": "aten::_sparse_mm.reduce(Tensor sparse, Tensor dense, str reduce) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_sparse_matmul(const Tensor & self, const Tensor & other); // {"schema": "aten::_sparse_sparse_matmul(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> mode(const Tensor & self, int64_t dim, bool keepdim); // {"schema": "aten::mode(Tensor self, int dim=-1, bool keepdim=False) -> (Tensor values, Tensor indices)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor &,Tensor &> mode_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & values, Tensor & indices); // {"schema": "aten::mode.values(Tensor self, int dim=-1, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> mode(const Tensor & self, Dimname dim, bool keepdim); // {"schema": "aten::mode.dimname(Tensor self, Dimname dim, bool keepdim=False) -> (Tensor values, Tensor indices)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> mode_out(const Tensor & self, Dimname dim, bool keepdim, Tensor & values, Tensor & indices); // {"schema": "aten::mode.dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "False", "default": "True"}
|
||
|
Tensor mul(const Tensor & self, const Tensor & other); // {"schema": "aten::mul.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mul_(Tensor & self, const Tensor & other); // {"schema": "aten::mul_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mul_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::mul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor mul(const Tensor & self, const Scalar & other); // {"schema": "aten::mul.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mul_(Tensor & self, const Scalar & other); // {"schema": "aten::mul_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor multiply(const Tensor & self, const Tensor & other); // {"schema": "aten::multiply.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & multiply_(Tensor & self, const Tensor & other); // {"schema": "aten::multiply_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & multiply_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::multiply.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor multiply(const Tensor & self, const Scalar & other); // {"schema": "aten::multiply.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & multiply_(Tensor & self, const Scalar & other); // {"schema": "aten::multiply_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor mv(const Tensor & self, const Tensor & vec); // {"schema": "aten::mv(Tensor self, Tensor vec) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mv_out(const Tensor & self, const Tensor & vec, Tensor & out); // {"schema": "aten::mv.out(Tensor self, Tensor vec, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mvlgamma_out(const Tensor & self, int64_t p, Tensor & out); // {"schema": "aten::mvlgamma.out(Tensor self, int p, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor mvlgamma(const Tensor & self, int64_t p); // {"schema": "aten::mvlgamma(Tensor self, int p) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mvlgamma_(Tensor & self, int64_t p); // {"schema": "aten::mvlgamma_(Tensor(a!) self, int p) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor narrow_copy(const Tensor & self, int64_t dim, c10::SymInt start, c10::SymInt length); // {"schema": "aten::narrow_copy(Tensor self, int dim, SymInt start, SymInt length) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & narrow_copy_out(const Tensor & self, int64_t dim, c10::SymInt start, c10::SymInt length, Tensor & out); // {"schema": "aten::narrow_copy.out(Tensor self, int dim, SymInt start, SymInt length, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor narrow(const Tensor & self, int64_t dim, c10::SymInt start, c10::SymInt length); // {"schema": "aten::narrow(Tensor(a) self, int dim, SymInt start, SymInt length) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor narrow(const Tensor & self, int64_t dim, const Tensor & start, c10::SymInt length); // {"schema": "aten::narrow.Tensor(Tensor(a) self, int dim, Tensor start, SymInt length) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> native_batch_norm(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, bool training, double momentum, double eps); // {"schema": "aten::native_batch_norm(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> native_batch_norm_out(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, bool training, double momentum, double eps, Tensor & out, Tensor & save_mean, Tensor & save_invstd); // {"schema": "aten::native_batch_norm.out(Tensor input, Tensor? weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float momentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _native_batch_norm_legit(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, Tensor & running_mean, Tensor & running_var, bool training, double momentum, double eps); // {"schema": "aten::_native_batch_norm_legit(Tensor input, Tensor? weight, Tensor? bias, Tensor(a!) running_mean, Tensor(b!) running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _native_batch_norm_legit_no_training(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, const Tensor & running_mean, const Tensor & running_var, double momentum, double eps); // {"schema": "aten::_native_batch_norm_legit_no_training(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, float momentum, float eps) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> _native_batch_norm_legit_out(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, Tensor & running_mean, Tensor & running_var, bool training, double momentum, double eps, Tensor & out, Tensor & save_mean, Tensor & save_invstd); // {"schema": "aten::_native_batch_norm_legit.out(Tensor input, Tensor? weight, Tensor? bias, Tensor(a!) running_mean, Tensor(b!) running_var, bool training, float momentum, float eps, *, Tensor(d!) out, Tensor(e!) save_mean, Tensor(f!) save_invstd) -> (Tensor(d!), Tensor(e!), Tensor(f!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _native_batch_norm_legit(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, bool training, double momentum, double eps); // {"schema": "aten::_native_batch_norm_legit.no_stats(Tensor input, Tensor? weight, Tensor? bias, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> _native_batch_norm_legit_out(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, bool training, double momentum, double eps, Tensor & out, Tensor & save_mean, Tensor & save_invstd); // {"schema": "aten::_native_batch_norm_legit.no_stats_out(Tensor input, Tensor? weight, Tensor? bias, bool training, float momentum, float eps, *, Tensor(a!) out, Tensor(b!) save_mean, Tensor(c!) save_invstd) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> batch_norm_stats(const Tensor & input, double eps); // {"schema": "aten::batch_norm_stats(Tensor input, float eps) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor batch_norm_elemt(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, const Tensor & mean, const Tensor & invstd, double eps); // {"schema": "aten::batch_norm_elemt(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & batch_norm_elemt_out(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, const Tensor & mean, const Tensor & invstd, double eps, Tensor & out); // {"schema": "aten::batch_norm_elemt.out(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor invstd, float eps, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> batch_norm_gather_stats(const Tensor & input, const Tensor & mean, const Tensor & invstd, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, double momentum, double eps, int64_t count); // {"schema": "aten::batch_norm_gather_stats(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, int count) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> batch_norm_gather_stats_with_counts(const Tensor & input, const Tensor & mean, const Tensor & invstd, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, double momentum, double eps, const Tensor & counts); // {"schema": "aten::batch_norm_gather_stats_with_counts(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, Tensor counts) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> native_batch_norm_backward(const Tensor & grad_out, const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, const c10::optional<Tensor> & save_mean, const c10::optional<Tensor> & save_invstd, bool train, double eps, ::std::array<bool,3> output_mask); // {"schema": "aten::native_batch_norm_backward(Tensor grad_out, Tensor input, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_invstd, bool train, float eps, bool[3] output_mask) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> batch_norm_backward_reduce(const Tensor & grad_out, const Tensor & input, const Tensor & mean, const Tensor & invstd, const c10::optional<Tensor> & weight, bool input_g, bool weight_g, bool bias_g); // {"schema": "aten::batch_norm_backward_reduce(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, bool input_g, bool weight_g, bool bias_g) -> (Tensor, Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor batch_norm_backward_elemt(const Tensor & grad_out, const Tensor & input, const Tensor & mean, const Tensor & invstd, const c10::optional<Tensor> & weight, const Tensor & sum_dy, const Tensor & sum_dy_xmu, const Tensor & count); // {"schema": "aten::batch_norm_backward_elemt(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, Tensor sum_dy, Tensor sum_dy_xmu, Tensor count) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> batch_norm_update_stats(const Tensor & input, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, double momentum); // {"schema": "aten::batch_norm_update_stats(Tensor input, Tensor? running_mean, Tensor? running_var, float momentum) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
bool is_vulkan_available(); // {"schema": "aten::is_vulkan_available() -> bool", "dispatch": "False", "default": "True"}
|
||
|
bool _nnpack_available(); // {"schema": "aten::_nnpack_available() -> bool", "dispatch": "False", "default": "True"}
|
||
|
Tensor _nnpack_spatial_convolution(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride); // {"schema": "aten::_nnpack_spatial_convolution(Tensor input, Tensor weight, Tensor? bias, SymInt[2] padding, SymInt[2] stride=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor ones(IntArrayRef size, c10::optional<DimnameList> names, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::ones.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor ones(c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::ones(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & ones_out(c10::SymIntArrayRef size, Tensor & out); // {"schema": "aten::ones.out(SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor ones_like(const Tensor & self, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::ones_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor pairwise_distance(const Tensor & x1, const Tensor & x2, double p, double eps, bool keepdim); // {"schema": "aten::pairwise_distance(Tensor x1, Tensor x2, float p=2, float eps=1e-06, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor cdist(const Tensor & x1, const Tensor & x2, double p, c10::optional<int64_t> compute_mode); // {"schema": "aten::cdist(Tensor x1, Tensor x2, float p=2, int? compute_mode=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _euclidean_dist(const Tensor & x1, const Tensor & x2); // {"schema": "aten::_euclidean_dist(Tensor x1, Tensor x2) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _cdist_forward(const Tensor & x1, const Tensor & x2, double p, c10::optional<int64_t> compute_mode); // {"schema": "aten::_cdist_forward(Tensor x1, Tensor x2, float p, int? compute_mode) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _cdist_backward(const Tensor & grad, const Tensor & x1, const Tensor & x2, double p, const Tensor & cdist); // {"schema": "aten::_cdist_backward(Tensor grad, Tensor x1, Tensor x2, float p, Tensor cdist) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor pdist(const Tensor & self, double p); // {"schema": "aten::pdist(Tensor self, float p=2) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _pdist_forward(const Tensor & self, double p); // {"schema": "aten::_pdist_forward(Tensor self, float p=2) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _pdist_backward(const Tensor & grad, const Tensor & self, double p, const Tensor & pdist); // {"schema": "aten::_pdist_backward(Tensor grad, Tensor self, float p, Tensor pdist) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor cosine_similarity(const Tensor & x1, const Tensor & x2, int64_t dim, double eps); // {"schema": "aten::cosine_similarity(Tensor x1, Tensor x2, int dim=1, float eps=1e-08) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor permute(const Tensor & self, IntArrayRef dims); // {"schema": "aten::permute(Tensor(a) self, int[] dims) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor movedim(const Tensor & self, IntArrayRef source, IntArrayRef destination); // {"schema": "aten::movedim.intlist(Tensor(a) self, int[] source, int[] destination) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor movedim(const Tensor & self, int64_t source, int64_t destination); // {"schema": "aten::movedim.int(Tensor(a) self, int source, int destination) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor moveaxis(const Tensor & self, IntArrayRef source, IntArrayRef destination); // {"schema": "aten::moveaxis.intlist(Tensor(a) self, int[] source, int[] destination) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor moveaxis(const Tensor & self, int64_t source, int64_t destination); // {"schema": "aten::moveaxis.int(Tensor(a) self, int source, int destination) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor numpy_T(const Tensor & self); // {"schema": "aten::numpy_T(Tensor(a) self) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor matrix_H(const Tensor & self); // {"schema": "aten::matrix_H(Tensor(a) self) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor mT(const Tensor & self); // {"schema": "aten::mT(Tensor(a) self) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor mH(const Tensor & self); // {"schema": "aten::mH(Tensor(a) self) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor adjoint(const Tensor & self); // {"schema": "aten::adjoint(Tensor(a) self) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor pixel_shuffle(const Tensor & self, int64_t upscale_factor); // {"schema": "aten::pixel_shuffle(Tensor self, int upscale_factor) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor pixel_unshuffle(const Tensor & self, int64_t downscale_factor); // {"schema": "aten::pixel_unshuffle(Tensor self, int downscale_factor) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor channel_shuffle(const Tensor & self, c10::SymInt groups); // {"schema": "aten::channel_shuffle(Tensor self, SymInt groups) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor native_channel_shuffle(const Tensor & self, c10::SymInt groups); // {"schema": "aten::native_channel_shuffle(Tensor self, SymInt groups) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
bool is_pinned(const Tensor & self, c10::optional<Device> device); // {"schema": "aten::is_pinned(Tensor self, Device? device=None) -> bool", "dispatch": "True", "default": "True"}
|
||
|
Tensor pin_memory(const Tensor & self, c10::optional<Device> device); // {"schema": "aten::pin_memory(Tensor(a) self, Device? device=None) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _pin_memory(const Tensor & self, c10::optional<Device> device); // {"schema": "aten::_pin_memory(Tensor self, Device? device=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor pinverse(const Tensor & self, double rcond); // {"schema": "aten::pinverse(Tensor self, float rcond=1e-15) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor poisson_nll_loss(const Tensor & input, const Tensor & target, bool log_input, bool full, double eps, int64_t reduction); // {"schema": "aten::poisson_nll_loss(Tensor input, Tensor target, bool log_input, bool full, float eps, int reduction) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor rad2deg(const Tensor & self); // {"schema": "aten::rad2deg(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rad2deg_(Tensor & self); // {"schema": "aten::rad2deg_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rad2deg_out(const Tensor & self, Tensor & out); // {"schema": "aten::rad2deg.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor deg2rad(const Tensor & self); // {"schema": "aten::deg2rad(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & deg2rad_(Tensor & self); // {"schema": "aten::deg2rad_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & deg2rad_out(const Tensor & self, Tensor & out); // {"schema": "aten::deg2rad.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor scalar_tensor(const Scalar & s, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::scalar_tensor(Scalar s, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor rand(c10::SymIntArrayRef size, c10::optional<DimnameList> names, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::rand.names(SymInt[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor rand(c10::SymIntArrayRef size, c10::optional<Generator> generator, c10::optional<DimnameList> names, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::rand.generator_with_names(SymInt[] size, *, Generator? generator, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor rand(c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::rand(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor rand(c10::SymIntArrayRef size, c10::optional<Generator> generator, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::rand.generator(SymInt[] size, *, Generator? generator, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rand_out(c10::SymIntArrayRef size, Tensor & out); // {"schema": "aten::rand.out(SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rand_out(c10::SymIntArrayRef size, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::rand.generator_out(SymInt[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor rand_like(const Tensor & self, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::rand_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor randint(c10::SymInt high, c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::randint(SymInt high, SymInt[] size, *, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor randint(c10::SymInt high, c10::SymIntArrayRef size, c10::optional<Generator> generator, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::randint.generator(SymInt high, SymInt[] size, *, Generator? generator, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor randint(c10::SymInt low, c10::SymInt high, c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::randint.low(SymInt low, SymInt high, SymInt[] size, *, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor randint(c10::SymInt low, c10::SymInt high, c10::SymIntArrayRef size, c10::optional<Generator> generator, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::randint.low_generator(SymInt low, SymInt high, SymInt[] size, *, Generator? generator, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & randint_out(c10::SymInt high, c10::SymIntArrayRef size, Tensor & out); // {"schema": "aten::randint.out(SymInt high, SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & randint_out(c10::SymInt high, c10::SymIntArrayRef size, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::randint.generator_out(SymInt high, SymInt[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & randint_out(c10::SymInt low, c10::SymInt high, c10::SymIntArrayRef size, Tensor & out); // {"schema": "aten::randint.low_out(SymInt low, SymInt high, SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & randint_out(c10::SymInt low, c10::SymInt high, c10::SymIntArrayRef size, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::randint.low_generator_out(SymInt low, SymInt high, SymInt[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor randint_like(const Tensor & self, c10::SymInt high, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::randint_like(Tensor self, SymInt high, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor randint_like(const Tensor & self, c10::SymInt low, c10::SymInt high, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::randint_like.low_dtype(Tensor self, SymInt low, SymInt high, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor randn(c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::randn(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor randn(c10::SymIntArrayRef size, c10::optional<Generator> generator, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::randn.generator(SymInt[] size, *, Generator? generator, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor randn(c10::SymIntArrayRef size, c10::optional<DimnameList> names, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::randn.names(SymInt[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor randn(c10::SymIntArrayRef size, c10::optional<Generator> generator, c10::optional<DimnameList> names, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::randn.generator_with_names(SymInt[] size, *, Generator? generator, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & randn_out(c10::SymIntArrayRef size, Tensor & out); // {"schema": "aten::randn.out(SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & randn_out(c10::SymIntArrayRef size, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::randn.generator_out(SymInt[] size, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor randn_like(const Tensor & self, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::randn_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor randperm(c10::SymInt n, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::randperm(SymInt n, *, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor randperm(c10::SymInt n, c10::optional<Generator> generator, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::randperm.generator(SymInt n, *, Generator? generator, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & randperm_out(c10::SymInt n, Tensor & out); // {"schema": "aten::randperm.out(SymInt n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & randperm_out(c10::SymInt n, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::randperm.generator_out(SymInt n, *, Generator? generator, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor range(const Scalar & start, const Scalar & end, const Scalar & step, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::range.step(Scalar start, Scalar end, Scalar step=1, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor range(const Scalar & start, const Scalar & end, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::range(Scalar start, Scalar end, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & range_out(const Scalar & start, const Scalar & end, Tensor & out); // {"schema": "aten::range.out_(Scalar start, Scalar end, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & range_out(const Scalar & start, const Scalar & end, const Scalar & step, Tensor & out); // {"schema": "aten::range.out(Scalar start, Scalar end, Scalar step=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor ravel(const Tensor & self); // {"schema": "aten::ravel(Tensor(a) self) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor reciprocal(const Tensor & self); // {"schema": "aten::reciprocal(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & reciprocal_(Tensor & self); // {"schema": "aten::reciprocal_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & reciprocal_out(const Tensor & self, Tensor & out); // {"schema": "aten::reciprocal.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor neg(const Tensor & self); // {"schema": "aten::neg(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & neg_(Tensor & self); // {"schema": "aten::neg_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & neg_out(const Tensor & self, Tensor & out); // {"schema": "aten::neg.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor negative(const Tensor & self); // {"schema": "aten::negative(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & negative_(Tensor & self); // {"schema": "aten::negative_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & negative_out(const Tensor & self, Tensor & out); // {"schema": "aten::negative.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor repeat(const Tensor & self, c10::SymIntArrayRef repeats); // {"schema": "aten::repeat(Tensor self, SymInt[] repeats) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor repeat_interleave(const Tensor & repeats, c10::optional<c10::SymInt> output_size); // {"schema": "aten::repeat_interleave.Tensor(Tensor repeats, *, SymInt? output_size=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor repeat_interleave(const Tensor & self, const Tensor & repeats, c10::optional<int64_t> dim, c10::optional<c10::SymInt> output_size); // {"schema": "aten::repeat_interleave.self_Tensor(Tensor self, Tensor repeats, int? dim=None, *, SymInt? output_size=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor repeat_interleave(const Tensor & self, c10::SymInt repeats, c10::optional<int64_t> dim, c10::optional<c10::SymInt> output_size); // {"schema": "aten::repeat_interleave.self_int(Tensor self, SymInt repeats, int? dim=None, *, SymInt? output_size=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor reshape(const Tensor & self, c10::SymIntArrayRef shape); // {"schema": "aten::reshape(Tensor(a) self, SymInt[] shape) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _reshape_copy(const Tensor & self, c10::SymIntArrayRef size); // {"schema": "aten::_reshape_copy(Tensor self, SymInt[] size) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _reshape_alias(const Tensor & self, c10::SymIntArrayRef size, c10::SymIntArrayRef stride); // {"schema": "aten::_reshape_alias(Tensor(a) self, SymInt[] size, SymInt[] stride) -> Tensor(a)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _mkldnn_reshape(const Tensor & self, IntArrayRef shape); // {"schema": "aten::_mkldnn_reshape(Tensor self, int[] shape) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor reshape_as(const Tensor & self, const Tensor & other); // {"schema": "aten::reshape_as(Tensor(a) self, Tensor other) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor round(const Tensor & self); // {"schema": "aten::round(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & round_(Tensor & self); // {"schema": "aten::round_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & round_out(const Tensor & self, Tensor & out); // {"schema": "aten::round.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor round(const Tensor & self, int64_t decimals); // {"schema": "aten::round.decimals(Tensor self, *, int decimals) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & round_(Tensor & self, int64_t decimals); // {"schema": "aten::round_.decimals(Tensor(a!) self, *, int decimals) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & round_out(const Tensor & self, int64_t decimals, Tensor & out); // {"schema": "aten::round.decimals_out(Tensor self, *, int decimals, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor rrelu(const Tensor & self, const Scalar & lower, const Scalar & upper, bool training, c10::optional<Generator> generator); // {"schema": "aten::rrelu(Tensor self, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & rrelu_(Tensor & self, const Scalar & lower, const Scalar & upper, bool training, c10::optional<Generator> generator); // {"schema": "aten::rrelu_(Tensor(a!) self, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor relu(const Tensor & self); // {"schema": "aten::relu(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & relu_(Tensor & self); // {"schema": "aten::relu_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor relu6(const Tensor & self); // {"schema": "aten::relu6(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & relu6_(Tensor & self); // {"schema": "aten::relu6_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor prelu(const Tensor & self, const Tensor & weight); // {"schema": "aten::prelu(Tensor self, Tensor weight) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _prelu_kernel(const Tensor & self, const Tensor & weight); // {"schema": "aten::_prelu_kernel(Tensor self, Tensor weight) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _prelu_kernel_backward(const Tensor & grad_output, const Tensor & self, const Tensor & weight); // {"schema": "aten::_prelu_kernel_backward(Tensor grad_output, Tensor self, Tensor weight) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & gelu_out(const Tensor & self, c10::string_view approximate, Tensor & out); // {"schema": "aten::gelu.out(Tensor self, *, str approximate='none', Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & gelu_(Tensor & self, c10::string_view approximate); // {"schema": "aten::gelu_(Tensor(a!) self, *, str approximate='none') -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor gelu(const Tensor & self, c10::string_view approximate); // {"schema": "aten::gelu(Tensor self, *, str approximate='none') -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & gelu_backward_out(const Tensor & grad_output, const Tensor & self, c10::string_view approximate, Tensor & grad_input); // {"schema": "aten::gelu_backward.grad_input(Tensor grad_output, Tensor self, *, str approximate='none', Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor gelu_backward(const Tensor & grad_output, const Tensor & self, c10::string_view approximate); // {"schema": "aten::gelu_backward(Tensor grad_output, Tensor self, *, str approximate='none') -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor infinitely_differentiable_gelu_backward(const Tensor & grad, const Tensor & self); // {"schema": "aten::infinitely_differentiable_gelu_backward(Tensor grad, Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & hardshrink_out(const Tensor & self, const Scalar & lambd, Tensor & out); // {"schema": "aten::hardshrink.out(Tensor self, Scalar lambd=0.5, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor hardshrink(const Tensor & self, const Scalar & lambd); // {"schema": "aten::hardshrink(Tensor self, Scalar lambd=0.5) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hardshrink_backward_out(const Tensor & grad_out, const Tensor & self, const Scalar & lambd, Tensor & grad_input); // {"schema": "aten::hardshrink_backward.grad_input(Tensor grad_out, Tensor self, Scalar lambd, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor hardshrink_backward(const Tensor & grad_out, const Tensor & self, const Scalar & lambd); // {"schema": "aten::hardshrink_backward(Tensor grad_out, Tensor self, Scalar lambd) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor rsqrt(const Tensor & self); // {"schema": "aten::rsqrt(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rsqrt_(Tensor & self); // {"schema": "aten::rsqrt_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rsqrt_out(const Tensor & self, Tensor & out); // {"schema": "aten::rsqrt.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor select(const Tensor & self, Dimname dim, int64_t index); // {"schema": "aten::select.Dimname(Tensor(a) self, Dimname dim, int index) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor select(const Tensor & self, int64_t dim, c10::SymInt index); // {"schema": "aten::select.int(Tensor(a) self, int dim, SymInt index) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor select_backward(const Tensor & grad_output, c10::SymIntArrayRef input_sizes, int64_t dim, c10::SymInt index); // {"schema": "aten::select_backward(Tensor grad_output, SymInt[] input_sizes, int dim, SymInt index) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _nested_select_backward(const Tensor & grad_output, const Tensor & self, int64_t dim, c10::SymInt index); // {"schema": "aten::_nested_select_backward(Tensor grad_output, Tensor self, int dim, SymInt index) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor selu(const Tensor & self); // {"schema": "aten::selu(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & selu_(Tensor & self); // {"schema": "aten::selu_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor celu(const Tensor & self, const Scalar & alpha); // {"schema": "aten::celu(Tensor self, Scalar alpha=1.0) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & celu_(Tensor & self, const Scalar & alpha); // {"schema": "aten::celu_(Tensor(a!) self, Scalar alpha=1.0) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor silu(const Tensor & self); // {"schema": "aten::silu(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & silu_(Tensor & self); // {"schema": "aten::silu_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & silu_out(const Tensor & self, Tensor & out); // {"schema": "aten::silu.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & silu_backward_out(const Tensor & grad_output, const Tensor & self, Tensor & grad_input); // {"schema": "aten::silu_backward.grad_input(Tensor grad_output, Tensor self, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor silu_backward(const Tensor & grad_output, const Tensor & self); // {"schema": "aten::silu_backward(Tensor grad_output, Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor mish(const Tensor & self); // {"schema": "aten::mish(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mish_(Tensor & self); // {"schema": "aten::mish_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mish_out(const Tensor & self, Tensor & out); // {"schema": "aten::mish.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor mish_backward(const Tensor & grad_output, const Tensor & self); // {"schema": "aten::mish_backward(Tensor grad_output, Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor sigmoid(const Tensor & self); // {"schema": "aten::sigmoid(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sigmoid_(Tensor & self); // {"schema": "aten::sigmoid_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sigmoid_out(const Tensor & self, Tensor & out); // {"schema": "aten::sigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor logit(const Tensor & self, c10::optional<double> eps); // {"schema": "aten::logit(Tensor self, float? eps=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & logit_(Tensor & self, c10::optional<double> eps); // {"schema": "aten::logit_(Tensor(a!) self, float? eps=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & logit_out(const Tensor & self, c10::optional<double> eps, Tensor & out); // {"schema": "aten::logit.out(Tensor self, float? eps=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor sin(const Tensor & self); // {"schema": "aten::sin(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sin_(Tensor & self); // {"schema": "aten::sin_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sin_out(const Tensor & self, Tensor & out); // {"schema": "aten::sin.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor sinc(const Tensor & self); // {"schema": "aten::sinc(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sinc_(Tensor & self); // {"schema": "aten::sinc_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sinc_out(const Tensor & self, Tensor & out); // {"schema": "aten::sinc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor sinh(const Tensor & self); // {"schema": "aten::sinh(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sinh_(Tensor & self); // {"schema": "aten::sinh_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sinh_out(const Tensor & self, Tensor & out); // {"schema": "aten::sinh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor detach(const Tensor & self); // {"schema": "aten::detach(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & detach_(Tensor & self); // {"schema": "aten::detach_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
int64_t size(const Tensor & self, int64_t dim); // {"schema": "aten::size.int(Tensor self, int dim) -> int", "dispatch": "False", "default": "True"}
|
||
|
int64_t size(const Tensor & self, Dimname dim); // {"schema": "aten::size.Dimname(Tensor self, Dimname dim) -> int", "dispatch": "False", "default": "True"}
|
||
|
c10::SymInt sym_size(const Tensor & self, int64_t dim); // {"schema": "aten::sym_size.int(Tensor self, int dim) -> SymInt", "dispatch": "False", "default": "True"}
|
||
|
c10::SymInt sym_numel(const Tensor & self); // {"schema": "aten::sym_numel(Tensor self) -> SymInt", "dispatch": "False", "default": "True"}
|
||
|
c10::SymInt sym_storage_offset(const Tensor & self); // {"schema": "aten::sym_storage_offset(Tensor self) -> SymInt", "dispatch": "False", "default": "True"}
|
||
|
Tensor slice(const Tensor & self, int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step); // {"schema": "aten::slice.Tensor(Tensor(a) self, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor slice_backward(const Tensor & grad_output, c10::SymIntArrayRef input_sizes, int64_t dim, c10::SymInt start, c10::SymInt end, c10::SymInt step); // {"schema": "aten::slice_backward(Tensor grad_output, SymInt[] input_sizes, int dim, SymInt start, SymInt end, SymInt step) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor slice_inverse(const Tensor & self, const Tensor & src, int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step); // {"schema": "aten::slice_inverse(Tensor(a) self, Tensor src, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor slice_scatter(const Tensor & self, const Tensor & src, int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step); // {"schema": "aten::slice_scatter(Tensor self, Tensor src, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor select_scatter(const Tensor & self, const Tensor & src, int64_t dim, c10::SymInt index); // {"schema": "aten::select_scatter(Tensor self, Tensor src, int dim, SymInt index) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor diagonal_scatter(const Tensor & self, const Tensor & src, int64_t offset, int64_t dim1, int64_t dim2); // {"schema": "aten::diagonal_scatter(Tensor self, Tensor src, int offset=0, int dim1=0, int dim2=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor as_strided_scatter(const Tensor & self, const Tensor & src, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset); // {"schema": "aten::as_strided_scatter(Tensor self, Tensor src, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor smm(const Tensor & self, const Tensor & mat2); // {"schema": "aten::smm(Tensor self, Tensor mat2) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor softmax(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype); // {"schema": "aten::softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & softmax_out(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::softmax.int_out(Tensor self, int dim, ScalarType? dtype=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor softmax(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype); // {"schema": "aten::softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _softmax(const Tensor & self, int64_t dim, bool half_to_float); // {"schema": "aten::_softmax(Tensor self, int dim, bool half_to_float) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _softmax_out(const Tensor & self, int64_t dim, bool half_to_float, Tensor & out); // {"schema": "aten::_softmax.out(Tensor self, int dim, bool half_to_float, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _softmax_backward_data(const Tensor & grad_output, const Tensor & output, int64_t dim, ScalarType input_dtype); // {"schema": "aten::_softmax_backward_data(Tensor grad_output, Tensor output, int dim, ScalarType input_dtype) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _softmax_backward_data_out(const Tensor & grad_output, const Tensor & output, int64_t dim, ScalarType input_dtype, Tensor & grad_input); // {"schema": "aten::_softmax_backward_data.out(Tensor grad_output, Tensor output, int dim, ScalarType input_dtype, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> unsafe_split(const Tensor & self, c10::SymInt split_size, int64_t dim); // {"schema": "aten::unsafe_split.Tensor(Tensor self, SymInt split_size, int dim=0) -> Tensor[]", "dispatch": "True", "default": "True"}
|
||
|
::std::vector<Tensor> split(const Tensor & self, c10::SymInt split_size, int64_t dim); // {"schema": "aten::split.Tensor(Tensor(a -> *) self, SymInt split_size, int dim=0) -> Tensor(a)[]", "dispatch": "True", "default": "True"}
|
||
|
::std::vector<Tensor> split(const Tensor & self, c10::SymIntArrayRef split_size, int64_t dim); // {"schema": "aten::split.sizes(Tensor(a -> *) self, SymInt[] split_size, int dim=0) -> Tensor(a)[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> unsafe_split_with_sizes(const Tensor & self, c10::SymIntArrayRef split_sizes, int64_t dim); // {"schema": "aten::unsafe_split_with_sizes(Tensor self, SymInt[] split_sizes, int dim=0) -> Tensor[]", "dispatch": "True", "default": "True"}
|
||
|
::std::vector<Tensor> split_with_sizes(const Tensor & self, c10::SymIntArrayRef split_sizes, int64_t dim); // {"schema": "aten::split_with_sizes(Tensor(a -> *) self, SymInt[] split_sizes, int dim=0) -> Tensor(a)[]", "dispatch": "True", "default": "True"}
|
||
|
::std::vector<Tensor> hsplit(const Tensor & self, int64_t sections); // {"schema": "aten::hsplit.int(Tensor(a -> *) self, int sections) -> Tensor(a)[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> hsplit(const Tensor & self, IntArrayRef indices); // {"schema": "aten::hsplit.array(Tensor(a -> *) self, int[] indices) -> Tensor(a)[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> vsplit(const Tensor & self, int64_t sections); // {"schema": "aten::vsplit.int(Tensor(a -> *) self, int sections) -> Tensor(a)[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> vsplit(const Tensor & self, IntArrayRef indices); // {"schema": "aten::vsplit.array(Tensor(a -> *) self, int[] indices) -> Tensor(a)[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> dsplit(const Tensor & self, int64_t sections); // {"schema": "aten::dsplit.int(Tensor(a -> *) self, int sections) -> Tensor(a)[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> dsplit(const Tensor & self, IntArrayRef indices); // {"schema": "aten::dsplit.array(Tensor(a -> *) self, int[] indices) -> Tensor(a)[]", "dispatch": "False", "default": "True"}
|
||
|
Tensor squeeze(const Tensor & self); // {"schema": "aten::squeeze(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor squeeze(const Tensor & self, int64_t dim); // {"schema": "aten::squeeze.dim(Tensor(a) self, int dim) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor squeeze(const Tensor & self, Dimname dim); // {"schema": "aten::squeeze.dimname(Tensor(a) self, Dimname dim) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor squeeze(const Tensor & self, IntArrayRef dim); // {"schema": "aten::squeeze.dims(Tensor(a) self, int[] dim) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & squeeze_(Tensor & self); // {"schema": "aten::squeeze_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & squeeze_(Tensor & self, int64_t dim); // {"schema": "aten::squeeze_.dim(Tensor(a!) self, int dim) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & squeeze_(Tensor & self, IntArrayRef dim); // {"schema": "aten::squeeze_.dims(Tensor(a!) self, int[] dim) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & squeeze_(Tensor & self, Dimname dim); // {"schema": "aten::squeeze_.dimname(Tensor(a!) self, Dimname dim) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor sspaddmm(const Tensor & self, const Tensor & mat1, const Tensor & mat2, const Scalar & beta, const Scalar & alpha); // {"schema": "aten::sspaddmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & sspaddmm_out(const Tensor & self, const Tensor & mat1, const Tensor & mat2, const Scalar & beta, const Scalar & alpha, Tensor & out); // {"schema": "aten::sspaddmm.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _chunk_cat(TensorList tensors, int64_t dim, int64_t num_chunks); // {"schema": "aten::_chunk_cat(Tensor[] tensors, int dim, int num_chunks) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _chunk_cat_out(TensorList tensors, int64_t dim, int64_t num_chunks, Tensor & out); // {"schema": "aten::_chunk_cat.out(Tensor[] tensors, int dim, int num_chunks, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor stack(TensorList tensors, int64_t dim); // {"schema": "aten::stack(Tensor[] tensors, int dim=0) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & stack_out(TensorList tensors, int64_t dim, Tensor & out); // {"schema": "aten::stack.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor _stack(TensorList tensors, int64_t dim); // {"schema": "aten::_stack(Tensor[] tensors, int dim=0) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _stack_out(TensorList tensors, int64_t dim, Tensor & out); // {"schema": "aten::_stack.out(Tensor[] tensors, int dim=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor hstack(TensorList tensors); // {"schema": "aten::hstack(Tensor[] tensors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & hstack_out(TensorList tensors, Tensor & out); // {"schema": "aten::hstack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor vstack(TensorList tensors); // {"schema": "aten::vstack(Tensor[] tensors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & vstack_out(TensorList tensors, Tensor & out); // {"schema": "aten::vstack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor dstack(TensorList tensors); // {"schema": "aten::dstack(Tensor[] tensors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & dstack_out(TensorList tensors, Tensor & out); // {"schema": "aten::dstack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor stft(const Tensor & self, int64_t n_fft, c10::optional<int64_t> hop_length, c10::optional<int64_t> win_length, const c10::optional<Tensor> & window, bool normalized, c10::optional<bool> onesided, c10::optional<bool> return_complex); // {"schema": "aten::stft(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool normalized=False, bool? onesided=None, bool? return_complex=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor stft(const Tensor & self, int64_t n_fft, c10::optional<int64_t> hop_length, c10::optional<int64_t> win_length, const c10::optional<Tensor> & window, bool center, c10::string_view pad_mode, bool normalized, c10::optional<bool> onesided, c10::optional<bool> return_complex); // {"schema": "aten::stft.center(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool center=True, str pad_mode=\"reflect\", bool normalized=False, bool? onesided=None, bool? return_complex=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor istft(const Tensor & self, int64_t n_fft, c10::optional<int64_t> hop_length, c10::optional<int64_t> win_length, const c10::optional<Tensor> & window, bool center, bool normalized, c10::optional<bool> onesided, c10::optional<int64_t> length, bool return_complex); // {"schema": "aten::istft(Tensor self, int n_fft, int? hop_length=None, int? win_length=None, Tensor? window=None, bool center=True, bool normalized=False, bool? onesided=None, int? length=None, bool return_complex=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
int64_t stride(const Tensor & self, int64_t dim); // {"schema": "aten::stride.int(Tensor self, int dim) -> int", "dispatch": "False", "default": "True"}
|
||
|
int64_t stride(const Tensor & self, Dimname dim); // {"schema": "aten::stride.Dimname(Tensor self, Dimname dim) -> int", "dispatch": "False", "default": "True"}
|
||
|
c10::SymInt sym_stride(const Tensor & self, int64_t dim); // {"schema": "aten::sym_stride.int(Tensor self, int dim) -> SymInt", "dispatch": "False", "default": "True"}
|
||
|
Tensor sum(const Tensor & self, c10::optional<ScalarType> dtype); // {"schema": "aten::sum(Tensor self, *, ScalarType? dtype=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor sum(const Tensor & self, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::sum.dim_IntList(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor sum(const Tensor & self, DimnameList dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::sum.dim_DimnameList(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & sum_out(const Tensor & self, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::sum.IntList_out(Tensor self, int[1]? dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & sum_out(const Tensor & self, DimnameList dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::sum.DimnameList_out(Tensor self, Dimname[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _nested_sum_backward(const Tensor & grad, const Tensor & self, OptionalIntArrayRef dim, bool keepdim); // {"schema": "aten::_nested_sum_backward(Tensor grad, Tensor self, int[1]? dim, bool keepdim=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor nansum(const Tensor & self, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::nansum(Tensor self, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & nansum_out(const Tensor & self, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::nansum.out(Tensor self, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor sum_to_size(const Tensor & self, c10::SymIntArrayRef size); // {"schema": "aten::sum_to_size(Tensor self, SymInt[] size) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor sqrt(const Tensor & self); // {"schema": "aten::sqrt(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sqrt_(Tensor & self); // {"schema": "aten::sqrt_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sqrt_out(const Tensor & self, Tensor & out); // {"schema": "aten::sqrt.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor square(const Tensor & self); // {"schema": "aten::square(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & square_(Tensor & self); // {"schema": "aten::square_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & square_out(const Tensor & self, Tensor & out); // {"schema": "aten::square.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor std(const Tensor & self, bool unbiased); // {"schema": "aten::std(Tensor self, bool unbiased=True) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor std(const Tensor & self, OptionalIntArrayRef dim, bool unbiased, bool keepdim); // {"schema": "aten::std.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor std(const Tensor & self, OptionalIntArrayRef dim, const c10::optional<Scalar> & correction, bool keepdim); // {"schema": "aten::std.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> std_mean(const Tensor & self, bool unbiased); // {"schema": "aten::std_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> std_mean(const Tensor & self, OptionalIntArrayRef dim, bool unbiased, bool keepdim); // {"schema": "aten::std_mean.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> std_mean(const Tensor & self, OptionalIntArrayRef dim, const c10::optional<Scalar> & correction, bool keepdim); // {"schema": "aten::std_mean.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> std_mean(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim); // {"schema": "aten::std_mean.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> std_mean(const Tensor & self, DimnameList dim, const c10::optional<Scalar> & correction, bool keepdim); // {"schema": "aten::std_mean.correction_names(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & std_out(const Tensor & self, OptionalIntArrayRef dim, bool unbiased, bool keepdim, Tensor & out); // {"schema": "aten::std.out(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & std_out(const Tensor & self, OptionalIntArrayRef dim, const c10::optional<Scalar> & correction, bool keepdim, Tensor & out); // {"schema": "aten::std.correction_out(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor std(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim); // {"schema": "aten::std.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & std_out(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim, Tensor & out); // {"schema": "aten::std.names_out(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor std(const Tensor & self, DimnameList dim, const c10::optional<Scalar> & correction, bool keepdim); // {"schema": "aten::std.correction_names(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & std_out(const Tensor & self, DimnameList dim, const c10::optional<Scalar> & correction, bool keepdim, Tensor & out); // {"schema": "aten::std.correction_names_out(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor prod(const Tensor & self, c10::optional<ScalarType> dtype); // {"schema": "aten::prod(Tensor self, *, ScalarType? dtype=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor prod(const Tensor & self, int64_t dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::prod.dim_int(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & prod_out(const Tensor & self, int64_t dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::prod.int_out(Tensor self, int dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor prod(const Tensor & self, Dimname dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::prod.dim_Dimname(Tensor self, Dimname dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & prod_out(const Tensor & self, Dimname dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::prod.Dimname_out(Tensor self, Dimname dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor t(const Tensor & self); // {"schema": "aten::t(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & t_(Tensor & self); // {"schema": "aten::t_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor tan(const Tensor & self); // {"schema": "aten::tan(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & tan_(Tensor & self); // {"schema": "aten::tan_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & tan_out(const Tensor & self, Tensor & out); // {"schema": "aten::tan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor tanh(const Tensor & self); // {"schema": "aten::tanh(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & tanh_(Tensor & self); // {"schema": "aten::tanh_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & tanh_out(const Tensor & self, Tensor & out); // {"schema": "aten::tanh.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor tensordot(const Tensor & self, const Tensor & other, IntArrayRef dims_self, IntArrayRef dims_other); // {"schema": "aten::tensordot(Tensor self, Tensor other, int[] dims_self, int[] dims_other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & tensordot_out(const Tensor & self, const Tensor & other, IntArrayRef dims_self, IntArrayRef dims_other, Tensor & out); // {"schema": "aten::tensordot.out(Tensor self, Tensor other, int[] dims_self, int[] dims_other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor threshold(const Tensor & self, const Scalar & threshold, const Scalar & value); // {"schema": "aten::threshold(Tensor self, Scalar threshold, Scalar value) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & threshold_(Tensor & self, const Scalar & threshold, const Scalar & value); // {"schema": "aten::threshold_(Tensor(a!) self, Scalar threshold, Scalar value) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & threshold_out(const Tensor & self, const Scalar & threshold, const Scalar & value, Tensor & out); // {"schema": "aten::threshold.out(Tensor self, Scalar threshold, Scalar value, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & threshold_backward_out(const Tensor & grad_output, const Tensor & self, const Scalar & threshold, Tensor & grad_input); // {"schema": "aten::threshold_backward.grad_input(Tensor grad_output, Tensor self, Scalar threshold, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor threshold_backward(const Tensor & grad_output, const Tensor & self, const Scalar & threshold); // {"schema": "aten::threshold_backward(Tensor grad_output, Tensor self, Scalar threshold) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor tile(const Tensor & self, c10::SymIntArrayRef dims); // {"schema": "aten::tile(Tensor self, SymInt[] dims) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor transpose(const Tensor & self, int64_t dim0, int64_t dim1); // {"schema": "aten::transpose.int(Tensor(a) self, int dim0, int dim1) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor transpose(const Tensor & self, Dimname dim0, Dimname dim1); // {"schema": "aten::transpose.Dimname(Tensor(a) self, Dimname dim0, Dimname dim1) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _mkldnn_transpose(const Tensor & self, int64_t dim0, int64_t dim1); // {"schema": "aten::_mkldnn_transpose(Tensor self, int dim0, int dim1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & transpose_(Tensor & self, int64_t dim0, int64_t dim1); // {"schema": "aten::transpose_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _mkldnn_transpose_(Tensor & self, int64_t dim0, int64_t dim1); // {"schema": "aten::_mkldnn_transpose_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor one_hot(const Tensor & self, int64_t num_classes); // {"schema": "aten::one_hot(Tensor self, int num_classes=-1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor flip(const Tensor & self, IntArrayRef dims); // {"schema": "aten::flip(Tensor self, int[] dims) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor fliplr(const Tensor & self); // {"schema": "aten::fliplr(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor flipud(const Tensor & self); // {"schema": "aten::flipud(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor roll(const Tensor & self, c10::SymIntArrayRef shifts, IntArrayRef dims); // {"schema": "aten::roll(Tensor self, SymInt[1] shifts, int[1] dims=[]) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor rot90(const Tensor & self, int64_t k, IntArrayRef dims); // {"schema": "aten::rot90(Tensor self, int k=1, int[] dims=[0,1]) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor trapezoid(const Tensor & y, const Tensor & x, int64_t dim); // {"schema": "aten::trapezoid.x(Tensor y, Tensor x, *, int dim=-1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor trapezoid(const Tensor & y, const Scalar & dx, int64_t dim); // {"schema": "aten::trapezoid.dx(Tensor y, *, Scalar dx=1, int dim=-1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor trapz(const Tensor & y, const Tensor & x, int64_t dim); // {"schema": "aten::trapz.x(Tensor y, Tensor x, *, int dim=-1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor trapz(const Tensor & y, double dx, int64_t dim); // {"schema": "aten::trapz.dx(Tensor y, *, float dx=1, int dim=-1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _transform_bias_rescale_qkv(const Tensor & qkv, const Tensor & qkv_bias, int64_t num_heads); // {"schema": "aten::_transform_bias_rescale_qkv(Tensor qkv, Tensor qkv_bias, int num_heads) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _nested_tensor_from_mask(const Tensor & t, const Tensor & mask, bool mask_check); // {"schema": "aten::_nested_tensor_from_mask(Tensor t, Tensor mask, bool mask_check=True) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
bool _nested_tensor_from_mask_left_aligned(const Tensor & t, const Tensor & mask); // {"schema": "aten::_nested_tensor_from_mask_left_aligned(Tensor t, Tensor mask) -> bool", "dispatch": "True", "default": "False"}
|
||
|
Tensor _nested_from_padded(const Tensor & padded, const Tensor & cpu_nested_shape_example, bool fuse_transform_0213); // {"schema": "aten::_nested_from_padded(Tensor padded, Tensor cpu_nested_shape_example, bool fuse_transform_0213=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _nested_tensor_size(const Tensor & self); // {"schema": "aten::_nested_tensor_size(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _nested_tensor_strides(const Tensor & self); // {"schema": "aten::_nested_tensor_strides(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _nested_tensor_storage_offsets(const Tensor & self); // {"schema": "aten::_nested_tensor_storage_offsets(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _nested_from_padded_and_nested_example(const Tensor & padded, const Tensor & nt_example); // {"schema": "aten::_nested_from_padded_and_nested_example(Tensor padded, Tensor nt_example) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _nested_view_from_buffer(const Tensor & self, const Tensor & nested_size, const Tensor & nested_strides, const Tensor & offsets); // {"schema": "aten::_nested_view_from_buffer(Tensor(a) self, Tensor nested_size, Tensor nested_strides, Tensor offsets) -> Tensor(a)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _nested_view_from_buffer_copy(const Tensor & self, const Tensor & nested_size, const Tensor & nested_strides, const Tensor & offsets); // {"schema": "aten::_nested_view_from_buffer_copy(Tensor self, Tensor nested_size, Tensor nested_strides, Tensor offsets) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _nested_view_from_jagged(const Tensor & self, const Tensor & offsets, const Tensor & dummy, const c10::optional<Tensor> & lengths, int64_t ragged_idx); // {"schema": "aten::_nested_view_from_jagged(Tensor(a) self, Tensor offsets, Tensor dummy, Tensor? lengths=None, int ragged_idx=1) -> Tensor(a)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _nested_view_from_jagged_copy(const Tensor & self, const Tensor & offsets, const Tensor & dummy, const c10::optional<Tensor> & lengths, int64_t ragged_idx); // {"schema": "aten::_nested_view_from_jagged_copy(Tensor self, Tensor offsets, Tensor dummy, Tensor? lengths=None, int ragged_idx=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _nested_get_values(const Tensor & self); // {"schema": "aten::_nested_get_values(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _nested_get_values_copy(const Tensor & self); // {"schema": "aten::_nested_get_values_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _nested_get_offsets(const Tensor & self); // {"schema": "aten::_nested_get_offsets(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _nested_get_lengths(const Tensor & self); // {"schema": "aten::_nested_get_lengths(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
int64_t _nested_get_ragged_idx(const Tensor & self); // {"schema": "aten::_nested_get_ragged_idx(Tensor self) -> int", "dispatch": "True", "default": "False"}
|
||
|
Tensor _nested_get_jagged_dummy(const Tensor & any); // {"schema": "aten::_nested_get_jagged_dummy(Tensor any) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _trilinear(const Tensor & i1, const Tensor & i2, const Tensor & i3, IntArrayRef expand1, IntArrayRef expand2, IntArrayRef expand3, IntArrayRef sumdim, int64_t unroll_dim); // {"schema": "aten::_trilinear(Tensor i1, Tensor i2, Tensor i3, int[] expand1, int[] expand2, int[] expand3, int[] sumdim, int unroll_dim=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor triplet_margin_loss(const Tensor & anchor, const Tensor & positive, const Tensor & negative, double margin, double p, double eps, bool swap, int64_t reduction); // {"schema": "aten::triplet_margin_loss(Tensor anchor, Tensor positive, Tensor negative, float margin=1.0, float p=2, float eps=1e-06, bool swap=False, int reduction=Mean) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor trunc(const Tensor & self); // {"schema": "aten::trunc(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & trunc_(Tensor & self); // {"schema": "aten::trunc_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & trunc_out(const Tensor & self, Tensor & out); // {"schema": "aten::trunc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor fix(const Tensor & self); // {"schema": "aten::fix(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fix_(Tensor & self); // {"schema": "aten::fix_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fix_out(const Tensor & self, Tensor & out); // {"schema": "aten::fix.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor type_as(const Tensor & self, const Tensor & other); // {"schema": "aten::type_as(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
bool _has_compatible_shallow_copy_type(const Tensor & self, const Tensor & from); // {"schema": "aten::_has_compatible_shallow_copy_type(Tensor self, Tensor from) -> bool", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> _unique(const Tensor & self, bool sorted, bool return_inverse); // {"schema": "aten::_unique(Tensor self, bool sorted=True, bool return_inverse=False) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> unique_dim(const Tensor & self, int64_t dim, bool sorted, bool return_inverse, bool return_counts); // {"schema": "aten::unique_dim(Tensor self, int dim, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> unique_consecutive(const Tensor & self, bool return_inverse, bool return_counts, c10::optional<int64_t> dim); // {"schema": "aten::unique_consecutive(Tensor self, bool return_inverse=False, bool return_counts=False, int? dim=None) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> unique_dim_consecutive(const Tensor & self, int64_t dim, bool return_inverse, bool return_counts); // {"schema": "aten::unique_dim_consecutive(Tensor self, int dim, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _unique2(const Tensor & self, bool sorted, bool return_inverse, bool return_counts); // {"schema": "aten::_unique2(Tensor self, bool sorted=True, bool return_inverse=False, bool return_counts=False) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _unsafe_view(const Tensor & self, c10::SymIntArrayRef size); // {"schema": "aten::_unsafe_view(Tensor self, SymInt[] size) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor unsqueeze(const Tensor & self, int64_t dim); // {"schema": "aten::unsqueeze(Tensor(a) self, int dim) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & unsqueeze_(Tensor & self, int64_t dim); // {"schema": "aten::unsqueeze_(Tensor(a!) self, int dim) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor vander(const Tensor & x, c10::optional<int64_t> N, bool increasing); // {"schema": "aten::vander(Tensor x, int? N=None, bool increasing=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor var(const Tensor & self, bool unbiased); // {"schema": "aten::var(Tensor self, bool unbiased=True) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor var(const Tensor & self, OptionalIntArrayRef dim, bool unbiased, bool keepdim); // {"schema": "aten::var.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor var(const Tensor & self, OptionalIntArrayRef dim, const c10::optional<Scalar> & correction, bool keepdim); // {"schema": "aten::var.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & var_out(const Tensor & self, OptionalIntArrayRef dim, bool unbiased, bool keepdim, Tensor & out); // {"schema": "aten::var.out(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & var_out(const Tensor & self, OptionalIntArrayRef dim, const c10::optional<Scalar> & correction, bool keepdim, Tensor & out); // {"schema": "aten::var.correction_out(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor var(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim); // {"schema": "aten::var.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & var_out(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim, Tensor & out); // {"schema": "aten::var.names_out(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor var(const Tensor & self, DimnameList dim, const c10::optional<Scalar> & correction, bool keepdim); // {"schema": "aten::var.correction_names(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & var_out(const Tensor & self, DimnameList dim, const c10::optional<Scalar> & correction, bool keepdim, Tensor & out); // {"schema": "aten::var.correction_names_out(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> var_mean(const Tensor & self, bool unbiased); // {"schema": "aten::var_mean(Tensor self, bool unbiased=True) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> var_mean(const Tensor & self, OptionalIntArrayRef dim, bool unbiased, bool keepdim); // {"schema": "aten::var_mean.dim(Tensor self, int[1]? dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> var_mean(const Tensor & self, OptionalIntArrayRef dim, const c10::optional<Scalar> & correction, bool keepdim); // {"schema": "aten::var_mean.correction(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> var_mean(const Tensor & self, DimnameList dim, bool unbiased, bool keepdim); // {"schema": "aten::var_mean.names_dim(Tensor self, Dimname[1] dim, bool unbiased=True, bool keepdim=False) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> var_mean(const Tensor & self, DimnameList dim, const c10::optional<Scalar> & correction, bool keepdim); // {"schema": "aten::var_mean.correction_names(Tensor self, Dimname[1] dim, *, Scalar? correction=None, bool keepdim=False) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor view_as(const Tensor & self, const Tensor & other); // {"schema": "aten::view_as(Tensor(a) self, Tensor other) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor where(const Tensor & condition, const Tensor & self, const Tensor & other); // {"schema": "aten::where.self(Tensor condition, Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & where_out(const Tensor & condition, const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::where.self_out(Tensor condition, Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor where(const Tensor & condition, const Scalar & self, const Tensor & other); // {"schema": "aten::where.ScalarSelf(Tensor condition, Scalar self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor where(const Tensor & condition, const Tensor & self, const Scalar & other); // {"schema": "aten::where.ScalarOther(Tensor condition, Tensor self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor where(const Tensor & condition, const Scalar & self, const Scalar & other); // {"schema": "aten::where.Scalar(Tensor condition, Scalar self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> where(const Tensor & condition); // {"schema": "aten::where(Tensor condition) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
Tensor norm_except_dim(const Tensor & v, int64_t pow, int64_t dim); // {"schema": "aten::norm_except_dim(Tensor v, int pow=2, int dim=0) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _weight_norm(const Tensor & v, const Tensor & g, int64_t dim); // {"schema": "aten::_weight_norm(Tensor v, Tensor g, int dim=0) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> _weight_norm_interface(const Tensor & v, const Tensor & g, int64_t dim); // {"schema": "aten::_weight_norm_interface(Tensor v, Tensor g, int dim=0) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _weight_norm_interface_backward(const Tensor & grad_w, const Tensor & saved_v, const Tensor & saved_g, const Tensor & saved_norms, int64_t dim); // {"schema": "aten::_weight_norm_interface_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _weight_norm_differentiable_backward(const Tensor & grad_w, const Tensor & saved_v, const Tensor & saved_g, const Tensor & saved_norms, int64_t dim); // {"schema": "aten::_weight_norm_differentiable_backward(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor zeros(IntArrayRef size, c10::optional<DimnameList> names, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::zeros.names(int[] size, *, Dimname[]? names, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _efficientzerotensor(c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::_efficientzerotensor(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor zeros(c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::zeros(SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & zeros_out(c10::SymIntArrayRef size, Tensor & out); // {"schema": "aten::zeros.out(SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor zeros_like(const Tensor & self, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::zeros_like(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _standard_gamma_grad(const Tensor & self, const Tensor & output); // {"schema": "aten::_standard_gamma_grad(Tensor self, Tensor output) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _standard_gamma(const Tensor & self, c10::optional<Generator> generator); // {"schema": "aten::_standard_gamma(Tensor self, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _dirichlet_grad(const Tensor & x, const Tensor & alpha, const Tensor & total); // {"schema": "aten::_dirichlet_grad(Tensor x, Tensor alpha, Tensor total) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _sample_dirichlet(const Tensor & self, c10::optional<Generator> generator); // {"schema": "aten::_sample_dirichlet(Tensor self, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor poisson(const Tensor & self, c10::optional<Generator> generator); // {"schema": "aten::poisson(Tensor self, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor binomial(const Tensor & count, const Tensor & prob, c10::optional<Generator> generator); // {"schema": "aten::binomial(Tensor count, Tensor prob, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor native_norm(const Tensor & self, const Scalar & p); // {"schema": "aten::native_norm(Tensor self, Scalar p=2) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor native_norm(const Tensor & self, const c10::optional<Scalar> & p, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::native_norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, ScalarType? dtype) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _sparse_sum(const Tensor & self); // {"schema": "aten::_sparse_sum(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_sum(const Tensor & self, ScalarType dtype); // {"schema": "aten::_sparse_sum.dtype(Tensor self, *, ScalarType dtype) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_sum(const Tensor & self, IntArrayRef dim); // {"schema": "aten::_sparse_sum.dim(Tensor self, int[1] dim) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _sparse_sum(const Tensor & self, IntArrayRef dim, ScalarType dtype); // {"schema": "aten::_sparse_sum.dim_dtype(Tensor self, int[1] dim, *, ScalarType dtype) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_sum_backward(const Tensor & grad, const Tensor & self, IntArrayRef dim); // {"schema": "aten::_sparse_sum_backward(Tensor grad, Tensor self, int[] dim) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _sparse_csr_sum(const Tensor & self, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::_sparse_csr_sum.dim_dtype(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _sparse_csr_prod(const Tensor & self, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::_sparse_csr_prod.dim_dtype(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _sparse_softmax(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype); // {"schema": "aten::_sparse_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_softmax(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype); // {"schema": "aten::_sparse_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_softmax(const Tensor & self, int64_t dim, bool half_to_float); // {"schema": "aten::_sparse_softmax(Tensor self, int dim, bool half_to_float) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _sparse_softmax_backward_data(const Tensor & grad_output, const Tensor & output, int64_t dim, const Tensor & self); // {"schema": "aten::_sparse_softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _sparse_log_softmax(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype); // {"schema": "aten::_sparse_log_softmax.int(Tensor self, int dim, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_log_softmax(const Tensor & self, Dimname dim, c10::optional<ScalarType> dtype); // {"schema": "aten::_sparse_log_softmax.Dimname(Tensor self, Dimname dim, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_log_softmax(const Tensor & self, int64_t dim, bool half_to_float); // {"schema": "aten::_sparse_log_softmax(Tensor self, int dim, bool half_to_float) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _sparse_log_softmax_backward_data(const Tensor & grad_output, const Tensor & output, int64_t dim, const Tensor & self); // {"schema": "aten::_sparse_log_softmax_backward_data(Tensor grad_output, Tensor output, int dim, Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _spdiags(const Tensor & diagonals, const Tensor & offsets, IntArrayRef shape, c10::optional<Layout> layout); // {"schema": "aten::_spdiags(Tensor diagonals, Tensor offsets, int[] shape, Layout? layout=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor norm(const Tensor & self, const c10::optional<Scalar> & p, ScalarType dtype); // {"schema": "aten::norm.ScalarOpt_dtype(Tensor self, Scalar? p, *, ScalarType dtype) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor norm(const Tensor & self, const Scalar & p); // {"schema": "aten::norm.Scalar(Tensor self, Scalar p=2) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor norm(const Tensor & self, const c10::optional<Scalar> & p, IntArrayRef dim, bool keepdim, ScalarType dtype); // {"schema": "aten::norm.ScalarOpt_dim_dtype(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor norm(const Tensor & self, const c10::optional<Scalar> & p, IntArrayRef dim, bool keepdim); // {"schema": "aten::norm.ScalarOpt_dim(Tensor self, Scalar? p, int[1] dim, bool keepdim=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & norm_out(const Tensor & self, const c10::optional<Scalar> & p, IntArrayRef dim, bool keepdim, ScalarType dtype, Tensor & out); // {"schema": "aten::norm.dtype_out(Tensor self, Scalar? p, int[1] dim, bool keepdim, *, ScalarType dtype, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & norm_out(const Tensor & self, const c10::optional<Scalar> & p, IntArrayRef dim, bool keepdim, Tensor & out); // {"schema": "aten::norm.out(Tensor self, Scalar? p, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor norm(const Tensor & self, const c10::optional<Scalar> & p, DimnameList dim, bool keepdim, ScalarType dtype); // {"schema": "aten::norm.names_ScalarOpt_dim_dtype(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim, *, ScalarType dtype) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor norm(const Tensor & self, const c10::optional<Scalar> & p, DimnameList dim, bool keepdim); // {"schema": "aten::norm.names_ScalarOpt_dim(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & norm_out(const Tensor & self, const c10::optional<Scalar> & p, DimnameList dim, bool keepdim, ScalarType dtype, Tensor & out); // {"schema": "aten::norm.names_dtype_out(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim, *, ScalarType dtype, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & norm_out(const Tensor & self, const c10::optional<Scalar> & p, DimnameList dim, bool keepdim, Tensor & out); // {"schema": "aten::norm.names_out(Tensor self, Scalar? p, Dimname[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> frexp(const Tensor & self); // {"schema": "aten::frexp.Tensor(Tensor self) -> (Tensor mantissa, Tensor exponent)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> frexp_out(const Tensor & self, Tensor & mantissa, Tensor & exponent); // {"schema": "aten::frexp.Tensor_out(Tensor self, *, Tensor(a!) mantissa, Tensor(b!) exponent) -> (Tensor(a!) mantissa, Tensor(b!) exponent)", "dispatch": "True", "default": "False"}
|
||
|
Tensor frobenius_norm(const Tensor & self, IntArrayRef dim, bool keepdim); // {"schema": "aten::frobenius_norm.dim(Tensor self, int[1] dim, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & frobenius_norm_out(const Tensor & self, IntArrayRef dim, bool keepdim, Tensor & out); // {"schema": "aten::frobenius_norm.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor nuclear_norm(const Tensor & self, bool keepdim); // {"schema": "aten::nuclear_norm(Tensor self, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & nuclear_norm_out(const Tensor & self, bool keepdim, Tensor & out); // {"schema": "aten::nuclear_norm.out(Tensor self, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor nuclear_norm(const Tensor & self, IntArrayRef dim, bool keepdim); // {"schema": "aten::nuclear_norm.dim(Tensor self, int[2] dim, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & nuclear_norm_out(const Tensor & self, IntArrayRef dim, bool keepdim, Tensor & out); // {"schema": "aten::nuclear_norm.dim_out(Tensor self, int[2] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor clone(const Tensor & self, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::clone(Tensor self, *, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor positive(const Tensor & self); // {"schema": "aten::positive(Tensor(a) self) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
const Tensor & resize_as_(const Tensor & self, const Tensor & the_template, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::resize_as_(Tensor(a!) self, Tensor the_template, *, MemoryFormat? memory_format=None) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
const Tensor & resize_as_sparse_(const Tensor & self, const Tensor & the_template); // {"schema": "aten::resize_as_sparse_(Tensor(a!) self, Tensor the_template) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & zero_(Tensor & self); // {"schema": "aten::zero_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & sub_out(const Tensor & self, const Tensor & other, const Scalar & alpha, Tensor & out); // {"schema": "aten::sub.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor sub(const Tensor & self, const Tensor & other, const Scalar & alpha); // {"schema": "aten::sub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sub_(Tensor & self, const Tensor & other, const Scalar & alpha); // {"schema": "aten::sub_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor sub(const Tensor & self, const Scalar & other, const Scalar & alpha); // {"schema": "aten::sub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sub_(Tensor & self, const Scalar & other, const Scalar & alpha); // {"schema": "aten::sub_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & subtract_out(const Tensor & self, const Tensor & other, const Scalar & alpha, Tensor & out); // {"schema": "aten::subtract.out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor subtract(const Tensor & self, const Tensor & other, const Scalar & alpha); // {"schema": "aten::subtract.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & subtract_(Tensor & self, const Tensor & other, const Scalar & alpha); // {"schema": "aten::subtract_.Tensor(Tensor(a!) self, Tensor other, *, Scalar alpha=1) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor subtract(const Tensor & self, const Scalar & other, const Scalar & alpha); // {"schema": "aten::subtract.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & subtract_(Tensor & self, const Scalar & other, const Scalar & alpha); // {"schema": "aten::subtract_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor rsub(const Tensor & self, const Tensor & other, const Scalar & alpha); // {"schema": "aten::rsub.Tensor(Tensor self, Tensor other, *, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & heaviside_out(const Tensor & self, const Tensor & values, Tensor & out); // {"schema": "aten::heaviside.out(Tensor self, Tensor values, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor heaviside(const Tensor & self, const Tensor & values); // {"schema": "aten::heaviside(Tensor self, Tensor values) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & heaviside_(Tensor & self, const Tensor & values); // {"schema": "aten::heaviside_(Tensor(a!) self, Tensor values) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor rsub(const Tensor & self, const Scalar & other, const Scalar & alpha); // {"schema": "aten::rsub.Scalar(Tensor self, Scalar other, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _sparse_addmm(const Tensor & self, const Tensor & mat1, const Tensor & mat2, const Scalar & beta, const Scalar & alpha); // {"schema": "aten::_sparse_addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sparse_sampled_addmm_out(const Tensor & self, const Tensor & mat1, const Tensor & mat2, const Scalar & beta, const Scalar & alpha, Tensor & out); // {"schema": "aten::sparse_sampled_addmm.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor sparse_sampled_addmm(const Tensor & self, const Tensor & mat1, const Tensor & mat2, const Scalar & beta, const Scalar & alpha); // {"schema": "aten::sparse_sampled_addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _sparse_mm_reduce_impl(const Tensor & self, const Tensor & other, c10::string_view reduce); // {"schema": "aten::_sparse_mm_reduce_impl(Tensor self, Tensor other, str reduce) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _sparse_mm_reduce_impl_backward(const Tensor & self, const Tensor & grad_out, const Tensor & weight, c10::string_view reduce, const Tensor & arg_out, ::std::array<bool,2> output_mask); // {"schema": "aten::_sparse_mm_reduce_impl_backward(Tensor self, Tensor grad_out, Tensor weight, str reduce, Tensor arg_out, bool[2] output_mask) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & addmm_out(const Tensor & self, const Tensor & mat1, const Tensor & mat2, const Scalar & beta, const Scalar & alpha, Tensor & out); // {"schema": "aten::addmm.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor addmm(const Tensor & self, const Tensor & mat1, const Tensor & mat2, const Scalar & beta, const Scalar & alpha); // {"schema": "aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & addmm_(Tensor & self, const Tensor & mat1, const Tensor & mat2, const Scalar & beta, const Scalar & alpha); // {"schema": "aten::addmm_(Tensor(a!) self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _addmm_activation_out(const Tensor & self, const Tensor & mat1, const Tensor & mat2, const Scalar & beta, const Scalar & alpha, bool use_gelu, Tensor & out); // {"schema": "aten::_addmm_activation.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, bool use_gelu=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _addmm_activation(const Tensor & self, const Tensor & mat1, const Tensor & mat2, const Scalar & beta, const Scalar & alpha, bool use_gelu); // {"schema": "aten::_addmm_activation(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, bool use_gelu=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> _scaled_mm(const Tensor & self, const Tensor & mat2, const c10::optional<Tensor> & bias, c10::optional<ScalarType> out_dtype, const c10::optional<Tensor> & scale_a, const c10::optional<Tensor> & scale_b, const c10::optional<Tensor> & scale_result, bool use_fast_accum); // {"schema": "aten::_scaled_mm(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None, bool use_fast_accum=False) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor &,Tensor &> _scaled_mm_out(const Tensor & self, const Tensor & mat2, const c10::optional<Tensor> & bias, c10::optional<ScalarType> out_dtype, const c10::optional<Tensor> & scale_a, const c10::optional<Tensor> & scale_b, const c10::optional<Tensor> & scale_result, bool use_fast_accum, Tensor & out, Tensor & out_amax); // {"schema": "aten::_scaled_mm.out(Tensor self, Tensor mat2, *, Tensor? bias=None, ScalarType? out_dtype=None, Tensor? scale_a=None, Tensor? scale_b=None, Tensor? scale_result=None, bool use_fast_accum=False, Tensor(a!) out, Tensor(b!) out_amax) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "False"}
|
||
|
Tensor sparse_compressed_tensor(const Tensor & compressed_indices, const Tensor & plain_indices, const Tensor & values, c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::sparse_compressed_tensor.comp_plain_value_size(Tensor compressed_indices, Tensor plain_indices, Tensor values, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor sparse_csr_tensor(const Tensor & crow_indices, const Tensor & col_indices, const Tensor & values, IntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::sparse_csr_tensor.crow_col_value_size(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor sparse_csc_tensor(const Tensor & ccol_indices, const Tensor & row_indices, const Tensor & values, IntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::sparse_csc_tensor.ccol_row_value_size(Tensor ccol_indices, Tensor row_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor sparse_bsr_tensor(const Tensor & crow_indices, const Tensor & col_indices, const Tensor & values, IntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::sparse_bsr_tensor.crow_col_value_size(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor sparse_bsc_tensor(const Tensor & ccol_indices, const Tensor & row_indices, const Tensor & values, IntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::sparse_bsc_tensor.ccol_row_value_size(Tensor ccol_indices, Tensor row_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor sparse_compressed_tensor(const Tensor & compressed_indices, const Tensor & plain_indices, const Tensor & values, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::sparse_compressed_tensor.comp_plain_value(Tensor compressed_indices, Tensor plain_indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor sparse_csr_tensor(const Tensor & crow_indices, const Tensor & col_indices, const Tensor & values, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::sparse_csr_tensor.crow_col_value(Tensor crow_indices, Tensor col_indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor sparse_csc_tensor(const Tensor & ccol_indices, const Tensor & row_indices, const Tensor & values, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::sparse_csc_tensor.ccol_row_value(Tensor ccol_indices, Tensor row_indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor sparse_bsr_tensor(const Tensor & crow_indices, const Tensor & col_indices, const Tensor & values, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::sparse_bsr_tensor.crow_col_value(Tensor crow_indices, Tensor col_indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor sparse_bsc_tensor(const Tensor & ccol_indices, const Tensor & row_indices, const Tensor & values, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::sparse_bsc_tensor.ccol_row_value(Tensor ccol_indices, Tensor row_indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_compressed_tensor_unsafe(const Tensor & compressed_indices, const Tensor & plain_indices, const Tensor & values, c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::_sparse_compressed_tensor_unsafe(Tensor compressed_indices, Tensor plain_indices, Tensor values, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_csr_tensor_unsafe(const Tensor & crow_indices, const Tensor & col_indices, const Tensor & values, IntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::_sparse_csr_tensor_unsafe(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_csc_tensor_unsafe(const Tensor & ccol_indices, const Tensor & row_indices, const Tensor & values, IntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::_sparse_csc_tensor_unsafe(Tensor ccol_indices, Tensor row_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_bsr_tensor_unsafe(const Tensor & crow_indices, const Tensor & col_indices, const Tensor & values, IntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::_sparse_bsr_tensor_unsafe(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_bsc_tensor_unsafe(const Tensor & ccol_indices, const Tensor & row_indices, const Tensor & values, IntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::_sparse_bsc_tensor_unsafe(Tensor ccol_indices, Tensor row_indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor sparse_coo_tensor(IntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::sparse_coo_tensor.size(int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor sparse_coo_tensor(const Tensor & indices, const Tensor & values, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<bool> is_coalesced); // {"schema": "aten::sparse_coo_tensor.indices(Tensor indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool? is_coalesced=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor sparse_coo_tensor(const Tensor & indices, const Tensor & values, IntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<bool> is_coalesced); // {"schema": "aten::sparse_coo_tensor.indices_size(Tensor indices, Tensor values, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool? is_coalesced=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_coo_tensor_unsafe(const Tensor & indices, const Tensor & values, c10::SymIntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<bool> is_coalesced); // {"schema": "aten::_sparse_coo_tensor_unsafe(Tensor indices, Tensor values, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool? is_coalesced=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
void _validate_sparse_coo_tensor_args(const Tensor & indices, const Tensor & values, IntArrayRef size, c10::optional<bool> is_coalesced); // {"schema": "aten::_validate_sparse_coo_tensor_args(Tensor indices, Tensor values, int[] size, bool? is_coalesced=None) -> ()", "dispatch": "False", "default": "True"}
|
||
|
void _validate_sparse_compressed_tensor_args(const Tensor & compressed_indices, const Tensor & plain_indices, const Tensor & values, IntArrayRef size, Layout layout); // {"schema": "aten::_validate_sparse_compressed_tensor_args(Tensor compressed_indices, Tensor plain_indices, Tensor values, int[] size, Layout layout) -> ()", "dispatch": "False", "default": "True"}
|
||
|
void _validate_sparse_csr_tensor_args(const Tensor & crow_indices, const Tensor & col_indices, const Tensor & values, IntArrayRef size); // {"schema": "aten::_validate_sparse_csr_tensor_args(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size) -> ()", "dispatch": "False", "default": "True"}
|
||
|
void _validate_sparse_csc_tensor_args(const Tensor & ccol_indices, const Tensor & row_indices, const Tensor & values, IntArrayRef size); // {"schema": "aten::_validate_sparse_csc_tensor_args(Tensor ccol_indices, Tensor row_indices, Tensor values, int[] size) -> ()", "dispatch": "False", "default": "True"}
|
||
|
void _validate_sparse_bsr_tensor_args(const Tensor & crow_indices, const Tensor & col_indices, const Tensor & values, IntArrayRef size); // {"schema": "aten::_validate_sparse_bsr_tensor_args(Tensor crow_indices, Tensor col_indices, Tensor values, int[] size) -> ()", "dispatch": "False", "default": "True"}
|
||
|
void _validate_sparse_bsc_tensor_args(const Tensor & ccol_indices, const Tensor & row_indices, const Tensor & values, IntArrayRef size); // {"schema": "aten::_validate_sparse_bsc_tensor_args(Tensor ccol_indices, Tensor row_indices, Tensor values, int[] size) -> ()", "dispatch": "False", "default": "True"}
|
||
|
Tensor _sparse_coo_tensor_with_dims(int64_t sparse_dim, int64_t dense_dim, IntArrayRef size, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::_sparse_coo_tensor_with_dims(int sparse_dim, int dense_dim, int[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _sparse_coo_tensor_with_dims_and_tensors(int64_t sparse_dim, int64_t dense_dim, c10::SymIntArrayRef size, const Tensor & indices, const Tensor & values, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, c10::optional<bool> is_coalesced); // {"schema": "aten::_sparse_coo_tensor_with_dims_and_tensors(int sparse_dim, int dense_dim, SymInt[] size, Tensor indices, Tensor values, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=False, bool? is_coalesced=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
const Tensor & sparse_resize_(const Tensor & self, IntArrayRef size, int64_t sparse_dim, int64_t dense_dim); // {"schema": "aten::sparse_resize_(Tensor(a!) self, int[] size, int sparse_dim, int dense_dim) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
const Tensor & sparse_resize_and_clear_(const Tensor & self, IntArrayRef size, int64_t sparse_dim, int64_t dense_dim); // {"schema": "aten::sparse_resize_and_clear_(Tensor(a!) self, int[] size, int sparse_dim, int dense_dim) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor sparse_mask(const Tensor & self, const Tensor & mask); // {"schema": "aten::sparse_mask(Tensor self, Tensor mask) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _sparse_mask_projection(const Tensor & self, const Tensor & mask, bool accumulate_matches); // {"schema": "aten::_sparse_mask_projection(Tensor self, Tensor mask, bool accumulate_matches=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _to_cpu(TensorList tensors); // {"schema": "aten::_to_cpu(Tensor[] tensors) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
Tensor to_dense(const Tensor & self, c10::optional<ScalarType> dtype, c10::optional<bool> masked_grad); // {"schema": "aten::to_dense(Tensor self, ScalarType? dtype=None, *, bool? masked_grad=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _to_dense(const Tensor & self, c10::optional<ScalarType> dtype, c10::optional<bool> masked_grad); // {"schema": "aten::_to_dense(Tensor self, ScalarType? dtype=None, bool? masked_grad=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor to_dense_backward(const Tensor & grad, const Tensor & input, c10::optional<bool> masked_grad); // {"schema": "aten::to_dense_backward(Tensor grad, Tensor input, bool? masked_grad=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
int64_t sparse_dim(const Tensor & self); // {"schema": "aten::sparse_dim(Tensor self) -> int", "dispatch": "True", "default": "False"}
|
||
|
int64_t _dimI(const Tensor & self); // {"schema": "aten::_dimI(Tensor self) -> int", "dispatch": "True", "default": "False"}
|
||
|
int64_t dense_dim(const Tensor & self); // {"schema": "aten::dense_dim(Tensor self) -> int", "dispatch": "True", "default": "False"}
|
||
|
int64_t _dimV(const Tensor & self); // {"schema": "aten::_dimV(Tensor self) -> int", "dispatch": "True", "default": "False"}
|
||
|
int64_t _nnz(const Tensor & self); // {"schema": "aten::_nnz(Tensor self) -> int", "dispatch": "True", "default": "False"}
|
||
|
Tensor coalesce(const Tensor & self); // {"schema": "aten::coalesce(Tensor(a) self) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _coalesce(const Tensor & self); // {"schema": "aten::_coalesce(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
bool is_coalesced(const Tensor & self); // {"schema": "aten::is_coalesced(Tensor self) -> bool", "dispatch": "True", "default": "True"}
|
||
|
Tensor _indices(const Tensor & self); // {"schema": "aten::_indices(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _values(const Tensor & self); // {"schema": "aten::_values(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _coalesced_(Tensor & self, bool coalesced); // {"schema": "aten::_coalesced_(Tensor(a!) self, bool coalesced) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor indices(const Tensor & self); // {"schema": "aten::indices(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor values(const Tensor & self); // {"schema": "aten::values(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor crow_indices(const Tensor & self); // {"schema": "aten::crow_indices(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor col_indices(const Tensor & self); // {"schema": "aten::col_indices(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor ccol_indices(const Tensor & self); // {"schema": "aten::ccol_indices(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor row_indices(const Tensor & self); // {"schema": "aten::row_indices(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hspmm_out(const Tensor & mat1, const Tensor & mat2, Tensor & out); // {"schema": "aten::hspmm.out(Tensor mat1, Tensor mat2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor hspmm(const Tensor & mat1, const Tensor & mat2); // {"schema": "aten::hspmm(Tensor mat1, Tensor mat2) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & copy_sparse_to_sparse_(Tensor & self, const Tensor & src, bool non_blocking); // {"schema": "aten::copy_sparse_to_sparse_(Tensor(a!) self, Tensor src, bool non_blocking=False) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> unbind(const Tensor & self, int64_t dim); // {"schema": "aten::unbind.int(Tensor(a -> *) self, int dim=0) -> Tensor(a)[]", "dispatch": "True", "default": "True"}
|
||
|
::std::vector<Tensor> unbind(const Tensor & self, Dimname dim); // {"schema": "aten::unbind.Dimname(Tensor(a -> *) self, Dimname dim) -> Tensor(a)[]", "dispatch": "False", "default": "True"}
|
||
|
Tensor to_sparse(const Tensor & self, int64_t sparse_dim); // {"schema": "aten::to_sparse.sparse_dim(Tensor self, int sparse_dim) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _to_sparse(const Tensor & self, int64_t sparse_dim); // {"schema": "aten::_to_sparse.sparse_dim(Tensor self, int sparse_dim) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor to_sparse(const Tensor & self, c10::optional<Layout> layout, OptionalIntArrayRef blocksize, c10::optional<int64_t> dense_dim); // {"schema": "aten::to_sparse(Tensor self, *, Layout? layout=None, int[2]? blocksize=None, int? dense_dim=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _to_sparse(const Tensor & self, c10::optional<Layout> layout, OptionalIntArrayRef blocksize, c10::optional<int64_t> dense_dim); // {"schema": "aten::_to_sparse(Tensor self, *, Layout? layout=None, int[2]? blocksize=None, int? dense_dim=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor to_sparse_csr(const Tensor & self, c10::optional<int64_t> dense_dim); // {"schema": "aten::to_sparse_csr(Tensor self, int? dense_dim=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _to_sparse_csr(const Tensor & self, c10::optional<int64_t> dense_dim); // {"schema": "aten::_to_sparse_csr(Tensor self, int? dense_dim=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor to_sparse_csc(const Tensor & self, c10::optional<int64_t> dense_dim); // {"schema": "aten::to_sparse_csc(Tensor self, int? dense_dim=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _to_sparse_csc(const Tensor & self, c10::optional<int64_t> dense_dim); // {"schema": "aten::_to_sparse_csc(Tensor self, int? dense_dim=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor to_sparse_bsr(const Tensor & self, IntArrayRef blocksize, c10::optional<int64_t> dense_dim); // {"schema": "aten::to_sparse_bsr(Tensor self, int[2] blocksize, int? dense_dim=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _to_sparse_bsr(const Tensor & self, IntArrayRef blocksize, c10::optional<int64_t> dense_dim); // {"schema": "aten::_to_sparse_bsr(Tensor self, int[2] blocksize, int? dense_dim=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor to_sparse_bsc(const Tensor & self, IntArrayRef blocksize, c10::optional<int64_t> dense_dim); // {"schema": "aten::to_sparse_bsc(Tensor self, int[2] blocksize, int? dense_dim=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _to_sparse_bsc(const Tensor & self, IntArrayRef blocksize, c10::optional<int64_t> dense_dim); // {"schema": "aten::_to_sparse_bsc(Tensor self, int[2] blocksize, int? dense_dim=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _to_sparse_semi_structured(const Tensor & dense); // {"schema": "aten::_to_sparse_semi_structured(Tensor dense) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor to_mkldnn(const Tensor & self, c10::optional<ScalarType> dtype); // {"schema": "aten::to_mkldnn(Tensor self, ScalarType? dtype=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor mkldnn_reorder_conv2d_weight(const Tensor & self, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, OptionalSymIntArrayRef input_size); // {"schema": "aten::mkldnn_reorder_conv2d_weight(Tensor self, SymInt[2] padding=0, SymInt[2] stride=1, SymInt[2] dilation=1, SymInt groups=1, SymInt[]? input_size=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor mkldnn_reorder_conv3d_weight(const Tensor & self, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups); // {"schema": "aten::mkldnn_reorder_conv3d_weight(Tensor self, SymInt[3] padding=0, SymInt[3] stride=1, SymInt[3] dilation=1, SymInt groups=1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor to_mkldnn_backward(const Tensor & grad, const Tensor & input); // {"schema": "aten::to_mkldnn_backward(Tensor grad, Tensor input) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor quantize_per_tensor_dynamic(const Tensor & self, ScalarType dtype, bool reduce_range); // {"schema": "aten::quantize_per_tensor_dynamic(Tensor self, ScalarType dtype, bool reduce_range) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor quantize_per_tensor(const Tensor & self, double scale, int64_t zero_point, ScalarType dtype); // {"schema": "aten::quantize_per_tensor(Tensor self, float scale, int zero_point, ScalarType dtype) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor quantize_per_tensor(const Tensor & self, const Tensor & scale, const Tensor & zero_point, ScalarType dtype); // {"schema": "aten::quantize_per_tensor.tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, ScalarType dtype) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> quantize_per_tensor(TensorList tensors, const Tensor & scales, const Tensor & zero_points, ScalarType dtype); // {"schema": "aten::quantize_per_tensor.tensors(Tensor[] tensors, Tensor scales, Tensor zero_points, ScalarType dtype) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
Tensor quantize_per_channel(const Tensor & self, const Tensor & scales, const Tensor & zero_points, int64_t axis, ScalarType dtype); // {"schema": "aten::quantize_per_channel(Tensor self, Tensor scales, Tensor zero_points, int axis, ScalarType dtype) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor dequantize(const Tensor & self); // {"schema": "aten::dequantize.self(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> dequantize(TensorList tensors); // {"schema": "aten::dequantize.tensors(Tensor[] tensors) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
double q_scale(const Tensor & self); // {"schema": "aten::q_scale(Tensor self) -> float", "dispatch": "True", "default": "False"}
|
||
|
int64_t q_zero_point(const Tensor & self); // {"schema": "aten::q_zero_point(Tensor self) -> int", "dispatch": "True", "default": "False"}
|
||
|
Tensor q_per_channel_scales(const Tensor & self); // {"schema": "aten::q_per_channel_scales(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor q_per_channel_zero_points(const Tensor & self); // {"schema": "aten::q_per_channel_zero_points(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
int64_t q_per_channel_axis(const Tensor & self); // {"schema": "aten::q_per_channel_axis(Tensor self) -> int", "dispatch": "True", "default": "False"}
|
||
|
Tensor int_repr(const Tensor & self); // {"schema": "aten::int_repr(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _make_per_tensor_quantized_tensor(const Tensor & self, double scale, int64_t zero_point); // {"schema": "aten::_make_per_tensor_quantized_tensor(Tensor self, float scale, int zero_point) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _make_per_channel_quantized_tensor(const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t axis); // {"schema": "aten::_make_per_channel_quantized_tensor(Tensor self, Tensor scale, Tensor zero_point, int axis) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
QScheme qscheme(const Tensor & self); // {"schema": "aten::qscheme(Tensor self) -> QScheme", "dispatch": "True", "default": "False"}
|
||
|
Tensor fake_quantize_per_tensor_affine(const Tensor & self, double scale, int64_t zero_point, int64_t quant_min, int64_t quant_max); // {"schema": "aten::fake_quantize_per_tensor_affine(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor fake_quantize_per_tensor_affine(const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t quant_min, int64_t quant_max); // {"schema": "aten::fake_quantize_per_tensor_affine.tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> fake_quantize_per_tensor_affine_cachemask(const Tensor & self, double scale, int64_t zero_point, int64_t quant_min, int64_t quant_max); // {"schema": "aten::fake_quantize_per_tensor_affine_cachemask(Tensor self, float scale, int zero_point, int quant_min, int quant_max) -> (Tensor output, Tensor mask)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _fake_quantize_per_tensor_affine_cachemask_tensor_qparams(const Tensor & self, const Tensor & scale, const Tensor & zero_point, const Tensor & fake_quant_enabled, int64_t quant_min, int64_t quant_max); // {"schema": "aten::_fake_quantize_per_tensor_affine_cachemask_tensor_qparams(Tensor self, Tensor scale, Tensor zero_point, Tensor fake_quant_enabled, int quant_min, int quant_max) -> (Tensor output, Tensor mask)", "dispatch": "True", "default": "False"}
|
||
|
Tensor fake_quantize_per_tensor_affine_cachemask_backward(const Tensor & grad, const Tensor & mask); // {"schema": "aten::fake_quantize_per_tensor_affine_cachemask_backward(Tensor grad, Tensor mask) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _fake_quantize_learnable_per_tensor_affine(const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t quant_min, int64_t quant_max, double grad_factor); // {"schema": "aten::_fake_quantize_learnable_per_tensor_affine(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max, float grad_factor=1.0) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _fake_quantize_learnable_per_tensor_affine_backward(const Tensor & grad, const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t quant_min, int64_t quant_max, double grad_factor); // {"schema": "aten::_fake_quantize_learnable_per_tensor_affine_backward(Tensor grad, Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max, float grad_factor=1.0) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor fake_quantize_per_channel_affine(const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max); // {"schema": "aten::fake_quantize_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> fake_quantize_per_channel_affine_cachemask(const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max); // {"schema": "aten::fake_quantize_per_channel_affine_cachemask(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> (Tensor output, Tensor mask)", "dispatch": "True", "default": "False"}
|
||
|
Tensor fake_quantize_per_channel_affine_cachemask_backward(const Tensor & grad, const Tensor & mask); // {"schema": "aten::fake_quantize_per_channel_affine_cachemask_backward(Tensor grad, Tensor mask) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _fake_quantize_learnable_per_channel_affine(const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, double grad_factor); // {"schema": "aten::_fake_quantize_learnable_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _fake_quantize_learnable_per_channel_affine_backward(const Tensor & grad, const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, double grad_factor); // {"schema": "aten::_fake_quantize_learnable_per_channel_affine_backward(Tensor grad, Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor fused_moving_avg_obs_fake_quant(const Tensor & self, const Tensor & observer_on, const Tensor & fake_quant_on, Tensor & running_min, Tensor & running_max, Tensor & scale, Tensor & zero_point, double averaging_const, int64_t quant_min, int64_t quant_max, int64_t ch_axis, bool per_row_fake_quant, bool symmetric_quant); // {"schema": "aten::fused_moving_avg_obs_fake_quant(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> _fused_moving_avg_obs_fq_helper(const Tensor & self, const Tensor & observer_on, const Tensor & fake_quant_on, Tensor & running_min, Tensor & running_max, Tensor & scale, Tensor & zero_point, double averaging_const, int64_t quant_min, int64_t quant_max, int64_t ch_axis, bool per_row_fake_quant, bool symmetric_quant); // {"schema": "aten::_fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<double,int64_t> _choose_qparams_per_tensor(const Tensor & self, bool reduce_range); // {"schema": "aten::_choose_qparams_per_tensor(Tensor self, bool reduce_range=False) -> (float, int)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _saturate_weight_to_fp16(const Tensor & weight); // {"schema": "aten::_saturate_weight_to_fp16(Tensor weight) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> choose_qparams_optimized(const Tensor & input, int64_t numel, int64_t n_bins, double ratio, int64_t bit_width); // {"schema": "aten::choose_qparams_optimized(Tensor input, int numel, int n_bins, float ratio, int bit_width) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _autocast_to_reduced_precision(const Tensor & self, bool cuda_enabled, bool cpu_enabled, ScalarType cuda_dtype, ScalarType cpu_dtype); // {"schema": "aten::_autocast_to_reduced_precision(Tensor(a) self, bool cuda_enabled, bool cpu_enabled, ScalarType cuda_dtype, ScalarType cpu_dtype) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _autocast_to_full_precision(const Tensor & self, bool cuda_enabled, bool cpu_enabled); // {"schema": "aten::_autocast_to_full_precision(Tensor(a) self, bool cuda_enabled, bool cpu_enabled) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor _to_copy(const Tensor & self, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, bool non_blocking, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::_to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor to(const Tensor & self, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, bool non_blocking, bool copy, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::to.dtype_layout(Tensor(a) self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor to(const Tensor & self, Device device, ScalarType dtype, bool non_blocking, bool copy, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::to.device(Tensor(a) self, Device device, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor to(const Tensor & self, ScalarType dtype, bool non_blocking, bool copy, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::to.dtype(Tensor(a) self, ScalarType dtype, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor to(const Tensor & self, const Tensor & other, bool non_blocking, bool copy, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::to.other(Tensor(a) self, Tensor other, bool non_blocking=False, bool copy=False, MemoryFormat? memory_format=None) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> meshgrid(TensorList tensors); // {"schema": "aten::meshgrid(Tensor[] tensors) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> meshgrid(TensorList tensors, c10::string_view indexing); // {"schema": "aten::meshgrid.indexing(Tensor[] tensors, *, str indexing) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
Tensor cartesian_prod(TensorList tensors); // {"schema": "aten::cartesian_prod(Tensor[] tensors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor combinations(const Tensor & self, int64_t r, bool with_replacement); // {"schema": "aten::combinations(Tensor self, int r=2, bool with_replacement=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Scalar item(const Tensor & self); // {"schema": "aten::item(Tensor self) -> Scalar", "dispatch": "False", "default": "True"}
|
||
|
ScalarType result_type(const Tensor & tensor, const Tensor & other); // {"schema": "aten::result_type.Tensor(Tensor tensor, Tensor other) -> ScalarType", "dispatch": "False", "default": "True"}
|
||
|
ScalarType result_type(const Tensor & tensor, const Scalar & other); // {"schema": "aten::result_type.Scalar(Tensor tensor, Scalar other) -> ScalarType", "dispatch": "False", "default": "True"}
|
||
|
ScalarType result_type(const Scalar & scalar, const Tensor & tensor); // {"schema": "aten::result_type.Scalar_Tensor(Scalar scalar, Tensor tensor) -> ScalarType", "dispatch": "False", "default": "True"}
|
||
|
ScalarType result_type(const Scalar & scalar1, const Scalar & scalar2); // {"schema": "aten::result_type.Scalar_Scalar(Scalar scalar1, Scalar scalar2) -> ScalarType", "dispatch": "False", "default": "True"}
|
||
|
bool can_cast(ScalarType from, ScalarType to); // {"schema": "aten::can_cast(ScalarType from, ScalarType to) -> bool", "dispatch": "False", "default": "True"}
|
||
|
ScalarType promote_types(ScalarType type1, ScalarType type2); // {"schema": "aten::promote_types(ScalarType type1, ScalarType type2) -> ScalarType", "dispatch": "False", "default": "True"}
|
||
|
Scalar _local_scalar_dense(const Tensor & self); // {"schema": "aten::_local_scalar_dense(Tensor self) -> Scalar", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor,Tensor> _lstm_mps(const Tensor & input, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first); // {"schema": "aten::_lstm_mps(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,::std::vector<Tensor>,::std::vector<Tensor>> lstm_mps_backward(const c10::optional<Tensor> & grad_y, const c10::optional<Tensor> & grad_hy, const c10::optional<Tensor> & grad_cy, const Tensor & z_state, const Tensor & cell_state_fwd, const Tensor & input, const Tensor & layersOutputs, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first); // {"schema": "aten::lstm_mps_backward(Tensor? grad_y, Tensor? grad_hy, Tensor? grad_cy, Tensor z_state, Tensor cell_state_fwd, Tensor input, Tensor layersOutputs, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor[], Tensor[])", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _thnn_fused_lstm_cell(const Tensor & input_gates, const Tensor & hidden_gates, const Tensor & cx, const c10::optional<Tensor> & input_bias, const c10::optional<Tensor> & hidden_bias); // {"schema": "aten::_thnn_fused_lstm_cell(Tensor input_gates, Tensor hidden_gates, Tensor cx, Tensor? input_bias=None, Tensor? hidden_bias=None) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _thnn_fused_lstm_cell_backward_impl(const c10::optional<Tensor> & grad_hy, const c10::optional<Tensor> & grad_cy, const Tensor & cx, const Tensor & cy, const Tensor & workspace, bool has_bias); // {"schema": "aten::_thnn_fused_lstm_cell_backward_impl(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor> _thnn_fused_lstm_cell_backward(const c10::optional<Tensor> & grad_hy, const c10::optional<Tensor> & grad_cy, const Tensor & cx, const Tensor & cy, const Tensor & workspace, bool has_bias); // {"schema": "aten::_thnn_fused_lstm_cell_backward(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor> _thnn_differentiable_lstm_cell_backward(const c10::optional<Tensor> & grad_hy, const c10::optional<Tensor> & grad_cy, const Tensor & input_gates, const Tensor & hidden_gates, const c10::optional<Tensor> & input_bias, const c10::optional<Tensor> & hidden_bias, const Tensor & cx, const Tensor & cy); // {"schema": "aten::_thnn_differentiable_lstm_cell_backward(Tensor? grad_hy, Tensor? grad_cy, Tensor input_gates, Tensor hidden_gates, Tensor? input_bias, Tensor? hidden_bias, Tensor cx, Tensor cy) -> (Tensor, Tensor, Tensor, Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> _thnn_fused_gru_cell(const Tensor & input_gates, const Tensor & hidden_gates, const Tensor & hx, const c10::optional<Tensor> & input_bias, const c10::optional<Tensor> & hidden_bias); // {"schema": "aten::_thnn_fused_gru_cell(Tensor input_gates, Tensor hidden_gates, Tensor hx, Tensor? input_bias=None, Tensor? hidden_bias=None) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor> _thnn_fused_gru_cell_backward(const Tensor & grad_hy, const Tensor & workspace, bool has_bias); // {"schema": "aten::_thnn_fused_gru_cell_backward(Tensor grad_hy, Tensor workspace, bool has_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor> _thnn_differentiable_gru_cell_backward(const Tensor & grad_hy, const Tensor & input_gates, const Tensor & hidden_gates, const Tensor & hx, const c10::optional<Tensor> & input_bias, const c10::optional<Tensor> & hidden_bias); // {"schema": "aten::_thnn_differentiable_gru_cell_backward(Tensor grad_hy, Tensor input_gates, Tensor hidden_gates, Tensor hx, Tensor? input_bias, Tensor? hidden_bias) -> (Tensor, Tensor, Tensor, Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> lstm(const Tensor & input, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first); // {"schema": "aten::lstm.input(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> lstm(const Tensor & data, const Tensor & batch_sizes, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional); // {"schema": "aten::lstm.data(Tensor data, Tensor batch_sizes, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> gru(const Tensor & input, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first); // {"schema": "aten::gru.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> gru(const Tensor & data, const Tensor & batch_sizes, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional); // {"schema": "aten::gru.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> rnn_tanh(const Tensor & input, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first); // {"schema": "aten::rnn_tanh.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> rnn_tanh(const Tensor & data, const Tensor & batch_sizes, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional); // {"schema": "aten::rnn_tanh.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> rnn_relu(const Tensor & input, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first); // {"schema": "aten::rnn_relu.input(Tensor input, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> rnn_relu(const Tensor & data, const Tensor & batch_sizes, const Tensor & hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional); // {"schema": "aten::rnn_relu.data(Tensor data, Tensor batch_sizes, Tensor hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> lstm_cell(const Tensor & input, TensorList hx, const Tensor & w_ih, const Tensor & w_hh, const c10::optional<Tensor> & b_ih, const c10::optional<Tensor> & b_hh); // {"schema": "aten::lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor gru_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const c10::optional<Tensor> & b_ih, const c10::optional<Tensor> & b_hh); // {"schema": "aten::gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor rnn_tanh_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const c10::optional<Tensor> & b_ih, const c10::optional<Tensor> & b_hh); // {"schema": "aten::rnn_tanh_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor rnn_relu_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const c10::optional<Tensor> & b_ih, const c10::optional<Tensor> & b_hh); // {"schema": "aten::rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor? b_ih=None, Tensor? b_hh=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> quantized_lstm_cell(const Tensor & input, TensorList hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh, const Tensor & packed_ih, const Tensor & packed_hh, const Tensor & col_offsets_ih, const Tensor & col_offsets_hh, const Scalar & scale_ih, const Scalar & scale_hh, const Scalar & zero_point_ih, const Scalar & zero_point_hh); // {"schema": "aten::quantized_lstm_cell(Tensor input, Tensor[] hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor quantized_gru_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh, const Tensor & packed_ih, const Tensor & packed_hh, const Tensor & col_offsets_ih, const Tensor & col_offsets_hh, const Scalar & scale_ih, const Scalar & scale_hh, const Scalar & zero_point_ih, const Scalar & zero_point_hh); // {"schema": "aten::quantized_gru_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor quantized_rnn_relu_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh, const Tensor & packed_ih, const Tensor & packed_hh, const Tensor & col_offsets_ih, const Tensor & col_offsets_hh, const Scalar & scale_ih, const Scalar & scale_hh, const Scalar & zero_point_ih, const Scalar & zero_point_hh); // {"schema": "aten::quantized_rnn_relu_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor quantized_rnn_tanh_cell(const Tensor & input, const Tensor & hx, const Tensor & w_ih, const Tensor & w_hh, const Tensor & b_ih, const Tensor & b_hh, const Tensor & packed_ih, const Tensor & packed_hh, const Tensor & col_offsets_ih, const Tensor & col_offsets_hh, const Scalar & scale_ih, const Scalar & scale_hh, const Scalar & zero_point_ih, const Scalar & zero_point_hh); // {"schema": "aten::quantized_rnn_tanh_cell(Tensor input, Tensor hx, Tensor w_ih, Tensor w_hh, Tensor b_ih, Tensor b_hh, Tensor packed_ih, Tensor packed_hh, Tensor col_offsets_ih, Tensor col_offsets_hh, Scalar scale_ih, Scalar scale_hh, Scalar zero_point_ih, Scalar zero_point_hh) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> _pack_padded_sequence(const Tensor & input, const Tensor & lengths, bool batch_first); // {"schema": "aten::_pack_padded_sequence(Tensor input, Tensor lengths, bool batch_first) -> (Tensor, Tensor)", "dispatch": "True", "default": "True"}
|
||
|
Tensor _pack_padded_sequence_backward(const Tensor & grad, c10::SymIntArrayRef input_size, const Tensor & batch_sizes, bool batch_first); // {"schema": "aten::_pack_padded_sequence_backward(Tensor grad, SymInt[] input_size, Tensor batch_sizes, bool batch_first) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> _pad_packed_sequence(const Tensor & data, const Tensor & batch_sizes, bool batch_first, const Scalar & padding_value, int64_t total_length); // {"schema": "aten::_pad_packed_sequence(Tensor data, Tensor batch_sizes, bool batch_first, Scalar padding_value, int total_length) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & set_(Tensor & self, Storage source); // {"schema": "aten::set_.source_Storage(Tensor(a!) self, Storage source) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & set_(Tensor & self, Storage source, c10::SymInt storage_offset, c10::SymIntArrayRef size, c10::SymIntArrayRef stride); // {"schema": "aten::set_.source_Storage_storage_offset(Tensor(a!) self, Storage source, SymInt storage_offset, SymInt[] size, SymInt[] stride=[]) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & set_(Tensor & self, const Tensor & source, c10::SymInt storage_offset, c10::SymIntArrayRef size, c10::SymIntArrayRef stride); // {"schema": "aten::set_.source_Tensor_storage_offset(Tensor(a!) self, Tensor source, SymInt storage_offset, SymInt[] size, SymInt[] stride=[]) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & set_(Tensor & self, const Tensor & source); // {"schema": "aten::set_.source_Tensor(Tensor(a!) self, Tensor source) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & set_(Tensor & self); // {"schema": "aten::set_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor lift(const Tensor & self); // {"schema": "aten::lift(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor lift_fresh(const Tensor & self); // {"schema": "aten::lift_fresh(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor lift_fresh_copy(const Tensor & self); // {"schema": "aten::lift_fresh_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
bool is_set_to(const Tensor & self, const Tensor & tensor); // {"schema": "aten::is_set_to(Tensor self, Tensor tensor) -> bool", "dispatch": "True", "default": "False"}
|
||
|
Tensor & masked_fill_(Tensor & self, const Tensor & mask, const Scalar & value); // {"schema": "aten::masked_fill_.Scalar(Tensor(a!) self, Tensor mask, Scalar value) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor masked_fill(const Tensor & self, const Tensor & mask, const Scalar & value); // {"schema": "aten::masked_fill.Scalar(Tensor self, Tensor mask, Scalar value) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & masked_fill_(Tensor & self, const Tensor & mask, const Tensor & value); // {"schema": "aten::masked_fill_.Tensor(Tensor(a!) self, Tensor mask, Tensor value) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor masked_fill(const Tensor & self, const Tensor & mask, const Tensor & value); // {"schema": "aten::masked_fill.Tensor(Tensor self, Tensor mask, Tensor value) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & masked_scatter_(Tensor & self, const Tensor & mask, const Tensor & source); // {"schema": "aten::masked_scatter_(Tensor(a!) self, Tensor mask, Tensor source) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor masked_scatter(const Tensor & self, const Tensor & mask, const Tensor & source); // {"schema": "aten::masked_scatter(Tensor self, Tensor mask, Tensor source) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor masked_scatter_backward(const Tensor & grad_output, const Tensor & mask, c10::SymIntArrayRef sizes); // {"schema": "aten::masked_scatter_backward(Tensor grad_output, Tensor mask, SymInt[] sizes) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _masked_softmax(const Tensor & self, const Tensor & mask, c10::optional<int64_t> dim, c10::optional<int64_t> mask_type); // {"schema": "aten::_masked_softmax(Tensor self, Tensor mask, int? dim=None, int? mask_type=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _masked_softmax_backward(const Tensor & grad_output, const Tensor & output, const Tensor & mask, c10::optional<int64_t> dim); // {"schema": "aten::_masked_softmax_backward(Tensor grad_output, Tensor output, Tensor mask, int? dim=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor view(const Tensor & self, c10::SymIntArrayRef size); // {"schema": "aten::view(Tensor(a) self, SymInt[] size) -> Tensor(a)", "dispatch": "True", "default": "False"}
|
||
|
Tensor view(const Tensor & self, ScalarType dtype); // {"schema": "aten::view.dtype(Tensor(a) self, ScalarType dtype) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & put_(Tensor & self, const Tensor & index, const Tensor & source, bool accumulate); // {"schema": "aten::put_(Tensor(a!) self, Tensor index, Tensor source, bool accumulate=False) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor put(const Tensor & self, const Tensor & index, const Tensor & source, bool accumulate); // {"schema": "aten::put(Tensor self, Tensor index, Tensor source, bool accumulate=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & index_add_out(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source, const Scalar & alpha, Tensor & out); // {"schema": "aten::index_add.out(Tensor self, int dim, Tensor index, Tensor source, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & index_add_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & source, const Scalar & alpha); // {"schema": "aten::index_add_(Tensor(a!) self, int dim, Tensor index, Tensor source, *, Scalar alpha=1) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor index_add(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source, const Scalar & alpha); // {"schema": "aten::index_add(Tensor self, int dim, Tensor index, Tensor source, *, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor index_add(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & source, const Scalar & alpha); // {"schema": "aten::index_add.dimname(Tensor self, Dimname dim, Tensor index, Tensor source, *, Scalar alpha=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & index_reduce_out(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source, c10::string_view reduce, bool include_self, Tensor & out); // {"schema": "aten::index_reduce.out(Tensor self, int dim, Tensor index, Tensor source, str reduce, *, bool include_self=True, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & index_reduce_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & source, c10::string_view reduce, bool include_self); // {"schema": "aten::index_reduce_(Tensor(a!) self, int dim, Tensor index, Tensor source, str reduce, *, bool include_self=True) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor index_reduce(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & source, c10::string_view reduce, bool include_self); // {"schema": "aten::index_reduce(Tensor self, int dim, Tensor index, Tensor source, str reduce, *, bool include_self=True) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & index_fill_(Tensor & self, int64_t dim, const Tensor & index, const Scalar & value); // {"schema": "aten::index_fill_.int_Scalar(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor index_fill(const Tensor & self, int64_t dim, const Tensor & index, const Scalar & value); // {"schema": "aten::index_fill.int_Scalar(Tensor self, int dim, Tensor index, Scalar value) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & index_fill_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & value); // {"schema": "aten::index_fill_.int_Tensor(Tensor(a!) self, int dim, Tensor index, Tensor value) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor index_fill(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & value); // {"schema": "aten::index_fill.int_Tensor(Tensor self, int dim, Tensor index, Tensor value) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & index_fill_(Tensor & self, Dimname dim, const Tensor & index, const Scalar & value); // {"schema": "aten::index_fill_.Dimname_Scalar(Tensor(a!) self, Dimname dim, Tensor index, Scalar value) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & index_fill_(Tensor & self, Dimname dim, const Tensor & index, const Tensor & value); // {"schema": "aten::index_fill_.Dimname_Tensor(Tensor(a!) self, Dimname dim, Tensor index, Tensor value) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor index_fill(const Tensor & self, Dimname dim, const Tensor & index, const Scalar & value); // {"schema": "aten::index_fill.Dimname_Scalar(Tensor self, Dimname dim, Tensor index, Scalar value) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor index_fill(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & value); // {"schema": "aten::index_fill.Dimname_Tensor(Tensor self, Dimname dim, Tensor index, Tensor value) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor scatter(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & src); // {"schema": "aten::scatter.src(Tensor self, int dim, Tensor index, Tensor src) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & scatter_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & src); // {"schema": "aten::scatter_.src(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & scatter_out(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & src, Tensor & out); // {"schema": "aten::scatter.src_out(Tensor self, int dim, Tensor index, Tensor src, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor scatter(const Tensor & self, int64_t dim, const Tensor & index, const Scalar & value); // {"schema": "aten::scatter.value(Tensor self, int dim, Tensor index, Scalar value) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & scatter_(Tensor & self, int64_t dim, const Tensor & index, const Scalar & value); // {"schema": "aten::scatter_.value(Tensor(a!) self, int dim, Tensor index, Scalar value) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & scatter_out(const Tensor & self, int64_t dim, const Tensor & index, const Scalar & value, Tensor & out); // {"schema": "aten::scatter.value_out(Tensor self, int dim, Tensor index, Scalar value, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor scatter(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & src, c10::string_view reduce); // {"schema": "aten::scatter.reduce(Tensor self, int dim, Tensor index, Tensor src, *, str reduce) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & scatter_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & src, c10::string_view reduce); // {"schema": "aten::scatter_.reduce(Tensor(a!) self, int dim, Tensor index, Tensor src, *, str reduce) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & scatter_out(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & src, c10::string_view reduce, Tensor & out); // {"schema": "aten::scatter.reduce_out(Tensor self, int dim, Tensor index, Tensor src, *, str reduce, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor scatter(const Tensor & self, int64_t dim, const Tensor & index, const Scalar & value, c10::string_view reduce); // {"schema": "aten::scatter.value_reduce(Tensor self, int dim, Tensor index, Scalar value, *, str reduce) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & scatter_(Tensor & self, int64_t dim, const Tensor & index, const Scalar & value, c10::string_view reduce); // {"schema": "aten::scatter_.value_reduce(Tensor(a!) self, int dim, Tensor index, Scalar value, *, str reduce) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & scatter_out(const Tensor & self, int64_t dim, const Tensor & index, const Scalar & value, c10::string_view reduce, Tensor & out); // {"schema": "aten::scatter.value_reduce_out(Tensor self, int dim, Tensor index, Scalar value, *, str reduce, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor scatter(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & src); // {"schema": "aten::scatter.dimname_src(Tensor self, Dimname dim, Tensor index, Tensor src) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor scatter(const Tensor & self, Dimname dim, const Tensor & index, const Scalar & value); // {"schema": "aten::scatter.dimname_value(Tensor self, Dimname dim, Tensor index, Scalar value) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor scatter_add(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & src); // {"schema": "aten::scatter_add(Tensor self, int dim, Tensor index, Tensor src) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & scatter_add_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & src); // {"schema": "aten::scatter_add_(Tensor(a!) self, int dim, Tensor index, Tensor src) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & scatter_add_out(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & src, Tensor & out); // {"schema": "aten::scatter_add.out(Tensor self, int dim, Tensor index, Tensor src, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor scatter_add(const Tensor & self, Dimname dim, const Tensor & index, const Tensor & src); // {"schema": "aten::scatter_add.dimname(Tensor self, Dimname dim, Tensor index, Tensor src) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor scatter_reduce(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & src, c10::string_view reduce, bool include_self); // {"schema": "aten::scatter_reduce.two(Tensor self, int dim, Tensor index, Tensor src, str reduce, *, bool include_self=True) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & scatter_reduce_(Tensor & self, int64_t dim, const Tensor & index, const Tensor & src, c10::string_view reduce, bool include_self); // {"schema": "aten::scatter_reduce_.two(Tensor(a!) self, int dim, Tensor index, Tensor src, str reduce, *, bool include_self=True) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & scatter_reduce_out(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & src, c10::string_view reduce, bool include_self, Tensor & out); // {"schema": "aten::scatter_reduce.two_out(Tensor self, int dim, Tensor index, Tensor src, str reduce, *, bool include_self=True, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & eq_(Tensor & self, const Scalar & other); // {"schema": "aten::eq_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & eq_(Tensor & self, const Tensor & other); // {"schema": "aten::eq_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_and_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::bitwise_and.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & bitwise_and_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::bitwise_and.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor bitwise_and(const Tensor & self, const Scalar & other); // {"schema": "aten::bitwise_and.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor bitwise_and(const Scalar & self, const Tensor & other); // {"schema": "aten::bitwise_and.Scalar_Tensor(Scalar self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor bitwise_and(const Tensor & self, const Tensor & other); // {"schema": "aten::bitwise_and.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_and_(Tensor & self, const Scalar & other); // {"schema": "aten::bitwise_and_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_and_(Tensor & self, const Tensor & other); // {"schema": "aten::bitwise_and_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor __and__(const Tensor & self, const Scalar & other); // {"schema": "aten::__and__.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor __and__(const Tensor & self, const Tensor & other); // {"schema": "aten::__and__.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & __iand__(Tensor & self, const Scalar & other); // {"schema": "aten::__iand__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & __iand__(Tensor & self, const Tensor & other); // {"schema": "aten::__iand__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & bitwise_or_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::bitwise_or.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & bitwise_or_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::bitwise_or.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor bitwise_or(const Tensor & self, const Scalar & other); // {"schema": "aten::bitwise_or.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor bitwise_or(const Scalar & self, const Tensor & other); // {"schema": "aten::bitwise_or.Scalar_Tensor(Scalar self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor bitwise_or(const Tensor & self, const Tensor & other); // {"schema": "aten::bitwise_or.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_or_(Tensor & self, const Scalar & other); // {"schema": "aten::bitwise_or_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_or_(Tensor & self, const Tensor & other); // {"schema": "aten::bitwise_or_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor __or__(const Tensor & self, const Scalar & other); // {"schema": "aten::__or__.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor __or__(const Tensor & self, const Tensor & other); // {"schema": "aten::__or__.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & __ior__(Tensor & self, const Scalar & other); // {"schema": "aten::__ior__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & __ior__(Tensor & self, const Tensor & other); // {"schema": "aten::__ior__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & bitwise_xor_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::bitwise_xor.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & bitwise_xor_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::bitwise_xor.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor bitwise_xor(const Tensor & self, const Scalar & other); // {"schema": "aten::bitwise_xor.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor bitwise_xor(const Scalar & self, const Tensor & other); // {"schema": "aten::bitwise_xor.Scalar_Tensor(Scalar self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor bitwise_xor(const Tensor & self, const Tensor & other); // {"schema": "aten::bitwise_xor.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_xor_(Tensor & self, const Scalar & other); // {"schema": "aten::bitwise_xor_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_xor_(Tensor & self, const Tensor & other); // {"schema": "aten::bitwise_xor_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor __xor__(const Tensor & self, const Scalar & other); // {"schema": "aten::__xor__.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor __xor__(const Tensor & self, const Tensor & other); // {"schema": "aten::__xor__.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & __ixor__(Tensor & self, const Scalar & other); // {"schema": "aten::__ixor__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & __ixor__(Tensor & self, const Tensor & other); // {"schema": "aten::__ixor__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor __lshift__(const Tensor & self, const Scalar & other); // {"schema": "aten::__lshift__.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor __lshift__(const Tensor & self, const Tensor & other); // {"schema": "aten::__lshift__.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & __ilshift__(Tensor & self, const Scalar & other); // {"schema": "aten::__ilshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & __ilshift__(Tensor & self, const Tensor & other); // {"schema": "aten::__ilshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor bitwise_left_shift(const Tensor & self, const Tensor & other); // {"schema": "aten::bitwise_left_shift.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_left_shift_(Tensor & self, const Tensor & other); // {"schema": "aten::bitwise_left_shift_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_left_shift_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::bitwise_left_shift.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor bitwise_left_shift(const Tensor & self, const Scalar & other); // {"schema": "aten::bitwise_left_shift.Tensor_Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_left_shift_(Tensor & self, const Scalar & other); // {"schema": "aten::bitwise_left_shift_.Tensor_Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_left_shift_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::bitwise_left_shift.Tensor_Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor bitwise_left_shift(const Scalar & self, const Tensor & other); // {"schema": "aten::bitwise_left_shift.Scalar_Tensor(Scalar self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor __rshift__(const Tensor & self, const Scalar & other); // {"schema": "aten::__rshift__.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor __rshift__(const Tensor & self, const Tensor & other); // {"schema": "aten::__rshift__.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & __irshift__(Tensor & self, const Scalar & other); // {"schema": "aten::__irshift__.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & __irshift__(Tensor & self, const Tensor & other); // {"schema": "aten::__irshift__.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor bitwise_right_shift(const Tensor & self, const Tensor & other); // {"schema": "aten::bitwise_right_shift.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_right_shift_(Tensor & self, const Tensor & other); // {"schema": "aten::bitwise_right_shift_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_right_shift_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::bitwise_right_shift.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor bitwise_right_shift(const Tensor & self, const Scalar & other); // {"schema": "aten::bitwise_right_shift.Tensor_Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_right_shift_(Tensor & self, const Scalar & other); // {"schema": "aten::bitwise_right_shift_.Tensor_Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_right_shift_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::bitwise_right_shift.Tensor_Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor bitwise_right_shift(const Scalar & self, const Tensor & other); // {"schema": "aten::bitwise_right_shift.Scalar_Tensor(Scalar self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & tril_(Tensor & self, int64_t diagonal); // {"schema": "aten::tril_(Tensor(a!) self, int diagonal=0) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & triu_(Tensor & self, int64_t diagonal); // {"schema": "aten::triu_(Tensor(a!) self, int diagonal=0) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & digamma_(Tensor & self); // {"schema": "aten::digamma_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & lerp_(Tensor & self, const Tensor & end, const Scalar & weight); // {"schema": "aten::lerp_.Scalar(Tensor(a!) self, Tensor end, Scalar weight) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & lerp_(Tensor & self, const Tensor & end, const Tensor & weight); // {"schema": "aten::lerp_.Tensor(Tensor(a!) self, Tensor end, Tensor weight) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & addbmm_(Tensor & self, const Tensor & batch1, const Tensor & batch2, const Scalar & beta, const Scalar & alpha); // {"schema": "aten::addbmm_(Tensor(a!) self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & addbmm_out(const Tensor & self, const Tensor & batch1, const Tensor & batch2, const Scalar & beta, const Scalar & alpha, Tensor & out); // {"schema": "aten::addbmm.out(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor addbmm(const Tensor & self, const Tensor & batch1, const Tensor & batch2, const Scalar & beta, const Scalar & alpha); // {"schema": "aten::addbmm(Tensor self, Tensor batch1, Tensor batch2, *, Scalar beta=1, Scalar alpha=1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & random_(Tensor & self, int64_t from, c10::optional<int64_t> to, c10::optional<Generator> generator); // {"schema": "aten::random_.from(Tensor(a!) self, int from, int? to, *, Generator? generator=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & random_(Tensor & self, int64_t to, c10::optional<Generator> generator); // {"schema": "aten::random_.to(Tensor(a!) self, int to, *, Generator? generator=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & random_(Tensor & self, c10::optional<Generator> generator); // {"schema": "aten::random_(Tensor(a!) self, *, Generator? generator=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & uniform_(Tensor & self, double from, double to, c10::optional<Generator> generator); // {"schema": "aten::uniform_(Tensor(a!) self, float from=0, float to=1, *, Generator? generator=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & cauchy_(Tensor & self, double median, double sigma, c10::optional<Generator> generator); // {"schema": "aten::cauchy_(Tensor(a!) self, float median=0, float sigma=1, *, Generator? generator=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & log_normal_(Tensor & self, double mean, double std, c10::optional<Generator> generator); // {"schema": "aten::log_normal_(Tensor(a!) self, float mean=1, float std=2, *, Generator? generator=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & exponential_(Tensor & self, double lambd, c10::optional<Generator> generator); // {"schema": "aten::exponential_(Tensor(a!) self, float lambd=1, *, Generator? generator=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & geometric_(Tensor & self, double p, c10::optional<Generator> generator); // {"schema": "aten::geometric_(Tensor(a!) self, float p, *, Generator? generator=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & diag_out(const Tensor & self, int64_t diagonal, Tensor & out); // {"schema": "aten::diag.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor diag(const Tensor & self, int64_t diagonal); // {"schema": "aten::diag(Tensor self, int diagonal=0) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & cross_out(const Tensor & self, const Tensor & other, c10::optional<int64_t> dim, Tensor & out); // {"schema": "aten::cross.out(Tensor self, Tensor other, int? dim=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor cross(const Tensor & self, const Tensor & other, c10::optional<int64_t> dim); // {"schema": "aten::cross(Tensor self, Tensor other, int? dim=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & triu_out(const Tensor & self, int64_t diagonal, Tensor & out); // {"schema": "aten::triu.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor triu(const Tensor & self, int64_t diagonal); // {"schema": "aten::triu(Tensor self, int diagonal=0) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & tril_out(const Tensor & self, int64_t diagonal, Tensor & out); // {"schema": "aten::tril.out(Tensor self, int diagonal=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor tril(const Tensor & self, int64_t diagonal); // {"schema": "aten::tril(Tensor self, int diagonal=0) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor tril_indices(int64_t row, int64_t col, int64_t offset, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::tril_indices(int row, int col, int offset=0, *, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor triu_indices(int64_t row, int64_t col, int64_t offset, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::triu_indices(int row, int col, int offset=0, *, ScalarType? dtype=long, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor trace(const Tensor & self); // {"schema": "aten::trace(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor trace_backward(const Tensor & grad, c10::SymIntArrayRef sizes); // {"schema": "aten::trace_backward(Tensor grad, SymInt[] sizes) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & ne_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::ne.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor ne(const Tensor & self, const Scalar & other); // {"schema": "aten::ne.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & ne_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::ne.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor ne(const Tensor & self, const Tensor & other); // {"schema": "aten::ne.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & ne_(Tensor & self, const Scalar & other); // {"schema": "aten::ne_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & ne_(Tensor & self, const Tensor & other); // {"schema": "aten::ne_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & not_equal_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::not_equal.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor not_equal(const Tensor & self, const Scalar & other); // {"schema": "aten::not_equal.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & not_equal_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::not_equal.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor not_equal(const Tensor & self, const Tensor & other); // {"schema": "aten::not_equal.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & not_equal_(Tensor & self, const Scalar & other); // {"schema": "aten::not_equal_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & not_equal_(Tensor & self, const Tensor & other); // {"schema": "aten::not_equal_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & eq_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::eq.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor eq(const Tensor & self, const Scalar & other); // {"schema": "aten::eq.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & eq_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::eq.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor eq(const Tensor & self, const Tensor & other); // {"schema": "aten::eq.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & ge_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::ge.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor ge(const Tensor & self, const Scalar & other); // {"schema": "aten::ge.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & ge_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::ge.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor ge(const Tensor & self, const Tensor & other); // {"schema": "aten::ge.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & ge_(Tensor & self, const Scalar & other); // {"schema": "aten::ge_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & ge_(Tensor & self, const Tensor & other); // {"schema": "aten::ge_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & greater_equal_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::greater_equal.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor greater_equal(const Tensor & self, const Scalar & other); // {"schema": "aten::greater_equal.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & greater_equal_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::greater_equal.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor greater_equal(const Tensor & self, const Tensor & other); // {"schema": "aten::greater_equal.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & greater_equal_(Tensor & self, const Scalar & other); // {"schema": "aten::greater_equal_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & greater_equal_(Tensor & self, const Tensor & other); // {"schema": "aten::greater_equal_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & le_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::le.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor le(const Tensor & self, const Scalar & other); // {"schema": "aten::le.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & le_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::le.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor le(const Tensor & self, const Tensor & other); // {"schema": "aten::le.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & le_(Tensor & self, const Scalar & other); // {"schema": "aten::le_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & le_(Tensor & self, const Tensor & other); // {"schema": "aten::le_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & less_equal_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::less_equal.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor less_equal(const Tensor & self, const Scalar & other); // {"schema": "aten::less_equal.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & less_equal_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::less_equal.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor less_equal(const Tensor & self, const Tensor & other); // {"schema": "aten::less_equal.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & less_equal_(Tensor & self, const Scalar & other); // {"schema": "aten::less_equal_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & less_equal_(Tensor & self, const Tensor & other); // {"schema": "aten::less_equal_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & gt_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::gt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor gt(const Tensor & self, const Scalar & other); // {"schema": "aten::gt.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & gt_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::gt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor gt(const Tensor & self, const Tensor & other); // {"schema": "aten::gt.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & gt_(Tensor & self, const Scalar & other); // {"schema": "aten::gt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & gt_(Tensor & self, const Tensor & other); // {"schema": "aten::gt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & greater_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::greater.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor greater(const Tensor & self, const Scalar & other); // {"schema": "aten::greater.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & greater_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::greater.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor greater(const Tensor & self, const Tensor & other); // {"schema": "aten::greater.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & greater_(Tensor & self, const Scalar & other); // {"schema": "aten::greater_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & greater_(Tensor & self, const Tensor & other); // {"schema": "aten::greater_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & lt_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::lt.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor lt(const Tensor & self, const Scalar & other); // {"schema": "aten::lt.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & lt_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::lt.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor lt(const Tensor & self, const Tensor & other); // {"schema": "aten::lt.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & lt_(Tensor & self, const Scalar & other); // {"schema": "aten::lt_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & lt_(Tensor & self, const Tensor & other); // {"schema": "aten::lt_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & less_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::less.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor less(const Tensor & self, const Scalar & other); // {"schema": "aten::less.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & less_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::less.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor less(const Tensor & self, const Tensor & other); // {"schema": "aten::less.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & less_(Tensor & self, const Scalar & other); // {"schema": "aten::less_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & less_(Tensor & self, const Tensor & other); // {"schema": "aten::less_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & take_out(const Tensor & self, const Tensor & index, Tensor & out); // {"schema": "aten::take.out(Tensor self, Tensor index, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor take(const Tensor & self, const Tensor & index); // {"schema": "aten::take(Tensor self, Tensor index) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & take_along_dim_out(const Tensor & self, const Tensor & indices, c10::optional<int64_t> dim, Tensor & out); // {"schema": "aten::take_along_dim.out(Tensor self, Tensor indices, int? dim=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor take_along_dim(const Tensor & self, const Tensor & indices, c10::optional<int64_t> dim); // {"schema": "aten::take_along_dim(Tensor self, Tensor indices, int? dim=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & index_select_out(const Tensor & self, int64_t dim, const Tensor & index, Tensor & out); // {"schema": "aten::index_select.out(Tensor self, int dim, Tensor index, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor index_select(const Tensor & self, int64_t dim, const Tensor & index); // {"schema": "aten::index_select(Tensor self, int dim, Tensor index) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & index_select_out(const Tensor & self, Dimname dim, const Tensor & index, Tensor & out); // {"schema": "aten::index_select.dimname_out(Tensor self, Dimname dim, Tensor index, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor index_select(const Tensor & self, Dimname dim, const Tensor & index); // {"schema": "aten::index_select.dimname(Tensor self, Dimname dim, Tensor index) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor index_select_backward(const Tensor & grad, c10::SymIntArrayRef self_sizes, int64_t dim, const Tensor & index); // {"schema": "aten::index_select_backward(Tensor grad, SymInt[] self_sizes, int dim, Tensor index) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & masked_select_out(const Tensor & self, const Tensor & mask, Tensor & out); // {"schema": "aten::masked_select.out(Tensor self, Tensor mask, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor masked_select(const Tensor & self, const Tensor & mask); // {"schema": "aten::masked_select(Tensor self, Tensor mask) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor masked_select_backward(const Tensor & grad, const Tensor & input, const Tensor & mask); // {"schema": "aten::masked_select_backward(Tensor grad, Tensor input, Tensor mask) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & nonzero_out(const Tensor & self, Tensor & out); // {"schema": "aten::nonzero.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor nonzero(const Tensor & self); // {"schema": "aten::nonzero(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & nonzero_static_out(const Tensor & self, int64_t size, int64_t fill_value, Tensor & out); // {"schema": "aten::nonzero_static.out(Tensor self, *, int size, int fill_value=-1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor nonzero_static(const Tensor & self, int64_t size, int64_t fill_value); // {"schema": "aten::nonzero_static(Tensor self, *, int size, int fill_value=-1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> nonzero_numpy(const Tensor & self); // {"schema": "aten::nonzero_numpy(Tensor self) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
Tensor argwhere(const Tensor & self); // {"schema": "aten::argwhere(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & gather_out(const Tensor & self, int64_t dim, const Tensor & index, bool sparse_grad, Tensor & out); // {"schema": "aten::gather.out(Tensor self, int dim, Tensor index, *, bool sparse_grad=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor gather(const Tensor & self, int64_t dim, const Tensor & index, bool sparse_grad); // {"schema": "aten::gather(Tensor self, int dim, Tensor index, *, bool sparse_grad=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor gather_backward(const Tensor & grad, const Tensor & self, int64_t dim, const Tensor & index, bool sparse_grad); // {"schema": "aten::gather_backward(Tensor grad, Tensor self, int dim, Tensor index, bool sparse_grad) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & gather_out(const Tensor & self, Dimname dim, const Tensor & index, bool sparse_grad, Tensor & out); // {"schema": "aten::gather.dimname_out(Tensor self, Dimname dim, Tensor index, *, bool sparse_grad=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor gather(const Tensor & self, Dimname dim, const Tensor & index, bool sparse_grad); // {"schema": "aten::gather.dimname(Tensor self, Dimname dim, Tensor index, *, bool sparse_grad=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _gather_sparse_backward(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & grad); // {"schema": "aten::_gather_sparse_backward(Tensor self, int dim, Tensor index, Tensor grad) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & addcmul_out(const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, const Scalar & value, Tensor & out); // {"schema": "aten::addcmul.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor addcmul(const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, const Scalar & value); // {"schema": "aten::addcmul(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & addcmul_(Tensor & self, const Tensor & tensor1, const Tensor & tensor2, const Scalar & value); // {"schema": "aten::addcmul_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & addcdiv_out(const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, const Scalar & value, Tensor & out); // {"schema": "aten::addcdiv.out(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor addcdiv(const Tensor & self, const Tensor & tensor1, const Tensor & tensor2, const Scalar & value); // {"schema": "aten::addcdiv(Tensor self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & addcdiv_(Tensor & self, const Tensor & tensor1, const Tensor & tensor2, const Scalar & value); // {"schema": "aten::addcdiv_(Tensor(a!) self, Tensor tensor1, Tensor tensor2, *, Scalar value=1) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor cross_entropy_loss(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, double label_smoothing); // {"schema": "aten::cross_entropy_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100, float label_smoothing=0.0) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> triangular_solve_out(const Tensor & self, const Tensor & A, bool upper, bool transpose, bool unitriangular, Tensor & X, Tensor & M); // {"schema": "aten::triangular_solve.X(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False, *, Tensor(a!) X, Tensor(b!) M) -> (Tensor(a!) solution, Tensor(b!) cloned_coefficient)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> triangular_solve(const Tensor & self, const Tensor & A, bool upper, bool transpose, bool unitriangular); // {"schema": "aten::triangular_solve(Tensor self, Tensor A, bool upper=True, bool transpose=False, bool unitriangular=False) -> (Tensor solution, Tensor cloned_coefficient)", "dispatch": "True", "default": "True"}
|
||
|
void _linalg_check_errors(const Tensor & info, c10::string_view api_name, bool is_matrix); // {"schema": "aten::_linalg_check_errors(Tensor info, str api_name, *, bool is_matrix) -> ()", "dispatch": "True", "default": "True"}
|
||
|
Tensor & linalg_solve_triangular_out(const Tensor & self, const Tensor & B, bool upper, bool left, bool unitriangular, Tensor & out); // {"schema": "aten::linalg_solve_triangular.out(Tensor self, Tensor B, *, bool upper, bool left=True, bool unitriangular=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor linalg_solve_triangular(const Tensor & self, const Tensor & B, bool upper, bool left, bool unitriangular); // {"schema": "aten::linalg_solve_triangular(Tensor self, Tensor B, *, bool upper, bool left=True, bool unitriangular=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor linalg_vander(const Tensor & x, c10::optional<c10::SymInt> N); // {"schema": "aten::linalg_vander(Tensor x, *, SymInt? N=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> svd_out(const Tensor & self, bool some, bool compute_uv, Tensor & U, Tensor & S, Tensor & V); // {"schema": "aten::svd.U(Tensor self, bool some=True, bool compute_uv=True, *, Tensor(a!) U, Tensor(b!) S, Tensor(c!) V) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) V)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> svd(const Tensor & self, bool some, bool compute_uv); // {"schema": "aten::svd(Tensor self, bool some=True, bool compute_uv=True) -> (Tensor U, Tensor S, Tensor V)", "dispatch": "False", "default": "True"}
|
||
|
Tensor swapaxes(const Tensor & self, int64_t axis0, int64_t axis1); // {"schema": "aten::swapaxes(Tensor(a) self, int axis0, int axis1) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & swapaxes_(Tensor & self, int64_t axis0, int64_t axis1); // {"schema": "aten::swapaxes_(Tensor(a!) self, int axis0, int axis1) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor swapdims(const Tensor & self, int64_t dim0, int64_t dim1); // {"schema": "aten::swapdims(Tensor(a) self, int dim0, int dim1) -> Tensor(a)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & swapdims_(Tensor & self, int64_t dim0, int64_t dim1); // {"schema": "aten::swapdims_(Tensor(a!) self, int dim0, int dim1) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & cholesky_out(const Tensor & self, bool upper, Tensor & out); // {"schema": "aten::cholesky.out(Tensor self, bool upper=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor cholesky(const Tensor & self, bool upper); // {"schema": "aten::cholesky(Tensor self, bool upper=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & cholesky_solve_out(const Tensor & self, const Tensor & input2, bool upper, Tensor & out); // {"schema": "aten::cholesky_solve.out(Tensor self, Tensor input2, bool upper=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor cholesky_solve(const Tensor & self, const Tensor & input2, bool upper); // {"schema": "aten::cholesky_solve(Tensor self, Tensor input2, bool upper=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _cholesky_solve_helper(const Tensor & self, const Tensor & A, bool upper); // {"schema": "aten::_cholesky_solve_helper(Tensor self, Tensor A, bool upper) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor cholesky_inverse(const Tensor & self, bool upper); // {"schema": "aten::cholesky_inverse(Tensor self, bool upper=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & cholesky_inverse_out(const Tensor & self, bool upper, Tensor & out); // {"schema": "aten::cholesky_inverse.out(Tensor self, bool upper=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor &,Tensor &> qr_out(const Tensor & self, bool some, Tensor & Q, Tensor & R); // {"schema": "aten::qr.Q(Tensor self, bool some=True, *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> qr(const Tensor & self, bool some); // {"schema": "aten::qr(Tensor self, bool some=True) -> (Tensor Q, Tensor R)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> geqrf_out(const Tensor & self, Tensor & a, Tensor & tau); // {"schema": "aten::geqrf.a(Tensor self, *, Tensor(a!) a, Tensor(b!) tau) -> (Tensor(a!) a, Tensor(b!) tau)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> geqrf(const Tensor & self); // {"schema": "aten::geqrf(Tensor self) -> (Tensor a, Tensor tau)", "dispatch": "True", "default": "False"}
|
||
|
Tensor orgqr(const Tensor & self, const Tensor & input2); // {"schema": "aten::orgqr(Tensor self, Tensor input2) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & orgqr_out(const Tensor & self, const Tensor & input2, Tensor & out); // {"schema": "aten::orgqr.out(Tensor self, Tensor input2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & ormqr_out(const Tensor & self, const Tensor & input2, const Tensor & input3, bool left, bool transpose, Tensor & out); // {"schema": "aten::ormqr.out(Tensor self, Tensor input2, Tensor input3, bool left=True, bool transpose=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor ormqr(const Tensor & self, const Tensor & input2, const Tensor & input3, bool left, bool transpose); // {"schema": "aten::ormqr(Tensor self, Tensor input2, Tensor input3, bool left=True, bool transpose=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _lu_with_info(const Tensor & self, bool pivot, bool check_errors); // {"schema": "aten::_lu_with_info(Tensor self, bool pivot=True, bool check_errors=True) -> (Tensor LU, Tensor pivots, Tensor info)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & lu_solve_out(const Tensor & self, const Tensor & LU_data, const Tensor & LU_pivots, Tensor & out); // {"schema": "aten::lu_solve.out(Tensor self, Tensor LU_data, Tensor LU_pivots, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor lu_solve(const Tensor & self, const Tensor & LU_data, const Tensor & LU_pivots); // {"schema": "aten::lu_solve(Tensor self, Tensor LU_data, Tensor LU_pivots) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> lu_unpack(const Tensor & LU_data, const Tensor & LU_pivots, bool unpack_data, bool unpack_pivots); // {"schema": "aten::lu_unpack(Tensor LU_data, Tensor LU_pivots, bool unpack_data=True, bool unpack_pivots=True) -> (Tensor P, Tensor L, Tensor U)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> lu_unpack_out(const Tensor & LU_data, const Tensor & LU_pivots, bool unpack_data, bool unpack_pivots, Tensor & P, Tensor & L, Tensor & U); // {"schema": "aten::lu_unpack.out(Tensor LU_data, Tensor LU_pivots, bool unpack_data=True, bool unpack_pivots=True, *, Tensor(a!) P, Tensor(b!) L, Tensor(c!) U) -> (Tensor(a!) P, Tensor(b!) L, Tensor(c!) U)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & multinomial_out(const Tensor & self, int64_t num_samples, bool replacement, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::multinomial.out(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor multinomial(const Tensor & self, int64_t num_samples, bool replacement, c10::optional<Generator> generator); // {"schema": "aten::multinomial(Tensor self, int num_samples, bool replacement=False, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & lgamma_out(const Tensor & self, Tensor & out); // {"schema": "aten::lgamma.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & lgamma_(Tensor & self); // {"schema": "aten::lgamma_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor lgamma(const Tensor & self); // {"schema": "aten::lgamma(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & digamma_out(const Tensor & self, Tensor & out); // {"schema": "aten::digamma.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor digamma(const Tensor & self); // {"schema": "aten::digamma(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & polygamma_out(int64_t n, const Tensor & self, Tensor & out); // {"schema": "aten::polygamma.out(int n, Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor polygamma(int64_t n, const Tensor & self); // {"schema": "aten::polygamma(int n, Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & polygamma_(Tensor & self, int64_t n); // {"schema": "aten::polygamma_(Tensor(a!) self, int n) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor erfinv(const Tensor & self); // {"schema": "aten::erfinv(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & erfinv_(Tensor & self); // {"schema": "aten::erfinv_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & erfinv_out(const Tensor & self, Tensor & out); // {"schema": "aten::erfinv.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor i0(const Tensor & self); // {"schema": "aten::i0(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & i0_(Tensor & self); // {"schema": "aten::i0_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & i0_out(const Tensor & self, Tensor & out); // {"schema": "aten::i0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor sign(const Tensor & self); // {"schema": "aten::sign(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sign_(Tensor & self); // {"schema": "aten::sign_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sign_out(const Tensor & self, Tensor & out); // {"schema": "aten::sign.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor signbit(const Tensor & self); // {"schema": "aten::signbit(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & signbit_out(const Tensor & self, Tensor & out); // {"schema": "aten::signbit.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor dist(const Tensor & self, const Tensor & other, const Scalar & p); // {"schema": "aten::dist(Tensor self, Tensor other, Scalar p=2) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & atan2_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::atan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & atan2_(Tensor & self, const Tensor & other); // {"schema": "aten::atan2_(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor atan2(const Tensor & self, const Tensor & other); // {"schema": "aten::atan2(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor arctan2(const Tensor & self, const Tensor & other); // {"schema": "aten::arctan2(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arctan2_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::arctan2.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & arctan2_(Tensor & self, const Tensor & other); // {"schema": "aten::arctan2_(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & lerp_out(const Tensor & self, const Tensor & end, const Scalar & weight, Tensor & out); // {"schema": "aten::lerp.Scalar_out(Tensor self, Tensor end, Scalar weight, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & lerp_out(const Tensor & self, const Tensor & end, const Tensor & weight, Tensor & out); // {"schema": "aten::lerp.Tensor_out(Tensor self, Tensor end, Tensor weight, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor lerp(const Tensor & self, const Tensor & end, const Scalar & weight); // {"schema": "aten::lerp.Scalar(Tensor self, Tensor end, Scalar weight) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor lerp(const Tensor & self, const Tensor & end, const Tensor & weight); // {"schema": "aten::lerp.Tensor(Tensor self, Tensor end, Tensor weight) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & histc_out(const Tensor & self, int64_t bins, const Scalar & min, const Scalar & max, Tensor & out); // {"schema": "aten::histc.out(Tensor self, int bins=100, Scalar min=0, Scalar max=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor histc(const Tensor & self, int64_t bins, const Scalar & min, const Scalar & max); // {"schema": "aten::histc(Tensor self, int bins=100, Scalar min=0, Scalar max=0) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor &,Tensor &> histogram_out(const Tensor & self, const Tensor & bins, const c10::optional<Tensor> & weight, bool density, Tensor & hist, Tensor & bin_edges); // {"schema": "aten::histogram.bins_tensor_out(Tensor self, Tensor bins, *, Tensor? weight=None, bool density=False, Tensor(a!) hist, Tensor(b!) bin_edges) -> (Tensor(a!) hist, Tensor(b!) bin_edges)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> histogram(const Tensor & self, const Tensor & bins, const c10::optional<Tensor> & weight, bool density); // {"schema": "aten::histogram.bins_tensor(Tensor self, Tensor bins, *, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor bin_edges)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor &,Tensor &> histogram_out(const Tensor & self, int64_t bins, c10::optional<ArrayRef<double>> range, const c10::optional<Tensor> & weight, bool density, Tensor & hist, Tensor & bin_edges); // {"schema": "aten::histogram.bin_ct_out(Tensor self, int bins=100, *, float[]? range=None, Tensor? weight=None, bool density=False, Tensor(a!) hist, Tensor(b!) bin_edges) -> (Tensor(a!) hist, Tensor(b!) bin_edges)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> histogram(const Tensor & self, int64_t bins, c10::optional<ArrayRef<double>> range, const c10::optional<Tensor> & weight, bool density); // {"schema": "aten::histogram.bin_ct(Tensor self, int bins=100, *, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor bin_edges)", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _histogramdd_bin_edges(const Tensor & self, IntArrayRef bins, c10::optional<ArrayRef<double>> range, const c10::optional<Tensor> & weight, bool density); // {"schema": "aten::_histogramdd_bin_edges(Tensor self, int[] bins, *, float[]? range=None, Tensor? weight=None, bool density=False) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
Tensor _histogramdd_from_bin_cts(const Tensor & self, IntArrayRef bins, c10::optional<ArrayRef<double>> range, const c10::optional<Tensor> & weight, bool density); // {"schema": "aten::_histogramdd_from_bin_cts(Tensor self, int[] bins, *, float[]? range=None, Tensor? weight=None, bool density=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _histogramdd_from_bin_tensors(const Tensor & self, TensorList bins, const c10::optional<Tensor> & weight, bool density); // {"schema": "aten::_histogramdd_from_bin_tensors(Tensor self, Tensor[] bins, *, Tensor? weight=None, bool density=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,::std::vector<Tensor>> histogramdd(const Tensor & self, IntArrayRef bins, c10::optional<ArrayRef<double>> range, const c10::optional<Tensor> & weight, bool density); // {"schema": "aten::histogramdd(Tensor self, int[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,::std::vector<Tensor>> histogramdd(const Tensor & self, int64_t bins, c10::optional<ArrayRef<double>> range, const c10::optional<Tensor> & weight, bool density); // {"schema": "aten::histogramdd.int_bins(Tensor self, int bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,::std::vector<Tensor>> histogramdd(const Tensor & self, TensorList bins, c10::optional<ArrayRef<double>> range, const c10::optional<Tensor> & weight, bool density); // {"schema": "aten::histogramdd.TensorList_bins(Tensor self, Tensor[] bins, float[]? range=None, Tensor? weight=None, bool density=False) -> (Tensor hist, Tensor[] bin_edges)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fmod_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::fmod.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor fmod(const Tensor & self, const Scalar & other); // {"schema": "aten::fmod.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & fmod_(Tensor & self, const Scalar & other); // {"schema": "aten::fmod_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & fmod_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::fmod.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor fmod(const Tensor & self, const Tensor & other); // {"schema": "aten::fmod.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & fmod_(Tensor & self, const Tensor & other); // {"schema": "aten::fmod_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hypot_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::hypot.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor hypot(const Tensor & self, const Tensor & other); // {"schema": "aten::hypot(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hypot_(Tensor & self, const Tensor & other); // {"schema": "aten::hypot_(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & igamma_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::igamma.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor igamma(const Tensor & self, const Tensor & other); // {"schema": "aten::igamma(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & igamma_(Tensor & self, const Tensor & other); // {"schema": "aten::igamma_(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & igammac_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::igammac.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor igammac(const Tensor & self, const Tensor & other); // {"schema": "aten::igammac(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & igammac_(Tensor & self, const Tensor & other); // {"schema": "aten::igammac_(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & nextafter_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::nextafter.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor nextafter(const Tensor & self, const Tensor & other); // {"schema": "aten::nextafter(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & nextafter_(Tensor & self, const Tensor & other); // {"schema": "aten::nextafter_(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & remainder_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::remainder.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor remainder(const Tensor & self, const Scalar & other); // {"schema": "aten::remainder.Scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & remainder_(Tensor & self, const Scalar & other); // {"schema": "aten::remainder_.Scalar(Tensor(a!) self, Scalar other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & remainder_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::remainder.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor remainder(const Tensor & self, const Tensor & other); // {"schema": "aten::remainder.Tensor(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & remainder_(Tensor & self, const Tensor & other); // {"schema": "aten::remainder_.Tensor(Tensor(a!) self, Tensor other) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor remainder(const Scalar & self, const Tensor & other); // {"schema": "aten::remainder.Scalar_Tensor(Scalar self, Tensor other) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor min(const Tensor & self); // {"schema": "aten::min(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & min_out(const Tensor & self, Tensor & out); // {"schema": "aten::min.unary_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor fmin(const Tensor & self, const Tensor & other); // {"schema": "aten::fmin(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & fmin_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::fmin.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor max(const Tensor & self); // {"schema": "aten::max(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor fmax(const Tensor & self, const Tensor & other); // {"schema": "aten::fmax(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & fmax_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::fmax.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor maximum(const Tensor & self, const Tensor & other); // {"schema": "aten::maximum(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & maximum_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::maximum.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor max(const Tensor & self, const Tensor & other); // {"schema": "aten::max.other(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & max_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::max.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & max_out(const Tensor & self, Tensor & out); // {"schema": "aten::max.unary_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor minimum(const Tensor & self, const Tensor & other); // {"schema": "aten::minimum(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & minimum_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::minimum.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & min_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::min.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor min(const Tensor & self, const Tensor & other); // {"schema": "aten::min.other(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor quantile(const Tensor & self, const Tensor & q, c10::optional<int64_t> dim, bool keepdim, c10::string_view interpolation); // {"schema": "aten::quantile(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, str interpolation='linear') -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & quantile_out(const Tensor & self, const Tensor & q, c10::optional<int64_t> dim, bool keepdim, c10::string_view interpolation, Tensor & out); // {"schema": "aten::quantile.out(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, str interpolation='linear', Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor quantile(const Tensor & self, double q, c10::optional<int64_t> dim, bool keepdim, c10::string_view interpolation); // {"schema": "aten::quantile.scalar(Tensor self, float q, int? dim=None, bool keepdim=False, *, str interpolation='linear') -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & quantile_out(const Tensor & self, double q, c10::optional<int64_t> dim, bool keepdim, c10::string_view interpolation, Tensor & out); // {"schema": "aten::quantile.scalar_out(Tensor self, float q, int? dim=None, bool keepdim=False, *, str interpolation='linear', Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor nanquantile(const Tensor & self, const Tensor & q, c10::optional<int64_t> dim, bool keepdim, c10::string_view interpolation); // {"schema": "aten::nanquantile(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, str interpolation='linear') -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & nanquantile_out(const Tensor & self, const Tensor & q, c10::optional<int64_t> dim, bool keepdim, c10::string_view interpolation, Tensor & out); // {"schema": "aten::nanquantile.out(Tensor self, Tensor q, int? dim=None, bool keepdim=False, *, str interpolation='linear', Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor nanquantile(const Tensor & self, double q, c10::optional<int64_t> dim, bool keepdim, c10::string_view interpolation); // {"schema": "aten::nanquantile.scalar(Tensor self, float q, int? dim=None, bool keepdim=False, *, str interpolation='linear') -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & nanquantile_out(const Tensor & self, double q, c10::optional<int64_t> dim, bool keepdim, c10::string_view interpolation, Tensor & out); // {"schema": "aten::nanquantile.scalar_out(Tensor self, float q, int? dim=None, bool keepdim=False, *, str interpolation='linear', Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> sort_out(const Tensor & self, int64_t dim, bool descending, Tensor & values, Tensor & indices); // {"schema": "aten::sort.values(Tensor self, int dim=-1, bool descending=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> sort_out(const Tensor & self, c10::optional<bool> stable, int64_t dim, bool descending, Tensor & values, Tensor & indices); // {"schema": "aten::sort.values_stable(Tensor self, *, bool? stable, int dim=-1, bool descending=False, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> sort(const Tensor & self, int64_t dim, bool descending); // {"schema": "aten::sort(Tensor self, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> sort(const Tensor & self, c10::optional<bool> stable, int64_t dim, bool descending); // {"schema": "aten::sort.stable(Tensor self, *, bool? stable, int dim=-1, bool descending=False) -> (Tensor values, Tensor indices)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> sort_out(const Tensor & self, Dimname dim, bool descending, Tensor & values, Tensor & indices); // {"schema": "aten::sort.dimname_values(Tensor self, Dimname dim, bool descending=False, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> sort_out(const Tensor & self, c10::optional<bool> stable, Dimname dim, bool descending, Tensor & values, Tensor & indices); // {"schema": "aten::sort.dimname_values_stable(Tensor self, *, bool? stable, Dimname dim, bool descending=False, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> sort(const Tensor & self, Dimname dim, bool descending); // {"schema": "aten::sort.dimname(Tensor self, Dimname dim, bool descending=False) -> (Tensor values, Tensor indices)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> sort(const Tensor & self, c10::optional<bool> stable, Dimname dim, bool descending); // {"schema": "aten::sort.dimname_stable(Tensor self, *, bool? stable, Dimname dim, bool descending=False) -> (Tensor values, Tensor indices)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & msort_out(const Tensor & self, Tensor & out); // {"schema": "aten::msort.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor msort(const Tensor & self); // {"schema": "aten::msort(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor argsort(const Tensor & self, int64_t dim, bool descending); // {"schema": "aten::argsort(Tensor self, int dim=-1, bool descending=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor argsort(const Tensor & self, bool stable, int64_t dim, bool descending); // {"schema": "aten::argsort.stable(Tensor self, *, bool stable, int dim=-1, bool descending=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor argsort(const Tensor & self, Dimname dim, bool descending); // {"schema": "aten::argsort.dimname(Tensor self, Dimname dim, bool descending=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> topk_out(const Tensor & self, c10::SymInt k, int64_t dim, bool largest, bool sorted, Tensor & values, Tensor & indices); // {"schema": "aten::topk.values(Tensor self, SymInt k, int dim=-1, bool largest=True, bool sorted=True, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> topk(const Tensor & self, c10::SymInt k, int64_t dim, bool largest, bool sorted); // {"schema": "aten::topk(Tensor self, SymInt k, int dim=-1, bool largest=True, bool sorted=True) -> (Tensor values, Tensor indices)", "dispatch": "True", "default": "True"}
|
||
|
Tensor all(const Tensor & self); // {"schema": "aten::all(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & all_out(const Tensor & self, Tensor & out); // {"schema": "aten::all.all_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor any(const Tensor & self); // {"schema": "aten::any(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & any_out(const Tensor & self, Tensor & out); // {"schema": "aten::any.all_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & renorm_out(const Tensor & self, const Scalar & p, int64_t dim, const Scalar & maxnorm, Tensor & out); // {"schema": "aten::renorm.out(Tensor self, Scalar p, int dim, Scalar maxnorm, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor renorm(const Tensor & self, const Scalar & p, int64_t dim, const Scalar & maxnorm); // {"schema": "aten::renorm(Tensor self, Scalar p, int dim, Scalar maxnorm) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & renorm_(Tensor & self, const Scalar & p, int64_t dim, const Scalar & maxnorm); // {"schema": "aten::renorm_(Tensor(a!) self, Scalar p, int dim, Scalar maxnorm) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor unfold(const Tensor & self, int64_t dimension, int64_t size, int64_t step); // {"schema": "aten::unfold(Tensor(a) self, int dimension, int size, int step) -> Tensor(a)", "dispatch": "True", "default": "False"}
|
||
|
Tensor unfold_backward(const Tensor & grad_in, c10::SymIntArrayRef input_sizes, int64_t dim, int64_t size, int64_t step); // {"schema": "aten::unfold_backward(Tensor grad_in, SymInt[] input_sizes, int dim, int size, int step) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
bool equal(const Tensor & self, const Tensor & other); // {"schema": "aten::equal(Tensor self, Tensor other) -> bool", "dispatch": "True", "default": "False"}
|
||
|
Tensor & pow_out(const Tensor & self, const Tensor & exponent, Tensor & out); // {"schema": "aten::pow.Tensor_Tensor_out(Tensor self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor pow(const Tensor & self, const Tensor & exponent); // {"schema": "aten::pow.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & pow_out(const Scalar & self, const Tensor & exponent, Tensor & out); // {"schema": "aten::pow.Scalar_out(Scalar self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor pow(const Scalar & self, const Tensor & exponent); // {"schema": "aten::pow.Scalar(Scalar self, Tensor exponent) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & pow_out(const Tensor & self, const Scalar & exponent, Tensor & out); // {"schema": "aten::pow.Tensor_Scalar_out(Tensor self, Scalar exponent, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor pow(const Tensor & self, const Scalar & exponent); // {"schema": "aten::pow.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & pow_(Tensor & self, const Scalar & exponent); // {"schema": "aten::pow_.Scalar(Tensor(a!) self, Scalar exponent) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & pow_(Tensor & self, const Tensor & exponent); // {"schema": "aten::pow_.Tensor(Tensor(a!) self, Tensor exponent) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & float_power_out(const Tensor & self, const Tensor & exponent, Tensor & out); // {"schema": "aten::float_power.Tensor_Tensor_out(Tensor self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor float_power(const Tensor & self, const Tensor & exponent); // {"schema": "aten::float_power.Tensor_Tensor(Tensor self, Tensor exponent) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & float_power_out(const Scalar & self, const Tensor & exponent, Tensor & out); // {"schema": "aten::float_power.Scalar_out(Scalar self, Tensor exponent, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor float_power(const Scalar & self, const Tensor & exponent); // {"schema": "aten::float_power.Scalar(Scalar self, Tensor exponent) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & float_power_out(const Tensor & self, const Scalar & exponent, Tensor & out); // {"schema": "aten::float_power.Tensor_Scalar_out(Tensor self, Scalar exponent, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor float_power(const Tensor & self, const Scalar & exponent); // {"schema": "aten::float_power.Tensor_Scalar(Tensor self, Scalar exponent) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & float_power_(Tensor & self, const Scalar & exponent); // {"schema": "aten::float_power_.Scalar(Tensor(a!) self, Scalar exponent) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & float_power_(Tensor & self, const Tensor & exponent); // {"schema": "aten::float_power_.Tensor(Tensor(a!) self, Tensor exponent) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & normal_(Tensor & self, double mean, double std, c10::optional<Generator> generator); // {"schema": "aten::normal_(Tensor(a!) self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor normal_functional(const Tensor & self, double mean, double std, c10::optional<Generator> generator); // {"schema": "aten::normal_functional(Tensor self, float mean=0, float std=1, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & normal_out(const Tensor & mean, double std, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::normal.Tensor_float_out(Tensor mean, float std=1, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor normal(const Tensor & mean, double std, c10::optional<Generator> generator); // {"schema": "aten::normal.Tensor_float(Tensor mean, float std=1, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & normal_out(double mean, const Tensor & std, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::normal.float_Tensor_out(float mean, Tensor std, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor normal(double mean, const Tensor & std, c10::optional<Generator> generator); // {"schema": "aten::normal.float_Tensor(float mean, Tensor std, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & normal_out(const Tensor & mean, const Tensor & std, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::normal.Tensor_Tensor_out(Tensor mean, Tensor std, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor normal(const Tensor & mean, const Tensor & std, c10::optional<Generator> generator); // {"schema": "aten::normal.Tensor_Tensor(Tensor mean, Tensor std, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor normal(double mean, double std, c10::SymIntArrayRef size, c10::optional<Generator> generator, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::normal.float_float(float mean, float std, SymInt[] size, *, Generator? generator=None, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & normal_out(double mean, double std, c10::SymIntArrayRef size, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::normal.float_float_out(float mean, float std, SymInt[] size, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor alias(const Tensor & self); // {"schema": "aten::alias(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
void _amp_foreach_non_finite_check_and_unscale_(TensorList self, Tensor & found_inf, const Tensor & inv_scale); // {"schema": "aten::_amp_foreach_non_finite_check_and_unscale_(Tensor(a!)[] self, Tensor(b!) found_inf, Tensor inv_scale) -> ()", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _amp_update_scale_(Tensor & self, Tensor & growth_tracker, const Tensor & found_inf, double scale_growth_factor, double scale_backoff_factor, int64_t growth_interval); // {"schema": "aten::_amp_update_scale_(Tensor(a!) self, Tensor(b!) growth_tracker, Tensor found_inf, float scale_growth_factor, float scale_backoff_factor, int growth_interval) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_add(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_add.Scalar(Tensor[] self, Scalar scalar) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_add_(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_add_.Scalar(Tensor(a!)[] self, Scalar scalar) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_add(TensorList self, TensorList other, const Scalar & alpha); // {"schema": "aten::_foreach_add.List(Tensor[] self, Tensor[] other, *, Scalar alpha=1) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_add_(TensorList self, TensorList other, const Scalar & alpha); // {"schema": "aten::_foreach_add_.List(Tensor(a!)[] self, Tensor[] other, *, Scalar alpha=1) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_add(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_add.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_add_(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_add_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_add(TensorList self, const Tensor & other, const Scalar & alpha); // {"schema": "aten::_foreach_add.Tensor(Tensor[] self, Tensor other, *, Scalar alpha=1) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_add_(TensorList self, const Tensor & other, const Scalar & alpha); // {"schema": "aten::_foreach_add_.Tensor(Tensor(a!)[] self, Tensor other, *, Scalar alpha=1) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_sub(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_sub.Scalar(Tensor[] self, Scalar scalar) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_sub_(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_sub_.Scalar(Tensor(a!)[] self, Scalar scalar) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_sub(TensorList self, TensorList other, const Scalar & alpha); // {"schema": "aten::_foreach_sub.List(Tensor[] self, Tensor[] other, *, Scalar alpha=1) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_sub_(TensorList self, TensorList other, const Scalar & alpha); // {"schema": "aten::_foreach_sub_.List(Tensor(a!)[] self, Tensor[] other, *, Scalar alpha=1) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_sub(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_sub.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_sub_(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_sub_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_mul(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_mul.Scalar(Tensor[] self, Scalar scalar) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_mul_(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_mul_.Scalar(Tensor(a!)[] self, Scalar scalar) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_mul(TensorList self, TensorList other); // {"schema": "aten::_foreach_mul.List(Tensor[] self, Tensor[] other) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_mul_(TensorList self, TensorList other); // {"schema": "aten::_foreach_mul_.List(Tensor(a!)[] self, Tensor[] other) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_mul(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_mul.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_mul_(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_mul_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_mul(TensorList self, const Tensor & other); // {"schema": "aten::_foreach_mul.Tensor(Tensor[] self, Tensor other) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_mul_(TensorList self, const Tensor & other); // {"schema": "aten::_foreach_mul_.Tensor(Tensor(a!)[] self, Tensor other) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_div(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_div.Scalar(Tensor[] self, Scalar scalar) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_div_(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_div_.Scalar(Tensor(a!)[] self, Scalar scalar) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_div(TensorList self, TensorList other); // {"schema": "aten::_foreach_div.List(Tensor[] self, Tensor[] other) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_div_(TensorList self, TensorList other); // {"schema": "aten::_foreach_div_.List(Tensor(a!)[] self, Tensor[] other) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_div(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_div.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_div_(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_div_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_div(TensorList self, const Tensor & other); // {"schema": "aten::_foreach_div.Tensor(Tensor[] self, Tensor other) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_div_(TensorList self, const Tensor & other); // {"schema": "aten::_foreach_div_.Tensor(Tensor(a!)[] self, Tensor other) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_clamp_max(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_clamp_max.Scalar(Tensor[] self, Scalar scalar) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_clamp_max_(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_clamp_max_.Scalar(Tensor(a!)[] self, Scalar scalar) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_clamp_max(TensorList self, TensorList other); // {"schema": "aten::_foreach_clamp_max.List(Tensor[] self, Tensor[] other) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_clamp_max_(TensorList self, TensorList other); // {"schema": "aten::_foreach_clamp_max_.List(Tensor(a!)[] self, Tensor[] other) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_clamp_max(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_clamp_max.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_clamp_max_(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_clamp_max_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_clamp_min(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_clamp_min.Scalar(Tensor[] self, Scalar scalar) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_clamp_min_(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_clamp_min_.Scalar(Tensor(a!)[] self, Scalar scalar) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_clamp_min(TensorList self, TensorList other); // {"schema": "aten::_foreach_clamp_min.List(Tensor[] self, Tensor[] other) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_clamp_min_(TensorList self, TensorList other); // {"schema": "aten::_foreach_clamp_min_.List(Tensor(a!)[] self, Tensor[] other) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_clamp_min(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_clamp_min.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_clamp_min_(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_clamp_min_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_maximum(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_maximum.Scalar(Tensor[] self, Scalar scalar) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_maximum_(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_maximum_.Scalar(Tensor(a!)[] self, Scalar scalar) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_maximum(TensorList self, TensorList other); // {"schema": "aten::_foreach_maximum.List(Tensor[] self, Tensor[] other) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_maximum_(TensorList self, TensorList other); // {"schema": "aten::_foreach_maximum_.List(Tensor(a!)[] self, Tensor[] other) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_maximum(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_maximum.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_maximum_(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_maximum_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_minimum(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_minimum.Scalar(Tensor[] self, Scalar scalar) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_minimum_(TensorList self, const Scalar & scalar); // {"schema": "aten::_foreach_minimum_.Scalar(Tensor(a!)[] self, Scalar scalar) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_minimum(TensorList self, TensorList other); // {"schema": "aten::_foreach_minimum.List(Tensor[] self, Tensor[] other) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_minimum_(TensorList self, TensorList other); // {"schema": "aten::_foreach_minimum_.List(Tensor(a!)[] self, Tensor[] other) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_minimum(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_minimum.ScalarList(Tensor[] self, Scalar[] scalars) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_minimum_(TensorList self, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_minimum_.ScalarList(Tensor(a!)[] self, Scalar[] scalars) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_addcdiv(TensorList self, TensorList tensor1, TensorList tensor2, const Scalar & value); // {"schema": "aten::_foreach_addcdiv.Scalar(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_addcdiv(TensorList self, TensorList tensor1, TensorList tensor2, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_addcdiv.ScalarList(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_addcdiv(TensorList self, TensorList tensor1, TensorList tensor2, const Tensor & scalars); // {"schema": "aten::_foreach_addcdiv.Tensor(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Tensor scalars) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_addcdiv_(TensorList self, TensorList tensor1, TensorList tensor2, const Scalar & value); // {"schema": "aten::_foreach_addcdiv_.Scalar(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_addcdiv_(TensorList self, TensorList tensor1, TensorList tensor2, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_addcdiv_.ScalarList(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_addcdiv_(TensorList self, TensorList tensor1, TensorList tensor2, const Tensor & scalars); // {"schema": "aten::_foreach_addcdiv_.Tensor(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Tensor scalars) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_addcmul(TensorList self, TensorList tensor1, TensorList tensor2, const Scalar & value); // {"schema": "aten::_foreach_addcmul.Scalar(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_addcmul(TensorList self, TensorList tensor1, TensorList tensor2, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_addcmul.ScalarList(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_addcmul(TensorList self, TensorList tensor1, TensorList tensor2, const Tensor & scalars); // {"schema": "aten::_foreach_addcmul.Tensor(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Tensor scalars) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_addcmul_(TensorList self, TensorList tensor1, TensorList tensor2, const Scalar & value); // {"schema": "aten::_foreach_addcmul_.Scalar(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_addcmul_(TensorList self, TensorList tensor1, TensorList tensor2, ArrayRef<Scalar> scalars); // {"schema": "aten::_foreach_addcmul_.ScalarList(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_addcmul_(TensorList self, TensorList tensor1, TensorList tensor2, const Tensor & scalars); // {"schema": "aten::_foreach_addcmul_.Tensor(Tensor(a!)[] self, Tensor[] tensor1, Tensor[] tensor2, Tensor scalars) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_abs(TensorList self); // {"schema": "aten::_foreach_abs(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_abs_(TensorList self); // {"schema": "aten::_foreach_abs_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_acos(TensorList self); // {"schema": "aten::_foreach_acos(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_acos_(TensorList self); // {"schema": "aten::_foreach_acos_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_asin(TensorList self); // {"schema": "aten::_foreach_asin(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_asin_(TensorList self); // {"schema": "aten::_foreach_asin_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_atan(TensorList self); // {"schema": "aten::_foreach_atan(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_atan_(TensorList self); // {"schema": "aten::_foreach_atan_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_ceil(TensorList self); // {"schema": "aten::_foreach_ceil(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_ceil_(TensorList self); // {"schema": "aten::_foreach_ceil_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_cos(TensorList self); // {"schema": "aten::_foreach_cos(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_cos_(TensorList self); // {"schema": "aten::_foreach_cos_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_cosh(TensorList self); // {"schema": "aten::_foreach_cosh(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_cosh_(TensorList self); // {"schema": "aten::_foreach_cosh_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_erf(TensorList self); // {"schema": "aten::_foreach_erf(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_erf_(TensorList self); // {"schema": "aten::_foreach_erf_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_erfc(TensorList self); // {"schema": "aten::_foreach_erfc(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_erfc_(TensorList self); // {"schema": "aten::_foreach_erfc_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_exp(TensorList self); // {"schema": "aten::_foreach_exp(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_exp_(TensorList self); // {"schema": "aten::_foreach_exp_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_expm1(TensorList self); // {"schema": "aten::_foreach_expm1(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_expm1_(TensorList self); // {"schema": "aten::_foreach_expm1_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_floor(TensorList self); // {"schema": "aten::_foreach_floor(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_floor_(TensorList self); // {"schema": "aten::_foreach_floor_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_frac(TensorList self); // {"schema": "aten::_foreach_frac(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_frac_(TensorList self); // {"schema": "aten::_foreach_frac_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_lerp(TensorList self, TensorList tensors1, TensorList weights); // {"schema": "aten::_foreach_lerp.List(Tensor[] self, Tensor[] tensors1, Tensor[] weights) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_lerp_(TensorList self, TensorList tensors1, TensorList weights); // {"schema": "aten::_foreach_lerp_.List(Tensor(a!)[] self, Tensor[] tensors1, Tensor[] weights) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_lerp(TensorList self, TensorList tensors1, const Scalar & weight); // {"schema": "aten::_foreach_lerp.Scalar(Tensor[] self, Tensor[] tensors1, Scalar weight) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_lerp_(TensorList self, TensorList tensors1, const Scalar & weight); // {"schema": "aten::_foreach_lerp_.Scalar(Tensor(a!)[] self, Tensor[] tensors1, Scalar weight) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_lgamma(TensorList self); // {"schema": "aten::_foreach_lgamma(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_lgamma_(TensorList self); // {"schema": "aten::_foreach_lgamma_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_log(TensorList self); // {"schema": "aten::_foreach_log(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_log_(TensorList self); // {"schema": "aten::_foreach_log_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_log10(TensorList self); // {"schema": "aten::_foreach_log10(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_log10_(TensorList self); // {"schema": "aten::_foreach_log10_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_log1p(TensorList self); // {"schema": "aten::_foreach_log1p(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_log1p_(TensorList self); // {"schema": "aten::_foreach_log1p_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_log2(TensorList self); // {"schema": "aten::_foreach_log2(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_log2_(TensorList self); // {"schema": "aten::_foreach_log2_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_neg(TensorList self); // {"schema": "aten::_foreach_neg(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_neg_(TensorList self); // {"schema": "aten::_foreach_neg_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_norm(TensorList self, const Scalar & ord); // {"schema": "aten::_foreach_norm.Scalar(Tensor[] self, Scalar ord=2) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_pow(TensorList self, TensorList exponent); // {"schema": "aten::_foreach_pow.List(Tensor[] self, Tensor[] exponent) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_pow(TensorList self, const Scalar & exponent); // {"schema": "aten::_foreach_pow.Scalar(Tensor[] self, Scalar exponent) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_pow(TensorList self, ArrayRef<Scalar> exponent); // {"schema": "aten::_foreach_pow.ScalarList(Tensor[] self, Scalar[] exponent) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_pow(const Scalar & self, TensorList exponent); // {"schema": "aten::_foreach_pow.ScalarAndTensor(Scalar self, Tensor[] exponent) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_pow_(TensorList self, TensorList exponent); // {"schema": "aten::_foreach_pow_.List(Tensor(a!)[] self, Tensor[] exponent) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_pow_(TensorList self, const Scalar & exponent); // {"schema": "aten::_foreach_pow_.Scalar(Tensor(a!)[] self, Scalar exponent) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_pow_(TensorList self, ArrayRef<Scalar> exponent); // {"schema": "aten::_foreach_pow_.ScalarList(Tensor(a!)[] self, Scalar[] exponent) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_reciprocal(TensorList self); // {"schema": "aten::_foreach_reciprocal(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_reciprocal_(TensorList self); // {"schema": "aten::_foreach_reciprocal_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_round(TensorList self); // {"schema": "aten::_foreach_round(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_round_(TensorList self); // {"schema": "aten::_foreach_round_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_sigmoid(TensorList self); // {"schema": "aten::_foreach_sigmoid(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_sigmoid_(TensorList self); // {"schema": "aten::_foreach_sigmoid_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_sign(TensorList self); // {"schema": "aten::_foreach_sign(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_sign_(TensorList self); // {"schema": "aten::_foreach_sign_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_sin(TensorList self); // {"schema": "aten::_foreach_sin(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_sin_(TensorList self); // {"schema": "aten::_foreach_sin_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_sinh(TensorList self); // {"schema": "aten::_foreach_sinh(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_sinh_(TensorList self); // {"schema": "aten::_foreach_sinh_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_sqrt(TensorList self); // {"schema": "aten::_foreach_sqrt(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_sqrt_(TensorList self); // {"schema": "aten::_foreach_sqrt_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_tan(TensorList self); // {"schema": "aten::_foreach_tan(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_tan_(TensorList self); // {"schema": "aten::_foreach_tan_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_tanh(TensorList self); // {"schema": "aten::_foreach_tanh(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_tanh_(TensorList self); // {"schema": "aten::_foreach_tanh_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
::std::vector<Tensor> _foreach_trunc(TensorList self); // {"schema": "aten::_foreach_trunc(Tensor[] self) -> Tensor[]", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_trunc_(TensorList self); // {"schema": "aten::_foreach_trunc_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_zero_(TensorList self); // {"schema": "aten::_foreach_zero_(Tensor(a!)[] self) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _foreach_copy_(TensorList self, TensorList src, bool non_blocking); // {"schema": "aten::_foreach_copy_(Tensor(a!)[] self, Tensor[] src, bool non_blocking=False) -> ()", "dispatch": "True", "default": "False"}
|
||
|
Tensor bucketize(const Tensor & self, const Tensor & boundaries, bool out_int32, bool right); // {"schema": "aten::bucketize.Tensor(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & bucketize_out(const Tensor & self, const Tensor & boundaries, bool out_int32, bool right, Tensor & out); // {"schema": "aten::bucketize.Tensor_out(Tensor self, Tensor boundaries, *, bool out_int32=False, bool right=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor bucketize(const Scalar & self, const Tensor & boundaries, bool out_int32, bool right); // {"schema": "aten::bucketize.Scalar(Scalar self, Tensor boundaries, *, bool out_int32=False, bool right=False) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor searchsorted(const Tensor & sorted_sequence, const Tensor & self, bool out_int32, bool right, c10::optional<c10::string_view> side, const c10::optional<Tensor> & sorter); // {"schema": "aten::searchsorted.Tensor(Tensor sorted_sequence, Tensor self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & searchsorted_out(const Tensor & sorted_sequence, const Tensor & self, bool out_int32, bool right, c10::optional<c10::string_view> side, const c10::optional<Tensor> & sorter, Tensor & out); // {"schema": "aten::searchsorted.Tensor_out(Tensor sorted_sequence, Tensor self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor searchsorted(const Tensor & sorted_sequence, const Scalar & self, bool out_int32, bool right, c10::optional<c10::string_view> side, const c10::optional<Tensor> & sorter); // {"schema": "aten::searchsorted.Scalar(Tensor sorted_sequence, Scalar self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & searchsorted_out(const Tensor & sorted_sequence, const Scalar & self, bool out_int32, bool right, c10::optional<c10::string_view> side, const c10::optional<Tensor> & sorter, Tensor & out); // {"schema": "aten::searchsorted.Scalar_out(Tensor sorted_sequence, Scalar self, *, bool out_int32=False, bool right=False, str? side=None, Tensor? sorter=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _convert_indices_from_coo_to_csr(const Tensor & self, int64_t size, bool out_int32); // {"schema": "aten::_convert_indices_from_coo_to_csr(Tensor self, int size, *, bool out_int32=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _convert_indices_from_coo_to_csr_out(const Tensor & self, int64_t size, bool out_int32, Tensor & out); // {"schema": "aten::_convert_indices_from_coo_to_csr.out(Tensor self, int size, *, bool out_int32=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _convert_indices_from_csr_to_coo(const Tensor & crow_indices, const Tensor & col_indices, bool out_int32, bool transpose); // {"schema": "aten::_convert_indices_from_csr_to_coo(Tensor crow_indices, Tensor col_indices, *, bool out_int32=False, bool transpose=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _convert_indices_from_csr_to_coo_out(const Tensor & crow_indices, const Tensor & col_indices, bool out_int32, bool transpose, Tensor & out); // {"schema": "aten::_convert_indices_from_csr_to_coo.out(Tensor crow_indices, Tensor col_indices, *, bool out_int32=False, bool transpose=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & mse_loss_out(const Tensor & self, const Tensor & target, int64_t reduction, Tensor & out); // {"schema": "aten::mse_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor mse_loss(const Tensor & self, const Tensor & target, int64_t reduction); // {"schema": "aten::mse_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mse_loss_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & target, int64_t reduction, Tensor & grad_input); // {"schema": "aten::mse_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor mse_loss_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, int64_t reduction); // {"schema": "aten::mse_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor l1_loss(const Tensor & self, const Tensor & target, int64_t reduction); // {"schema": "aten::l1_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & multi_margin_loss_out(const Tensor & self, const Tensor & target, const Scalar & p, const Scalar & margin, const c10::optional<Tensor> & weight, int64_t reduction, Tensor & out); // {"schema": "aten::multi_margin_loss.out(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor multi_margin_loss(const Tensor & self, const Tensor & target, const Scalar & p, const Scalar & margin, const c10::optional<Tensor> & weight, int64_t reduction); // {"schema": "aten::multi_margin_loss(Tensor self, Tensor target, Scalar p=1, Scalar margin=1, Tensor? weight=None, int reduction=Mean) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & multi_margin_loss_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & target, const Scalar & p, const Scalar & margin, const c10::optional<Tensor> & weight, int64_t reduction, Tensor & grad_input); // {"schema": "aten::multi_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor multi_margin_loss_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, const Scalar & p, const Scalar & margin, const c10::optional<Tensor> & weight, int64_t reduction); // {"schema": "aten::multi_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, Scalar p, Scalar margin, Tensor? weight=None, int reduction=Mean) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & multilabel_margin_loss_out(const Tensor & self, const Tensor & target, int64_t reduction, Tensor & out); // {"schema": "aten::multilabel_margin_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor multilabel_margin_loss(const Tensor & self, const Tensor & target, int64_t reduction); // {"schema": "aten::multilabel_margin_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> multilabel_margin_loss_forward_out(const Tensor & self, const Tensor & target, int64_t reduction, Tensor & output, Tensor & is_target); // {"schema": "aten::multilabel_margin_loss_forward.output(Tensor self, Tensor target, int reduction, *, Tensor(a!) output, Tensor(b!) is_target) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> multilabel_margin_loss_forward(const Tensor & self, const Tensor & target, int64_t reduction); // {"schema": "aten::multilabel_margin_loss_forward(Tensor self, Tensor target, int reduction) -> (Tensor output, Tensor is_target)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & multilabel_margin_loss_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & target, int64_t reduction, const Tensor & is_target, Tensor & grad_input); // {"schema": "aten::multilabel_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, Tensor is_target, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor multilabel_margin_loss_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, int64_t reduction, const Tensor & is_target); // {"schema": "aten::multilabel_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, Tensor is_target) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & nll_loss_out(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, Tensor & out); // {"schema": "aten::nll_loss.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor nll_loss_nd(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index); // {"schema": "aten::nll_loss_nd(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor nll_loss(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index); // {"schema": "aten::nll_loss(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> nll_loss_forward_out(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, Tensor & output, Tensor & total_weight); // {"schema": "aten::nll_loss_forward.output(Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, *, Tensor(a!) output, Tensor(b!) total_weight) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> nll_loss_forward(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index); // {"schema": "aten::nll_loss_forward(Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index) -> (Tensor output, Tensor total_weight)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & nll_loss_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const Tensor & total_weight, Tensor & grad_input); // {"schema": "aten::nll_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor nll_loss_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const Tensor & total_weight); // {"schema": "aten::nll_loss_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & nll_loss2d_out(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, Tensor & out); // {"schema": "aten::nll_loss2d.out(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor nll_loss2d(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index); // {"schema": "aten::nll_loss2d(Tensor self, Tensor target, Tensor? weight=None, int reduction=Mean, SymInt ignore_index=-100) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> nll_loss2d_forward_out(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, Tensor & output, Tensor & total_weight); // {"schema": "aten::nll_loss2d_forward.output(Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, *, Tensor(a!) output, Tensor(b!) total_weight) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> nll_loss2d_forward(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index); // {"schema": "aten::nll_loss2d_forward(Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index) -> (Tensor output, Tensor total_weight)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & nll_loss2d_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const Tensor & total_weight, Tensor & grad_input); // {"schema": "aten::nll_loss2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor nll_loss2d_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, int64_t reduction, c10::SymInt ignore_index, const Tensor & total_weight); // {"schema": "aten::nll_loss2d_backward(Tensor grad_output, Tensor self, Tensor target, Tensor? weight, int reduction, SymInt ignore_index, Tensor total_weight) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & smooth_l1_loss_out(const Tensor & self, const Tensor & target, int64_t reduction, double beta, Tensor & out); // {"schema": "aten::smooth_l1_loss.out(Tensor self, Tensor target, int reduction=Mean, float beta=1.0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor smooth_l1_loss(const Tensor & self, const Tensor & target, int64_t reduction, double beta); // {"schema": "aten::smooth_l1_loss(Tensor self, Tensor target, int reduction=Mean, float beta=1.0) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & smooth_l1_loss_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & target, int64_t reduction, double beta, Tensor & grad_input); // {"schema": "aten::smooth_l1_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, float beta, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor smooth_l1_loss_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, int64_t reduction, double beta); // {"schema": "aten::smooth_l1_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, float beta) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & huber_loss_out(const Tensor & self, const Tensor & target, int64_t reduction, double delta, Tensor & out); // {"schema": "aten::huber_loss.out(Tensor self, Tensor target, int reduction=Mean, float delta=1.0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor huber_loss(const Tensor & self, const Tensor & target, int64_t reduction, double delta); // {"schema": "aten::huber_loss(Tensor self, Tensor target, int reduction=Mean, float delta=1.0) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & huber_loss_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & target, int64_t reduction, double delta, Tensor & grad_input); // {"schema": "aten::huber_loss_backward.out(Tensor grad_output, Tensor self, Tensor target, int reduction, float delta, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor huber_loss_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, int64_t reduction, double delta); // {"schema": "aten::huber_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction, float delta) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & soft_margin_loss_out(const Tensor & self, const Tensor & target, int64_t reduction, Tensor & out); // {"schema": "aten::soft_margin_loss.out(Tensor self, Tensor target, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor soft_margin_loss(const Tensor & self, const Tensor & target, int64_t reduction); // {"schema": "aten::soft_margin_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & soft_margin_loss_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & target, int64_t reduction, Tensor & grad_input); // {"schema": "aten::soft_margin_loss_backward.grad_input(Tensor grad_output, Tensor self, Tensor target, int reduction, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor soft_margin_loss_backward(const Tensor & grad_output, const Tensor & self, const Tensor & target, int64_t reduction); // {"schema": "aten::soft_margin_loss_backward(Tensor grad_output, Tensor self, Tensor target, int reduction) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & elu_out(const Tensor & self, const Scalar & alpha, const Scalar & scale, const Scalar & input_scale, Tensor & out); // {"schema": "aten::elu.out(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor elu(const Tensor & self, const Scalar & alpha, const Scalar & scale, const Scalar & input_scale); // {"schema": "aten::elu(Tensor self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & elu_backward_out(const Tensor & grad_output, const Scalar & alpha, const Scalar & scale, const Scalar & input_scale, bool is_result, const Tensor & self_or_result, Tensor & grad_input); // {"schema": "aten::elu_backward.grad_input(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, bool is_result, Tensor self_or_result, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor elu_backward(const Tensor & grad_output, const Scalar & alpha, const Scalar & scale, const Scalar & input_scale, bool is_result, const Tensor & self_or_result); // {"schema": "aten::elu_backward(Tensor grad_output, Scalar alpha, Scalar scale, Scalar input_scale, bool is_result, Tensor self_or_result) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & elu_(Tensor & self, const Scalar & alpha, const Scalar & scale, const Scalar & input_scale); // {"schema": "aten::elu_(Tensor(a!) self, Scalar alpha=1, Scalar scale=1, Scalar input_scale=1) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & glu_out(const Tensor & self, int64_t dim, Tensor & out); // {"schema": "aten::glu.out(Tensor self, int dim=-1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor glu(const Tensor & self, int64_t dim); // {"schema": "aten::glu(Tensor self, int dim=-1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & glu_backward_out(const Tensor & grad_output, const Tensor & self, int64_t dim, Tensor & grad_input); // {"schema": "aten::glu_backward.grad_input(Tensor grad_output, Tensor self, int dim, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor glu_backward(const Tensor & grad_output, const Tensor & self, int64_t dim); // {"schema": "aten::glu_backward(Tensor grad_output, Tensor self, int dim) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor glu_jvp(const Tensor & glu, const Tensor & x, const Tensor & dx, int64_t dim); // {"schema": "aten::glu_jvp(Tensor glu, Tensor x, Tensor dx, int dim) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor glu_backward_jvp(const Tensor & grad_x, const Tensor & grad_glu, const Tensor & x, const Tensor & dgrad_glu, const Tensor & dx, int64_t dim); // {"schema": "aten::glu_backward_jvp(Tensor grad_x, Tensor grad_glu, Tensor x, Tensor dgrad_glu, Tensor dx, int dim) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & hardsigmoid_out(const Tensor & self, Tensor & out); // {"schema": "aten::hardsigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor hardsigmoid(const Tensor & self); // {"schema": "aten::hardsigmoid(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hardsigmoid_(Tensor & self); // {"schema": "aten::hardsigmoid_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hardsigmoid_backward_out(const Tensor & grad_output, const Tensor & self, Tensor & grad_input); // {"schema": "aten::hardsigmoid_backward.grad_input(Tensor grad_output, Tensor self, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor hardsigmoid_backward(const Tensor & grad_output, const Tensor & self); // {"schema": "aten::hardsigmoid_backward(Tensor grad_output, Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hardtanh_out(const Tensor & self, const Scalar & min_val, const Scalar & max_val, Tensor & out); // {"schema": "aten::hardtanh.out(Tensor self, Scalar min_val=-1, Scalar max_val=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor hardtanh(const Tensor & self, const Scalar & min_val, const Scalar & max_val); // {"schema": "aten::hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & hardtanh_backward_out(const Tensor & grad_output, const Tensor & self, const Scalar & min_val, const Scalar & max_val, Tensor & grad_input); // {"schema": "aten::hardtanh_backward.grad_input(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor hardtanh_backward(const Tensor & grad_output, const Tensor & self, const Scalar & min_val, const Scalar & max_val); // {"schema": "aten::hardtanh_backward(Tensor grad_output, Tensor self, Scalar min_val, Scalar max_val) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & hardtanh_(Tensor & self, const Scalar & min_val, const Scalar & max_val); // {"schema": "aten::hardtanh_(Tensor(a!) self, Scalar min_val=-1, Scalar max_val=1) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & hardswish_out(const Tensor & self, Tensor & out); // {"schema": "aten::hardswish.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor hardswish(const Tensor & self); // {"schema": "aten::hardswish(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & hardswish_(Tensor & self); // {"schema": "aten::hardswish_(Tensor(a!) self) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor hardswish_backward(const Tensor & grad_output, const Tensor & self); // {"schema": "aten::hardswish_backward(Tensor grad_output, Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & leaky_relu_out(const Tensor & self, const Scalar & negative_slope, Tensor & out); // {"schema": "aten::leaky_relu.out(Tensor self, Scalar negative_slope=0.01, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor leaky_relu(const Tensor & self, const Scalar & negative_slope); // {"schema": "aten::leaky_relu(Tensor self, Scalar negative_slope=0.01) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & leaky_relu_backward_out(const Tensor & grad_output, const Tensor & self, const Scalar & negative_slope, bool self_is_result, Tensor & grad_input); // {"schema": "aten::leaky_relu_backward.grad_input(Tensor grad_output, Tensor self, Scalar negative_slope, bool self_is_result, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor leaky_relu_backward(const Tensor & grad_output, const Tensor & self, const Scalar & negative_slope, bool self_is_result); // {"schema": "aten::leaky_relu_backward(Tensor grad_output, Tensor self, Scalar negative_slope, bool self_is_result) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & leaky_relu_(Tensor & self, const Scalar & negative_slope); // {"schema": "aten::leaky_relu_(Tensor(a!) self, Scalar negative_slope=0.01) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & log_sigmoid_out(const Tensor & self, Tensor & out); // {"schema": "aten::log_sigmoid.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor log_sigmoid(const Tensor & self); // {"schema": "aten::log_sigmoid(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> log_sigmoid_forward_out(const Tensor & self, Tensor & output, Tensor & buffer); // {"schema": "aten::log_sigmoid_forward.output(Tensor self, *, Tensor(a!) output, Tensor(b!) buffer) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> log_sigmoid_forward(const Tensor & self); // {"schema": "aten::log_sigmoid_forward(Tensor self) -> (Tensor output, Tensor buffer)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & log_sigmoid_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & buffer, Tensor & grad_input); // {"schema": "aten::log_sigmoid_backward.grad_input(Tensor grad_output, Tensor self, Tensor buffer, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor log_sigmoid_backward(const Tensor & grad_output, const Tensor & self, const Tensor & buffer); // {"schema": "aten::log_sigmoid_backward(Tensor grad_output, Tensor self, Tensor buffer) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & rrelu_with_noise_out(const Tensor & self, const Tensor & noise, const Scalar & lower, const Scalar & upper, bool training, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::rrelu_with_noise.out(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor rrelu_with_noise(const Tensor & self, const Tensor & noise, const Scalar & lower, const Scalar & upper, bool training, c10::optional<Generator> generator); // {"schema": "aten::rrelu_with_noise(Tensor self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor rrelu_with_noise_backward(const Tensor & grad_output, const Tensor & self, const Tensor & noise, const Scalar & lower, const Scalar & upper, bool training, bool self_is_result); // {"schema": "aten::rrelu_with_noise_backward(Tensor grad_output, Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, bool self_is_result) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rrelu_with_noise_(Tensor & self, const Tensor & noise, const Scalar & lower, const Scalar & upper, bool training, c10::optional<Generator> generator); // {"schema": "aten::rrelu_with_noise_(Tensor(a!) self, Tensor noise, Scalar lower=0.125, Scalar upper=0.3333333333333333, bool training=False, Generator? generator=None) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & softplus_out(const Tensor & self, const Scalar & beta, const Scalar & threshold, Tensor & out); // {"schema": "aten::softplus.out(Tensor self, Scalar beta=1, Scalar threshold=20, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor softplus(const Tensor & self, const Scalar & beta, const Scalar & threshold); // {"schema": "aten::softplus(Tensor self, Scalar beta=1, Scalar threshold=20) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & softplus_backward_out(const Tensor & grad_output, const Tensor & self, const Scalar & beta, const Scalar & threshold, Tensor & grad_input); // {"schema": "aten::softplus_backward.grad_input(Tensor grad_output, Tensor self, Scalar beta, Scalar threshold, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor softplus_backward(const Tensor & grad_output, const Tensor & self, const Scalar & beta, const Scalar & threshold); // {"schema": "aten::softplus_backward(Tensor grad_output, Tensor self, Scalar beta, Scalar threshold) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & softshrink_out(const Tensor & self, const Scalar & lambd, Tensor & out); // {"schema": "aten::softshrink.out(Tensor self, Scalar lambd=0.5, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor softshrink(const Tensor & self, const Scalar & lambd); // {"schema": "aten::softshrink(Tensor self, Scalar lambd=0.5) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & softshrink_backward_out(const Tensor & grad_output, const Tensor & self, const Scalar & lambd, Tensor & grad_input); // {"schema": "aten::softshrink_backward.grad_input(Tensor grad_output, Tensor self, Scalar lambd, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor softshrink_backward(const Tensor & grad_output, const Tensor & self, const Scalar & lambd); // {"schema": "aten::softshrink_backward(Tensor grad_output, Tensor self, Scalar lambd) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & adaptive_avg_pool2d_out(const Tensor & self, c10::SymIntArrayRef output_size, Tensor & out); // {"schema": "aten::adaptive_avg_pool2d.out(Tensor self, SymInt[2] output_size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor adaptive_avg_pool2d(const Tensor & self, c10::SymIntArrayRef output_size); // {"schema": "aten::adaptive_avg_pool2d(Tensor self, SymInt[2] output_size) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor mkldnn_adaptive_avg_pool2d(const Tensor & self, IntArrayRef output_size); // {"schema": "aten::mkldnn_adaptive_avg_pool2d(Tensor self, int[2] output_size) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & mkldnn_adaptive_avg_pool2d_out(const Tensor & self, IntArrayRef output_size, Tensor & out); // {"schema": "aten::mkldnn_adaptive_avg_pool2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor mkldnn_adaptive_avg_pool2d_backward(const Tensor & grad_output, const Tensor & self); // {"schema": "aten::mkldnn_adaptive_avg_pool2d_backward(Tensor grad_output, Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _adaptive_avg_pool2d(const Tensor & self, c10::SymIntArrayRef output_size); // {"schema": "aten::_adaptive_avg_pool2d(Tensor self, SymInt[2] output_size) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _adaptive_avg_pool2d_backward(const Tensor & grad_output, const Tensor & self); // {"schema": "aten::_adaptive_avg_pool2d_backward(Tensor grad_output, Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & adaptive_avg_pool3d_out(const Tensor & self, c10::SymIntArrayRef output_size, Tensor & out); // {"schema": "aten::adaptive_avg_pool3d.out(Tensor self, SymInt[3] output_size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor adaptive_avg_pool3d(const Tensor & self, c10::SymIntArrayRef output_size); // {"schema": "aten::adaptive_avg_pool3d(Tensor self, SymInt[3] output_size) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _adaptive_avg_pool3d(const Tensor & self, c10::SymIntArrayRef output_size); // {"schema": "aten::_adaptive_avg_pool3d(Tensor self, SymInt[3] output_size) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & adaptive_avg_pool3d_backward_out(const Tensor & grad_output, const Tensor & self, Tensor & grad_input); // {"schema": "aten::adaptive_avg_pool3d_backward.grad_input(Tensor grad_output, Tensor self, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _adaptive_avg_pool3d_backward(const Tensor & grad_output, const Tensor & self); // {"schema": "aten::_adaptive_avg_pool3d_backward(Tensor grad_output, Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor &,Tensor &> adaptive_max_pool2d_out(const Tensor & self, IntArrayRef output_size, Tensor & out, Tensor & indices); // {"schema": "aten::adaptive_max_pool2d.out(Tensor self, int[2] output_size, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> adaptive_max_pool2d(const Tensor & self, IntArrayRef output_size); // {"schema": "aten::adaptive_max_pool2d(Tensor self, int[2] output_size) -> (Tensor, Tensor)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & adaptive_max_pool2d_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & indices, Tensor & grad_input); // {"schema": "aten::adaptive_max_pool2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor adaptive_max_pool2d_backward(const Tensor & grad_output, const Tensor & self, const Tensor & indices); // {"schema": "aten::adaptive_max_pool2d_backward(Tensor grad_output, Tensor self, Tensor indices) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> adaptive_max_pool3d_out(const Tensor & self, IntArrayRef output_size, Tensor & out, Tensor & indices); // {"schema": "aten::adaptive_max_pool3d.out(Tensor self, int[3] output_size, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> adaptive_max_pool3d(const Tensor & self, IntArrayRef output_size); // {"schema": "aten::adaptive_max_pool3d(Tensor self, int[3] output_size) -> (Tensor, Tensor)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & adaptive_max_pool3d_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & indices, Tensor & grad_input); // {"schema": "aten::adaptive_max_pool3d_backward.grad_input(Tensor grad_output, Tensor self, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor adaptive_max_pool3d_backward(const Tensor & grad_output, const Tensor & self, const Tensor & indices); // {"schema": "aten::adaptive_max_pool3d_backward(Tensor grad_output, Tensor self, Tensor indices) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & avg_pool2d_out(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override, Tensor & out); // {"schema": "aten::avg_pool2d.out(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor avg_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override); // {"schema": "aten::avg_pool2d(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & avg_pool2d_backward_out(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override, Tensor & grad_input); // {"schema": "aten::avg_pool2d_backward.grad_input(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, bool ceil_mode, bool count_include_pad, int? divisor_override, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor avg_pool2d_backward(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override); // {"schema": "aten::avg_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & avg_pool3d_out(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override, Tensor & out); // {"schema": "aten::avg_pool3d.out(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor avg_pool3d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override); // {"schema": "aten::avg_pool3d(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, bool ceil_mode=False, bool count_include_pad=True, int? divisor_override=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & avg_pool3d_backward_out(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override, Tensor & grad_input); // {"schema": "aten::avg_pool3d_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor avg_pool3d_backward(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override); // {"schema": "aten::avg_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, bool ceil_mode, bool count_include_pad, int? divisor_override) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> fractional_max_pool2d_out(const Tensor & self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor & random_samples, Tensor & output, Tensor & indices); // {"schema": "aten::fractional_max_pool2d.output(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples, *, Tensor(a!) output, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> fractional_max_pool2d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor & random_samples); // {"schema": "aten::fractional_max_pool2d(Tensor self, int[2] kernel_size, int[2] output_size, Tensor random_samples) -> (Tensor, Tensor)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & fractional_max_pool2d_backward_out(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor & indices, Tensor & grad_input); // {"schema": "aten::fractional_max_pool2d_backward.grad_input(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] output_size, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor fractional_max_pool2d_backward(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor & indices); // {"schema": "aten::fractional_max_pool2d_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] output_size, Tensor indices) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> fractional_max_pool3d_out(const Tensor & self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor & random_samples, Tensor & output, Tensor & indices); // {"schema": "aten::fractional_max_pool3d.output(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples, *, Tensor(a!) output, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> fractional_max_pool3d(const Tensor & self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor & random_samples); // {"schema": "aten::fractional_max_pool3d(Tensor self, int[3] kernel_size, int[3] output_size, Tensor random_samples) -> (Tensor, Tensor)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & fractional_max_pool3d_backward_out(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor & indices, Tensor & grad_input); // {"schema": "aten::fractional_max_pool3d_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] output_size, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor fractional_max_pool3d_backward(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef output_size, const Tensor & indices); // {"schema": "aten::fractional_max_pool3d_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] output_size, Tensor indices) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor &,Tensor &> max_pool2d_with_indices_out(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor & out, Tensor & indices); // {"schema": "aten::max_pool2d_with_indices.out(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> max_pool2d_with_indices(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::max_pool2d_with_indices(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & max_pool2d_with_indices_backward_out(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, const Tensor & indices, Tensor & grad_input); // {"schema": "aten::max_pool2d_with_indices_backward.grad_input(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool ceil_mode, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor max_pool2d_with_indices_backward(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, const Tensor & indices); // {"schema": "aten::max_pool2d_with_indices_backward(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride, int[2] padding, int[2] dilation, bool ceil_mode, Tensor indices) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> max_pool3d_with_indices_out(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor & out, Tensor & indices); // {"schema": "aten::max_pool3d_with_indices.out(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False, *, Tensor(a!) out, Tensor(b!) indices) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> max_pool3d_with_indices(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode); // {"schema": "aten::max_pool3d_with_indices(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & max_pool3d_with_indices_backward_out(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, const Tensor & indices, Tensor & grad_input); // {"schema": "aten::max_pool3d_with_indices_backward.grad_input(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool ceil_mode, Tensor indices, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor max_pool3d_with_indices_backward(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, const Tensor & indices); // {"schema": "aten::max_pool3d_with_indices_backward(Tensor grad_output, Tensor self, int[3] kernel_size, int[3] stride, int[3] padding, int[3] dilation, bool ceil_mode, Tensor indices) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & max_unpool2d_out(const Tensor & self, const Tensor & indices, c10::SymIntArrayRef output_size, Tensor & out); // {"schema": "aten::max_unpool2d.out(Tensor self, Tensor indices, SymInt[2] output_size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor max_unpool2d(const Tensor & self, const Tensor & indices, c10::SymIntArrayRef output_size); // {"schema": "aten::max_unpool2d(Tensor self, Tensor indices, SymInt[2] output_size) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & max_unpool3d_out(const Tensor & self, const Tensor & indices, c10::SymIntArrayRef output_size, IntArrayRef stride, IntArrayRef padding, Tensor & out); // {"schema": "aten::max_unpool3d.out(Tensor self, Tensor indices, SymInt[3] output_size, int[3] stride, int[3] padding, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor max_unpool3d(const Tensor & self, const Tensor & indices, c10::SymIntArrayRef output_size, IntArrayRef stride, IntArrayRef padding); // {"schema": "aten::max_unpool3d(Tensor self, Tensor indices, SymInt[3] output_size, int[3] stride, int[3] padding) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & reflection_pad1d_out(const Tensor & self, c10::SymIntArrayRef padding, Tensor & out); // {"schema": "aten::reflection_pad1d.out(Tensor self, SymInt[2] padding, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor reflection_pad1d(const Tensor & self, c10::SymIntArrayRef padding); // {"schema": "aten::reflection_pad1d(Tensor self, SymInt[2] padding) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & reflection_pad1d_backward_out(const Tensor & grad_output, const Tensor & self, c10::SymIntArrayRef padding, Tensor & grad_input); // {"schema": "aten::reflection_pad1d_backward.grad_input(Tensor grad_output, Tensor self, SymInt[2] padding, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor reflection_pad1d_backward(const Tensor & grad_output, const Tensor & self, c10::SymIntArrayRef padding); // {"schema": "aten::reflection_pad1d_backward(Tensor grad_output, Tensor self, SymInt[2] padding) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & reflection_pad2d_out(const Tensor & self, c10::SymIntArrayRef padding, Tensor & out); // {"schema": "aten::reflection_pad2d.out(Tensor self, SymInt[4] padding, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor reflection_pad2d(const Tensor & self, c10::SymIntArrayRef padding); // {"schema": "aten::reflection_pad2d(Tensor self, SymInt[4] padding) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & reflection_pad2d_backward_out(const Tensor & grad_output, const Tensor & self, c10::SymIntArrayRef padding, Tensor & grad_input); // {"schema": "aten::reflection_pad2d_backward.grad_input(Tensor grad_output, Tensor self, SymInt[4] padding, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor reflection_pad2d_backward(const Tensor & grad_output, const Tensor & self, c10::SymIntArrayRef padding); // {"schema": "aten::reflection_pad2d_backward(Tensor grad_output, Tensor self, SymInt[4] padding) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & reflection_pad3d_out(const Tensor & self, c10::SymIntArrayRef padding, Tensor & out); // {"schema": "aten::reflection_pad3d.out(Tensor self, SymInt[6] padding, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor reflection_pad3d(const Tensor & self, c10::SymIntArrayRef padding); // {"schema": "aten::reflection_pad3d(Tensor self, SymInt[6] padding) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & reflection_pad3d_backward_out(const Tensor & grad_output, const Tensor & self, c10::SymIntArrayRef padding, Tensor & grad_input); // {"schema": "aten::reflection_pad3d_backward.grad_input(Tensor grad_output, Tensor self, SymInt[6] padding, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor reflection_pad3d_backward(const Tensor & grad_output, const Tensor & self, c10::SymIntArrayRef padding); // {"schema": "aten::reflection_pad3d_backward(Tensor grad_output, Tensor self, SymInt[6] padding) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & replication_pad1d_out(const Tensor & self, c10::SymIntArrayRef padding, Tensor & out); // {"schema": "aten::replication_pad1d.out(Tensor self, SymInt[2] padding, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor replication_pad1d(const Tensor & self, c10::SymIntArrayRef padding); // {"schema": "aten::replication_pad1d(Tensor self, SymInt[2] padding) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & replication_pad1d_backward_out(const Tensor & grad_output, const Tensor & self, c10::SymIntArrayRef padding, Tensor & grad_input); // {"schema": "aten::replication_pad1d_backward.grad_input(Tensor grad_output, Tensor self, SymInt[2] padding, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor replication_pad1d_backward(const Tensor & grad_output, const Tensor & self, c10::SymIntArrayRef padding); // {"schema": "aten::replication_pad1d_backward(Tensor grad_output, Tensor self, SymInt[2] padding) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & replication_pad2d_out(const Tensor & self, c10::SymIntArrayRef padding, Tensor & out); // {"schema": "aten::replication_pad2d.out(Tensor self, SymInt[4] padding, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor replication_pad2d(const Tensor & self, c10::SymIntArrayRef padding); // {"schema": "aten::replication_pad2d(Tensor self, SymInt[4] padding) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & replication_pad2d_backward_out(const Tensor & grad_output, const Tensor & self, c10::SymIntArrayRef padding, Tensor & grad_input); // {"schema": "aten::replication_pad2d_backward.grad_input(Tensor grad_output, Tensor self, SymInt[4] padding, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor replication_pad2d_backward(const Tensor & grad_output, const Tensor & self, c10::SymIntArrayRef padding); // {"schema": "aten::replication_pad2d_backward(Tensor grad_output, Tensor self, SymInt[4] padding) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & replication_pad3d_out(const Tensor & self, c10::SymIntArrayRef padding, Tensor & out); // {"schema": "aten::replication_pad3d.out(Tensor self, SymInt[6] padding, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor replication_pad3d(const Tensor & self, c10::SymIntArrayRef padding); // {"schema": "aten::replication_pad3d(Tensor self, SymInt[6] padding) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & replication_pad3d_backward_out(const Tensor & grad_output, const Tensor & self, c10::SymIntArrayRef padding, Tensor & grad_input); // {"schema": "aten::replication_pad3d_backward.grad_input(Tensor grad_output, Tensor self, SymInt[6] padding, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor replication_pad3d_backward(const Tensor & grad_output, const Tensor & self, c10::SymIntArrayRef padding); // {"schema": "aten::replication_pad3d_backward(Tensor grad_output, Tensor self, SymInt[6] padding) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _pad_circular(const Tensor & self, c10::SymIntArrayRef pad); // {"schema": "aten::_pad_circular(Tensor self, SymInt[] pad) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _pad_enum(const Tensor & self, c10::SymIntArrayRef pad, int64_t mode, c10::optional<double> value); // {"schema": "aten::_pad_enum(Tensor self, SymInt[] pad, int mode, float? value=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor pad(const Tensor & self, c10::SymIntArrayRef pad, c10::string_view mode, c10::optional<double> value); // {"schema": "aten::pad(Tensor self, SymInt[] pad, str mode=\"constant\", float? value=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor upsample_linear1d(const Tensor & input, OptionalSymIntArrayRef output_size, bool align_corners, c10::optional<ArrayRef<double>> scale_factors); // {"schema": "aten::upsample_linear1d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor upsample_bilinear2d(const Tensor & input, OptionalSymIntArrayRef output_size, bool align_corners, c10::optional<ArrayRef<double>> scale_factors); // {"schema": "aten::upsample_bilinear2d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _upsample_bilinear2d_aa(const Tensor & input, OptionalSymIntArrayRef output_size, bool align_corners, c10::optional<ArrayRef<double>> scale_factors); // {"schema": "aten::_upsample_bilinear2d_aa.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor upsample_trilinear3d(const Tensor & input, OptionalSymIntArrayRef output_size, bool align_corners, c10::optional<ArrayRef<double>> scale_factors); // {"schema": "aten::upsample_trilinear3d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor upsample_bicubic2d(const Tensor & input, OptionalSymIntArrayRef output_size, bool align_corners, c10::optional<ArrayRef<double>> scale_factors); // {"schema": "aten::upsample_bicubic2d.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _upsample_bicubic2d_aa(const Tensor & input, OptionalSymIntArrayRef output_size, bool align_corners, c10::optional<ArrayRef<double>> scale_factors); // {"schema": "aten::_upsample_bicubic2d_aa.vec(Tensor input, SymInt[]? output_size, bool align_corners, float[]? scale_factors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor upsample_nearest1d(const Tensor & input, OptionalSymIntArrayRef output_size, c10::optional<ArrayRef<double>> scale_factors); // {"schema": "aten::upsample_nearest1d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _upsample_nearest_exact1d(const Tensor & input, OptionalSymIntArrayRef output_size, c10::optional<ArrayRef<double>> scale_factors); // {"schema": "aten::_upsample_nearest_exact1d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor upsample_nearest2d(const Tensor & input, OptionalSymIntArrayRef output_size, c10::optional<ArrayRef<double>> scale_factors); // {"schema": "aten::upsample_nearest2d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _upsample_nearest_exact2d(const Tensor & input, OptionalSymIntArrayRef output_size, c10::optional<ArrayRef<double>> scale_factors); // {"schema": "aten::_upsample_nearest_exact2d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor upsample_nearest3d(const Tensor & input, OptionalSymIntArrayRef output_size, c10::optional<ArrayRef<double>> scale_factors); // {"schema": "aten::upsample_nearest3d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _upsample_nearest_exact3d(const Tensor & input, OptionalSymIntArrayRef output_size, c10::optional<ArrayRef<double>> scale_factors); // {"schema": "aten::_upsample_nearest_exact3d.vec(Tensor input, SymInt[]? output_size, float[]? scale_factors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & upsample_linear1d_out(const Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales, Tensor & out); // {"schema": "aten::upsample_linear1d.out(Tensor self, SymInt[1] output_size, bool align_corners, float? scales=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_linear1d(const Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales); // {"schema": "aten::upsample_linear1d(Tensor self, SymInt[1] output_size, bool align_corners, float? scales=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & upsample_linear1d_backward_out(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales, Tensor & grad_input); // {"schema": "aten::upsample_linear1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, bool align_corners, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_linear1d_backward(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales); // {"schema": "aten::upsample_linear1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, bool align_corners, float? scales=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & upsample_bilinear2d_out(const Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & out); // {"schema": "aten::upsample_bilinear2d.out(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_bilinear2d(const Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::upsample_bilinear2d(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & upsample_bilinear2d_backward_out(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & grad_input); // {"schema": "aten::upsample_bilinear2d_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_bilinear2d_backward(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::upsample_bilinear2d_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _upsample_bilinear2d_aa_out(const Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & out); // {"schema": "aten::_upsample_bilinear2d_aa.out(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _upsample_bilinear2d_aa(const Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::_upsample_bilinear2d_aa(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _upsample_bilinear2d_aa_backward_out(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & grad_input); // {"schema": "aten::_upsample_bilinear2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _upsample_bilinear2d_aa_backward(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::_upsample_bilinear2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & upsample_bicubic2d_out(const Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & out); // {"schema": "aten::upsample_bicubic2d.out(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_bicubic2d(const Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::upsample_bicubic2d(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & upsample_bicubic2d_backward_out(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & grad_input); // {"schema": "aten::upsample_bicubic2d_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_bicubic2d_backward(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::upsample_bicubic2d_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _upsample_bicubic2d_aa_out(const Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & out); // {"schema": "aten::_upsample_bicubic2d_aa.out(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _upsample_bicubic2d_aa(const Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::_upsample_bicubic2d_aa(Tensor self, SymInt[2] output_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _upsample_bicubic2d_aa_backward_out(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & grad_input); // {"schema": "aten::_upsample_bicubic2d_aa_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _upsample_bicubic2d_aa_backward(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::_upsample_bicubic2d_aa_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, bool align_corners, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & upsample_trilinear3d_out(const Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_d, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & out); // {"schema": "aten::upsample_trilinear3d.out(Tensor self, SymInt[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_trilinear3d(const Tensor & self, c10::SymIntArrayRef output_size, bool align_corners, c10::optional<double> scales_d, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::upsample_trilinear3d(Tensor self, SymInt[3] output_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & upsample_trilinear3d_backward_out(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_d, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & grad_input); // {"schema": "aten::upsample_trilinear3d_backward.grad_input(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_trilinear3d_backward(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, bool align_corners, c10::optional<double> scales_d, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::upsample_trilinear3d_backward(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, bool align_corners, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & upsample_nearest1d_out(const Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales, Tensor & out); // {"schema": "aten::upsample_nearest1d.out(Tensor self, SymInt[1] output_size, float? scales=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _upsample_nearest_exact1d_out(const Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales, Tensor & out); // {"schema": "aten::_upsample_nearest_exact1d.out(Tensor self, SymInt[1] output_size, float? scales=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_nearest1d(const Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales); // {"schema": "aten::upsample_nearest1d(Tensor self, SymInt[1] output_size, float? scales=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _upsample_nearest_exact1d(const Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales); // {"schema": "aten::_upsample_nearest_exact1d(Tensor self, SymInt[1] output_size, float? scales=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & upsample_nearest1d_backward_out(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales, Tensor & grad_input); // {"schema": "aten::upsample_nearest1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _upsample_nearest_exact1d_backward_out(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales, Tensor & grad_input); // {"schema": "aten::_upsample_nearest_exact1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_nearest1d_backward(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales); // {"schema": "aten::upsample_nearest1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _upsample_nearest_exact1d_backward(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales); // {"schema": "aten::_upsample_nearest_exact1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & upsample_nearest2d_out(const Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & out); // {"schema": "aten::upsample_nearest2d.out(Tensor self, SymInt[2] output_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _upsample_nearest_exact2d_out(const Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & out); // {"schema": "aten::_upsample_nearest_exact2d.out(Tensor self, SymInt[2] output_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_nearest2d(const Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::upsample_nearest2d(Tensor self, SymInt[2] output_size, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _upsample_nearest_exact2d(const Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::_upsample_nearest_exact2d(Tensor self, SymInt[2] output_size, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & upsample_nearest2d_backward_out(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & grad_input); // {"schema": "aten::upsample_nearest2d_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _upsample_nearest_exact2d_backward_out(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & grad_input); // {"schema": "aten::_upsample_nearest_exact2d_backward.grad_input(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_nearest2d_backward(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::upsample_nearest2d_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _upsample_nearest_exact2d_backward(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::_upsample_nearest_exact2d_backward(Tensor grad_output, SymInt[2] output_size, SymInt[4] input_size, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & upsample_nearest3d_out(const Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_d, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & out); // {"schema": "aten::upsample_nearest3d.out(Tensor self, SymInt[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _upsample_nearest_exact3d_out(const Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_d, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & out); // {"schema": "aten::_upsample_nearest_exact3d.out(Tensor self, SymInt[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_nearest3d(const Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_d, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::upsample_nearest3d(Tensor self, SymInt[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _upsample_nearest_exact3d(const Tensor & self, c10::SymIntArrayRef output_size, c10::optional<double> scales_d, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::_upsample_nearest_exact3d(Tensor self, SymInt[3] output_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & upsample_nearest3d_backward_out(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_d, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & grad_input); // {"schema": "aten::upsample_nearest3d_backward.grad_input(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _upsample_nearest_exact3d_backward_out(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_d, c10::optional<double> scales_h, c10::optional<double> scales_w, Tensor & grad_input); // {"schema": "aten::_upsample_nearest_exact3d_backward.grad_input(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor upsample_nearest3d_backward(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_d, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::upsample_nearest3d_backward(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _upsample_nearest_exact3d_backward(const Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales_d, c10::optional<double> scales_h, c10::optional<double> scales_w); // {"schema": "aten::_upsample_nearest_exact3d_backward(Tensor grad_output, SymInt[3] output_size, SymInt[5] input_size, float? scales_d=None, float? scales_h=None, float? scales_w=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sigmoid_backward_out(const Tensor & grad_output, const Tensor & output, Tensor & grad_input); // {"schema": "aten::sigmoid_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor sigmoid_backward(const Tensor & grad_output, const Tensor & output); // {"schema": "aten::sigmoid_backward(Tensor grad_output, Tensor output) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & logit_backward_out(const Tensor & grad_output, const Tensor & self, c10::optional<double> eps, Tensor & grad_input); // {"schema": "aten::logit_backward.grad_input(Tensor grad_output, Tensor self, float? eps=None, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor logit_backward(const Tensor & grad_output, const Tensor & self, c10::optional<double> eps); // {"schema": "aten::logit_backward(Tensor grad_output, Tensor self, float? eps=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & tanh_backward_out(const Tensor & grad_output, const Tensor & output, Tensor & grad_input); // {"schema": "aten::tanh_backward.grad_input(Tensor grad_output, Tensor output, *, Tensor(a!) grad_input) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor tanh_backward(const Tensor & grad_output, const Tensor & output); // {"schema": "aten::tanh_backward(Tensor grad_output, Tensor output) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & slow_conv_transpose2d_out(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef dilation, Tensor & out); // {"schema": "aten::slow_conv_transpose2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] output_padding=0, SymInt[2] dilation=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor slow_conv_transpose2d(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef dilation); // {"schema": "aten::slow_conv_transpose2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] output_padding=0, SymInt[2] dilation=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & slow_conv_transpose3d_out(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef dilation, Tensor & out); // {"schema": "aten::slow_conv_transpose3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] output_padding=0, SymInt[3] dilation=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor slow_conv_transpose3d(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef dilation); // {"schema": "aten::slow_conv_transpose3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] output_padding=0, SymInt[3] dilation=1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & thnn_conv2d_out(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, Tensor & out); // {"schema": "aten::thnn_conv2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor thnn_conv2d(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding); // {"schema": "aten::thnn_conv2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & _slow_conv2d_forward_out(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, Tensor & output); // {"schema": "aten::_slow_conv2d_forward.output(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) output) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _slow_conv2d_forward(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding); // {"schema": "aten::_slow_conv2d_forward(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> _slow_conv2d_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, Tensor & grad_input, Tensor & grad_weight, Tensor & grad_bias); // {"schema": "aten::_slow_conv2d_backward.grad_input(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, *, Tensor(a!) grad_input, Tensor(b!) grad_weight, Tensor(c!) grad_bias) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _slow_conv2d_backward(const Tensor & grad_output, const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask); // {"schema": "aten::_slow_conv2d_backward.output_mask(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask) -> (Tensor grad_input, Tensor grad_weight, Tensor grad_bias)", "dispatch": "True", "default": "False"}
|
||
|
const Tensor & _conv_depthwise2d_out(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, const Tensor & out); // {"schema": "aten::_conv_depthwise2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, SymInt[2] dilation, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _conv_depthwise2d(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation); // {"schema": "aten::_conv_depthwise2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias, SymInt[2] stride, SymInt[2] padding, SymInt[2] dilation) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor conv_depthwise3d(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation); // {"schema": "aten::conv_depthwise3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & slow_conv3d_out(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, Tensor & out); // {"schema": "aten::slow_conv3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor slow_conv3d(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding); // {"schema": "aten::slow_conv3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & slow_conv3d_forward_out(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, Tensor & output); // {"schema": "aten::slow_conv3d_forward.output(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, *, Tensor(a!) output) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor slow_conv3d_forward(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding); // {"schema": "aten::slow_conv3d_forward(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor slow_conv_dilated2d(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation); // {"schema": "aten::slow_conv_dilated2d(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] dilation=1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor slow_conv_dilated3d(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation); // {"schema": "aten::slow_conv_dilated3d(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] dilation=1) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & col2im_out(const Tensor & self, c10::SymIntArrayRef output_size, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride, Tensor & out); // {"schema": "aten::col2im.out(Tensor self, SymInt[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor col2im(const Tensor & self, c10::SymIntArrayRef output_size, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride); // {"schema": "aten::col2im(Tensor self, SymInt[2] output_size, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor column_stack(TensorList tensors); // {"schema": "aten::column_stack(Tensor[] tensors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & column_stack_out(TensorList tensors, Tensor & out); // {"schema": "aten::column_stack.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & im2col_out(const Tensor & self, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride, Tensor & out); // {"schema": "aten::im2col.out(Tensor self, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor im2col(const Tensor & self, IntArrayRef kernel_size, IntArrayRef dilation, IntArrayRef padding, IntArrayRef stride); // {"schema": "aten::im2col(Tensor self, int[2] kernel_size, int[2] dilation, int[2] padding, int[2] stride) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor isfinite(const Tensor & self); // {"schema": "aten::isfinite(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor isinf(const Tensor & self); // {"schema": "aten::isinf(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
void record_stream(Tensor & self, Stream s); // {"schema": "aten::record_stream(Tensor(a!) self, Stream s) -> ()", "dispatch": "True", "default": "False"}
|
||
|
Tensor isposinf(const Tensor & self); // {"schema": "aten::isposinf(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & isposinf_out(const Tensor & self, Tensor & out); // {"schema": "aten::isposinf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor isneginf(const Tensor & self); // {"schema": "aten::isneginf(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & isneginf_out(const Tensor & self, Tensor & out); // {"schema": "aten::isneginf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _add_batch_dim(const Tensor & self, int64_t batch_dim, int64_t level); // {"schema": "aten::_add_batch_dim(Tensor self, int batch_dim, int level) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _remove_batch_dim(const Tensor & self, int64_t level, int64_t batch_size, int64_t out_dim); // {"schema": "aten::_remove_batch_dim(Tensor self, int level, int batch_size, int out_dim) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_entr(const Tensor & self); // {"schema": "aten::special_entr(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_entr_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_entr.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_ndtri(const Tensor & self); // {"schema": "aten::special_ndtri(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_ndtri_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_ndtri.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_log_ndtr(const Tensor & self); // {"schema": "aten::special_log_ndtr(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_log_ndtr_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_log_ndtr.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_expm1(const Tensor & self); // {"schema": "aten::special_expm1(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_expm1_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_expm1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_exp2(const Tensor & self); // {"schema": "aten::special_exp2(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_exp2_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_exp2.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_psi(const Tensor & self); // {"schema": "aten::special_psi(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_psi_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_psi.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_digamma(const Tensor & self); // {"schema": "aten::special_digamma(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_digamma_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_digamma.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_gammaln(const Tensor & self); // {"schema": "aten::special_gammaln(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_gammaln_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_gammaln.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_erf(const Tensor & self); // {"schema": "aten::special_erf(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_erf_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_erf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_erfc(const Tensor & self); // {"schema": "aten::special_erfc(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_erfc_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_erfc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_erfcx(const Tensor & self); // {"schema": "aten::special_erfcx(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_erfcx_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_erfcx.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_erfinv(const Tensor & self); // {"schema": "aten::special_erfinv(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_erfinv_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_erfinv.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_ndtr(const Tensor & self); // {"schema": "aten::special_ndtr(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_ndtr_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_ndtr.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_xlog1py(const Tensor & self, const Tensor & other); // {"schema": "aten::special_xlog1py(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_xlog1py(const Scalar & self, const Tensor & other); // {"schema": "aten::special_xlog1py.self_scalar(Scalar self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_xlog1py(const Tensor & self, const Scalar & other); // {"schema": "aten::special_xlog1py.other_scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_xlog1py_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::special_xlog1py.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_xlog1py_out(const Scalar & self, const Tensor & other, Tensor & out); // {"schema": "aten::special_xlog1py.self_scalar_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_xlog1py_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::special_xlog1py.other_scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_xlogy(const Tensor & self, const Tensor & other); // {"schema": "aten::special_xlogy(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_xlogy(const Scalar & self, const Tensor & other); // {"schema": "aten::special_xlogy.self_scalar(Scalar self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_xlogy(const Tensor & self, const Scalar & other); // {"schema": "aten::special_xlogy.other_scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_xlogy_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::special_xlogy.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_xlogy_out(const Scalar & self, const Tensor & other, Tensor & out); // {"schema": "aten::special_xlogy.self_scalar_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_xlogy_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::special_xlogy.other_scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_zeta(const Tensor & self, const Tensor & other); // {"schema": "aten::special_zeta(Tensor self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_zeta(const Scalar & self, const Tensor & other); // {"schema": "aten::special_zeta.self_scalar(Scalar self, Tensor other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_zeta(const Tensor & self, const Scalar & other); // {"schema": "aten::special_zeta.other_scalar(Tensor self, Scalar other) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_zeta_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::special_zeta.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_zeta_out(const Scalar & self, const Tensor & other, Tensor & out); // {"schema": "aten::special_zeta.self_scalar_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_zeta_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::special_zeta.other_scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_i0(const Tensor & self); // {"schema": "aten::special_i0(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_i0_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_i0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_i0e(const Tensor & self); // {"schema": "aten::special_i0e(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_i0e_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_i0e.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_i1(const Tensor & self); // {"schema": "aten::special_i1(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_i1_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_i1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_i1e(const Tensor & self); // {"schema": "aten::special_i1e(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_i1e_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_i1e.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_logit(const Tensor & self, c10::optional<double> eps); // {"schema": "aten::special_logit(Tensor self, float? eps=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_logit_out(const Tensor & self, c10::optional<double> eps, Tensor & out); // {"schema": "aten::special_logit.out(Tensor self, float? eps=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_polygamma(int64_t n, const Tensor & self); // {"schema": "aten::special_polygamma(int n, Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_polygamma_out(int64_t n, const Tensor & self, Tensor & out); // {"schema": "aten::special_polygamma.out(int n, Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_logsumexp(const Tensor & self, IntArrayRef dim, bool keepdim); // {"schema": "aten::special_logsumexp(Tensor self, int[1] dim, bool keepdim=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_logsumexp_out(const Tensor & self, IntArrayRef dim, bool keepdim, Tensor & out); // {"schema": "aten::special_logsumexp.out(Tensor self, int[1] dim, bool keepdim=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_expit(const Tensor & self); // {"schema": "aten::special_expit(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_expit_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_expit.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_sinc(const Tensor & self); // {"schema": "aten::special_sinc(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_sinc_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_sinc.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_round(const Tensor & self, int64_t decimals); // {"schema": "aten::special_round(Tensor self, *, int decimals=0) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_round_out(const Tensor & self, int64_t decimals, Tensor & out); // {"schema": "aten::special_round.out(Tensor self, *, int decimals=0, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_log1p(const Tensor & self); // {"schema": "aten::special_log1p(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_log1p_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_log1p.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_log_softmax(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype); // {"schema": "aten::special_log_softmax(Tensor self, int dim, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_gammainc_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::special_gammainc.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_gammainc(const Tensor & self, const Tensor & other); // {"schema": "aten::special_gammainc(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_gammaincc_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::special_gammaincc.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_gammaincc(const Tensor & self, const Tensor & other); // {"schema": "aten::special_gammaincc(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_multigammaln(const Tensor & self, int64_t p); // {"schema": "aten::special_multigammaln(Tensor self, int p) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & special_multigammaln_out(const Tensor & self, int64_t p, Tensor & out); // {"schema": "aten::special_multigammaln.out(Tensor self, int p, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor special_softmax(const Tensor & self, int64_t dim, c10::optional<ScalarType> dtype); // {"schema": "aten::special_softmax(Tensor self, int dim, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_fft(const Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_fft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_fft_out(const Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_fft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_ifft(const Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_ifft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_ifft_out(const Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_ifft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_rfft(const Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_rfft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_rfft_out(const Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_rfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_irfft(const Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_irfft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_irfft_out(const Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_irfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_hfft(const Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_hfft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_hfft_out(const Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_hfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_ihfft(const Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_ihfft(Tensor self, SymInt? n=None, int dim=-1, str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_ihfft_out(const Tensor & self, c10::optional<c10::SymInt> n, int64_t dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_ihfft.out(Tensor self, SymInt? n=None, int dim=-1, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_fft2(const Tensor & self, OptionalSymIntArrayRef s, IntArrayRef dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_fft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_fft2_out(const Tensor & self, OptionalSymIntArrayRef s, IntArrayRef dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_fft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_ifft2(const Tensor & self, OptionalSymIntArrayRef s, IntArrayRef dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_ifft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_ifft2_out(const Tensor & self, OptionalSymIntArrayRef s, IntArrayRef dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_ifft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_rfft2(const Tensor & self, OptionalSymIntArrayRef s, IntArrayRef dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_rfft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_rfft2_out(const Tensor & self, OptionalSymIntArrayRef s, IntArrayRef dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_rfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_irfft2(const Tensor & self, OptionalSymIntArrayRef s, IntArrayRef dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_irfft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_irfft2_out(const Tensor & self, OptionalSymIntArrayRef s, IntArrayRef dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_irfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_hfft2(const Tensor & self, OptionalSymIntArrayRef s, IntArrayRef dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_hfft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
const Tensor & fft_hfft2_out(const Tensor & self, OptionalSymIntArrayRef s, IntArrayRef dim, c10::optional<c10::string_view> norm, const Tensor & out); // {"schema": "aten::fft_hfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_ihfft2(const Tensor & self, OptionalSymIntArrayRef s, IntArrayRef dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_ihfft2(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
const Tensor & fft_ihfft2_out(const Tensor & self, OptionalSymIntArrayRef s, IntArrayRef dim, c10::optional<c10::string_view> norm, const Tensor & out); // {"schema": "aten::fft_ihfft2.out(Tensor self, SymInt[1]? s=None, int[1] dim=[-2,-1], str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_fftn(const Tensor & self, OptionalSymIntArrayRef s, OptionalIntArrayRef dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_fftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_fftn_out(const Tensor & self, OptionalSymIntArrayRef s, OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_fftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_ifftn(const Tensor & self, OptionalSymIntArrayRef s, OptionalIntArrayRef dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_ifftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_ifftn_out(const Tensor & self, OptionalSymIntArrayRef s, OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_ifftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_rfftn(const Tensor & self, OptionalSymIntArrayRef s, OptionalIntArrayRef dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_rfftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_rfftn_out(const Tensor & self, OptionalSymIntArrayRef s, OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_rfftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_irfftn(const Tensor & self, OptionalSymIntArrayRef s, OptionalIntArrayRef dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_irfftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & fft_irfftn_out(const Tensor & self, OptionalSymIntArrayRef s, OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, Tensor & out); // {"schema": "aten::fft_irfftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_hfftn(const Tensor & self, OptionalSymIntArrayRef s, OptionalIntArrayRef dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_hfftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
const Tensor & fft_hfftn_out(const Tensor & self, OptionalSymIntArrayRef s, OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, const Tensor & out); // {"schema": "aten::fft_hfftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_ihfftn(const Tensor & self, OptionalSymIntArrayRef s, OptionalIntArrayRef dim, c10::optional<c10::string_view> norm); // {"schema": "aten::fft_ihfftn(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
const Tensor & fft_ihfftn_out(const Tensor & self, OptionalSymIntArrayRef s, OptionalIntArrayRef dim, c10::optional<c10::string_view> norm, const Tensor & out); // {"schema": "aten::fft_ihfftn.out(Tensor self, SymInt[1]? s=None, int[1]? dim=None, str? norm=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_fftfreq(int64_t n, double d, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::fft_fftfreq(int n, float d=1.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & fft_fftfreq_out(int64_t n, double d, Tensor & out); // {"schema": "aten::fft_fftfreq.out(int n, float d=1.0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor fft_rfftfreq(int64_t n, double d, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::fft_rfftfreq(int n, float d=1.0, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & fft_rfftfreq_out(int64_t n, double d, Tensor & out); // {"schema": "aten::fft_rfftfreq.out(int n, float d=1.0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor fft_fftshift(const Tensor & self, OptionalIntArrayRef dim); // {"schema": "aten::fft_fftshift(Tensor self, int[1]? dim=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor fft_ifftshift(const Tensor & self, OptionalIntArrayRef dim); // {"schema": "aten::fft_ifftshift(Tensor self, int[1]? dim=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> linalg_cholesky_ex(const Tensor & self, bool upper, bool check_errors); // {"schema": "aten::linalg_cholesky_ex(Tensor self, *, bool upper=False, bool check_errors=False) -> (Tensor L, Tensor info)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> linalg_cholesky_ex_out(const Tensor & self, bool upper, bool check_errors, Tensor & L, Tensor & info); // {"schema": "aten::linalg_cholesky_ex.L(Tensor self, *, bool upper=False, bool check_errors=False, Tensor(a!) L, Tensor(b!) info) -> (Tensor(a!) L, Tensor(b!) info)", "dispatch": "True", "default": "False"}
|
||
|
Tensor linalg_cholesky(const Tensor & self, bool upper); // {"schema": "aten::linalg_cholesky(Tensor self, *, bool upper=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_cholesky_out(const Tensor & self, bool upper, Tensor & out); // {"schema": "aten::linalg_cholesky.out(Tensor self, *, bool upper=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_cross(const Tensor & self, const Tensor & other, int64_t dim); // {"schema": "aten::linalg_cross(Tensor self, Tensor other, *, int dim=-1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & linalg_cross_out(const Tensor & self, const Tensor & other, int64_t dim, Tensor & out); // {"schema": "aten::linalg_cross.out(Tensor self, Tensor other, *, int dim=-1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> linalg_lu_factor(const Tensor & A, bool pivot); // {"schema": "aten::linalg_lu_factor(Tensor A, *, bool pivot=True) -> (Tensor LU, Tensor pivots)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> linalg_lu_factor_out(const Tensor & A, bool pivot, Tensor & LU, Tensor & pivots); // {"schema": "aten::linalg_lu_factor.out(Tensor A, *, bool pivot=True, Tensor(a!) LU, Tensor(b!) pivots) -> (Tensor(a!) LU, Tensor(b!) pivots)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> linalg_lu_factor_ex(const Tensor & A, bool pivot, bool check_errors); // {"schema": "aten::linalg_lu_factor_ex(Tensor A, *, bool pivot=True, bool check_errors=False) -> (Tensor LU, Tensor pivots, Tensor info)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> linalg_lu_factor_ex_out(const Tensor & A, bool pivot, bool check_errors, Tensor & LU, Tensor & pivots, Tensor & info); // {"schema": "aten::linalg_lu_factor_ex.out(Tensor A, *, bool pivot=True, bool check_errors=False, Tensor(a!) LU, Tensor(b!) pivots, Tensor(c!) info) -> (Tensor(a!) LU, Tensor(b!) pivots, Tensor(c!) info)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> linalg_lu(const Tensor & A, bool pivot); // {"schema": "aten::linalg_lu(Tensor A, *, bool pivot=True) -> (Tensor P, Tensor L, Tensor U)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> linalg_lu_out(const Tensor & A, bool pivot, Tensor & P, Tensor & L, Tensor & U); // {"schema": "aten::linalg_lu.out(Tensor A, *, bool pivot=True, Tensor(a!) P, Tensor(b!) L, Tensor(c!) U) -> (Tensor(a!) P, Tensor(b!) L, Tensor(c!) U)", "dispatch": "True", "default": "False"}
|
||
|
Tensor linalg_lu_solve(const Tensor & LU, const Tensor & pivots, const Tensor & B, bool left, bool adjoint); // {"schema": "aten::linalg_lu_solve(Tensor LU, Tensor pivots, Tensor B, *, bool left=True, bool adjoint=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & linalg_lu_solve_out(const Tensor & LU, const Tensor & pivots, const Tensor & B, bool left, bool adjoint, Tensor & out); // {"schema": "aten::linalg_lu_solve.out(Tensor LU, Tensor pivots, Tensor B, *, bool left=True, bool adjoint=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _linalg_det(const Tensor & A); // {"schema": "aten::_linalg_det(Tensor A) -> (Tensor result, Tensor LU, Tensor pivots)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> _linalg_det_out(const Tensor & A, Tensor & result, Tensor & LU, Tensor & pivots); // {"schema": "aten::_linalg_det.result(Tensor A, *, Tensor(a!) result, Tensor(b!) LU, Tensor(c!) pivots) -> (Tensor(a!) result, Tensor(b!) LU, Tensor(c!) pivots)", "dispatch": "True", "default": "False"}
|
||
|
Tensor linalg_det(const Tensor & A); // {"schema": "aten::linalg_det(Tensor A) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_det_out(const Tensor & A, Tensor & out); // {"schema": "aten::linalg_det.out(Tensor A, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor det(const Tensor & self); // {"schema": "aten::det(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> linalg_ldl_factor_ex(const Tensor & self, bool hermitian, bool check_errors); // {"schema": "aten::linalg_ldl_factor_ex(Tensor self, *, bool hermitian=False, bool check_errors=False) -> (Tensor LD, Tensor pivots, Tensor info)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> linalg_ldl_factor_ex_out(const Tensor & self, bool hermitian, bool check_errors, Tensor & LD, Tensor & pivots, Tensor & info); // {"schema": "aten::linalg_ldl_factor_ex.out(Tensor self, *, bool hermitian=False, bool check_errors=False, Tensor(a!) LD, Tensor(b!) pivots, Tensor(c!) info) -> (Tensor(a!) LD, Tensor(b!) pivots, Tensor(c!) info)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> linalg_ldl_factor(const Tensor & self, bool hermitian); // {"schema": "aten::linalg_ldl_factor(Tensor self, *, bool hermitian=False) -> (Tensor LD, Tensor pivots)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> linalg_ldl_factor_out(const Tensor & self, bool hermitian, Tensor & LD, Tensor & pivots); // {"schema": "aten::linalg_ldl_factor.out(Tensor self, *, bool hermitian=False, Tensor(a!) LD, Tensor(b!) pivots) -> (Tensor(a!) LD, Tensor(b!) pivots)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_ldl_solve(const Tensor & LD, const Tensor & pivots, const Tensor & B, bool hermitian); // {"schema": "aten::linalg_ldl_solve(Tensor LD, Tensor pivots, Tensor B, *, bool hermitian=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & linalg_ldl_solve_out(const Tensor & LD, const Tensor & pivots, const Tensor & B, bool hermitian, Tensor & out); // {"schema": "aten::linalg_ldl_solve.out(Tensor LD, Tensor pivots, Tensor B, *, bool hermitian=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> linalg_lstsq(const Tensor & self, const Tensor & b, c10::optional<double> rcond, c10::optional<c10::string_view> driver); // {"schema": "aten::linalg_lstsq(Tensor self, Tensor b, float? rcond=None, *, str? driver=None) -> (Tensor solution, Tensor residuals, Tensor rank, Tensor singular_values)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &,Tensor &> linalg_lstsq_out(const Tensor & self, const Tensor & b, c10::optional<double> rcond, c10::optional<c10::string_view> driver, Tensor & solution, Tensor & residuals, Tensor & rank, Tensor & singular_values); // {"schema": "aten::linalg_lstsq.out(Tensor self, Tensor b, float? rcond=None, *, str? driver=None, Tensor(a!) solution, Tensor(b!) residuals, Tensor(c!) rank, Tensor(d!) singular_values) -> (Tensor(a!) solution, Tensor(b!) residuals, Tensor(c!) rank, Tensor(d!) singular_values)", "dispatch": "True", "default": "False"}
|
||
|
Tensor linalg_matmul(const Tensor & self, const Tensor & other); // {"schema": "aten::linalg_matmul(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_matmul_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::linalg_matmul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_vecdot(const Tensor & x, const Tensor & y, int64_t dim); // {"schema": "aten::linalg_vecdot(Tensor x, Tensor y, *, int dim=-1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_vecdot_out(const Tensor & x, const Tensor & y, int64_t dim, Tensor & out); // {"schema": "aten::linalg_vecdot.out(Tensor x, Tensor y, *, int dim=-1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_matrix_exp(const Tensor & self); // {"schema": "aten::linalg_matrix_exp(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> _linalg_slogdet(const Tensor & A); // {"schema": "aten::_linalg_slogdet(Tensor A) -> (Tensor sign, Tensor logabsdet, Tensor LU, Tensor pivots)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &,Tensor &> _linalg_slogdet_out(const Tensor & A, Tensor & sign, Tensor & logabsdet, Tensor & LU, Tensor & pivots); // {"schema": "aten::_linalg_slogdet.sign(Tensor A, *, Tensor(a!) sign, Tensor(b!) logabsdet, Tensor(c!) LU, Tensor(d!) pivots) -> (Tensor(a!) sign, Tensor(b!) logabsdet, Tensor(c!) LU, Tensor(d!) pivots)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> linalg_slogdet(const Tensor & A); // {"schema": "aten::linalg_slogdet(Tensor A) -> (Tensor sign, Tensor logabsdet)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> linalg_slogdet_out(const Tensor & A, Tensor & sign, Tensor & logabsdet); // {"schema": "aten::linalg_slogdet.out(Tensor A, *, Tensor(a!) sign, Tensor(b!) logabsdet) -> (Tensor(a!) sign, Tensor(b!) logabsdet)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> slogdet(const Tensor & self); // {"schema": "aten::slogdet(Tensor self) -> (Tensor sign, Tensor logabsdet)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> slogdet_out(const Tensor & self, Tensor & sign, Tensor & logabsdet); // {"schema": "aten::slogdet.out(Tensor self, *, Tensor(a!) sign, Tensor(b!) logabsdet) -> (Tensor(a!) sign, Tensor(b!) logabsdet)", "dispatch": "False", "default": "True"}
|
||
|
Tensor logdet(const Tensor & self); // {"schema": "aten::logdet(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> linalg_eig(const Tensor & self); // {"schema": "aten::linalg_eig(Tensor self) -> (Tensor eigenvalues, Tensor eigenvectors)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor &,Tensor &> linalg_eig_out(const Tensor & self, Tensor & eigenvalues, Tensor & eigenvectors); // {"schema": "aten::linalg_eig.out(Tensor self, *, Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _linalg_eigvals(const Tensor & self); // {"schema": "aten::_linalg_eigvals(Tensor self) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor linalg_eigvals(const Tensor & self); // {"schema": "aten::linalg_eigvals(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_eigvals_out(const Tensor & self, Tensor & out); // {"schema": "aten::linalg_eigvals.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _linalg_eigh(const Tensor & A, c10::string_view UPLO, bool compute_v); // {"schema": "aten::_linalg_eigh(Tensor A, str UPLO=\"L\", bool compute_v=True) -> (Tensor eigenvalues, Tensor eigenvectors)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _linalg_eigh_out(const Tensor & A, c10::string_view UPLO, bool compute_v, Tensor & eigenvalues, Tensor & eigenvectors); // {"schema": "aten::_linalg_eigh.eigenvalues(Tensor A, str UPLO=\"L\", bool compute_v=True, *, Tensor(a!) eigenvalues, Tensor(b!) eigenvectors) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> linalg_eigh(const Tensor & self, c10::string_view UPLO); // {"schema": "aten::linalg_eigh(Tensor self, str UPLO=\"L\") -> (Tensor eigenvalues, Tensor eigenvectors)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> linalg_eigh_out(const Tensor & self, c10::string_view UPLO, Tensor & eigvals, Tensor & eigvecs); // {"schema": "aten::linalg_eigh.eigvals(Tensor self, str UPLO=\"L\", *, Tensor(a!) eigvals, Tensor(b!) eigvecs) -> (Tensor(a!) eigenvalues, Tensor(b!) eigenvectors)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_eigvalsh(const Tensor & self, c10::string_view UPLO); // {"schema": "aten::linalg_eigvalsh(Tensor self, str UPLO=\"L\") -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_eigvalsh_out(const Tensor & self, c10::string_view UPLO, Tensor & out); // {"schema": "aten::linalg_eigvalsh.out(Tensor self, str UPLO=\"L\", *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_householder_product(const Tensor & input, const Tensor & tau); // {"schema": "aten::linalg_householder_product(Tensor input, Tensor tau) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & linalg_householder_product_out(const Tensor & input, const Tensor & tau, Tensor & out); // {"schema": "aten::linalg_householder_product.out(Tensor input, Tensor tau, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> linalg_inv_ex(const Tensor & A, bool check_errors); // {"schema": "aten::linalg_inv_ex(Tensor A, *, bool check_errors=False) -> (Tensor inverse, Tensor info)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> linalg_inv_ex_out(const Tensor & A, bool check_errors, Tensor & inverse, Tensor & info); // {"schema": "aten::linalg_inv_ex.inverse(Tensor A, *, bool check_errors=False, Tensor(a!) inverse, Tensor(b!) info) -> (Tensor(a!) inverse, Tensor(b!) info)", "dispatch": "True", "default": "False"}
|
||
|
Tensor linalg_inv(const Tensor & A); // {"schema": "aten::linalg_inv(Tensor A) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_inv_out(const Tensor & A, Tensor & out); // {"schema": "aten::linalg_inv.out(Tensor A, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor inverse(const Tensor & self); // {"schema": "aten::inverse(Tensor self) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & inverse_out(const Tensor & self, Tensor & out); // {"schema": "aten::inverse.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor inner(const Tensor & self, const Tensor & other); // {"schema": "aten::inner(Tensor self, Tensor other) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & inner_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::inner.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor outer(const Tensor & self, const Tensor & vec2); // {"schema": "aten::outer(Tensor self, Tensor vec2) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & outer_out(const Tensor & self, const Tensor & vec2, Tensor & out); // {"schema": "aten::outer.out(Tensor self, Tensor vec2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor ger(const Tensor & self, const Tensor & vec2); // {"schema": "aten::ger(Tensor self, Tensor vec2) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & ger_out(const Tensor & self, const Tensor & vec2, Tensor & out); // {"schema": "aten::ger.out(Tensor self, Tensor vec2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_norm(const Tensor & self, const c10::optional<Scalar> & ord, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::linalg_norm(Tensor self, Scalar? ord=None, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_norm(const Tensor & self, c10::string_view ord, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::linalg_norm.ord_str(Tensor self, str ord, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_norm_out(const Tensor & self, const c10::optional<Scalar> & ord, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::linalg_norm.out(Tensor self, Scalar? ord=None, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_norm_out(const Tensor & self, c10::string_view ord, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::linalg_norm.ord_str_out(Tensor self, str ord, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_vector_norm(const Tensor & self, const Scalar & ord, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::linalg_vector_norm(Tensor self, Scalar ord=2, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & linalg_vector_norm_out(const Tensor & self, const Scalar & ord, OptionalIntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::linalg_vector_norm.out(Tensor self, Scalar ord=2, int[1]? dim=None, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor linalg_matrix_norm(const Tensor & self, const Scalar & ord, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::linalg_matrix_norm(Tensor self, Scalar ord, int[] dim=[-2,-1], bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_matrix_norm_out(const Tensor & self, const Scalar & ord, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::linalg_matrix_norm.out(Tensor self, Scalar ord, int[] dim=[-2,-1], bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_matrix_norm(const Tensor & self, c10::string_view ord, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype); // {"schema": "aten::linalg_matrix_norm.str_ord(Tensor self, str ord='fro', int[] dim=[-2,-1], bool keepdim=False, *, ScalarType? dtype=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_matrix_norm_out(const Tensor & self, c10::string_view ord, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::linalg_matrix_norm.str_ord_out(Tensor self, str ord='fro', int[] dim=[-2,-1], bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _linalg_svd(const Tensor & A, bool full_matrices, bool compute_uv, c10::optional<c10::string_view> driver); // {"schema": "aten::_linalg_svd(Tensor A, bool full_matrices=False, bool compute_uv=True, *, str? driver=None) -> (Tensor U, Tensor S, Tensor Vh)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> _linalg_svd_out(const Tensor & A, bool full_matrices, bool compute_uv, c10::optional<c10::string_view> driver, Tensor & U, Tensor & S, Tensor & Vh); // {"schema": "aten::_linalg_svd.U(Tensor A, bool full_matrices=False, bool compute_uv=True, *, str? driver=None, Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> linalg_svd(const Tensor & A, bool full_matrices, c10::optional<c10::string_view> driver); // {"schema": "aten::linalg_svd(Tensor A, bool full_matrices=True, *, str? driver=None) -> (Tensor U, Tensor S, Tensor Vh)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> linalg_svd_out(const Tensor & A, bool full_matrices, c10::optional<c10::string_view> driver, Tensor & U, Tensor & S, Tensor & Vh); // {"schema": "aten::linalg_svd.U(Tensor A, bool full_matrices=True, *, str? driver=None, Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh) -> (Tensor(a!) U, Tensor(b!) S, Tensor(c!) Vh)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_svdvals(const Tensor & A, c10::optional<c10::string_view> driver); // {"schema": "aten::linalg_svdvals(Tensor A, *, str? driver=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_svdvals_out(const Tensor & A, c10::optional<c10::string_view> driver, Tensor & out); // {"schema": "aten::linalg_svdvals.out(Tensor A, *, str? driver=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_cond(const Tensor & self, const c10::optional<Scalar> & p); // {"schema": "aten::linalg_cond(Tensor self, Scalar? p=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_cond_out(const Tensor & self, const c10::optional<Scalar> & p, Tensor & out); // {"schema": "aten::linalg_cond.out(Tensor self, Scalar? p=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_cond(const Tensor & self, c10::string_view p); // {"schema": "aten::linalg_cond.p_str(Tensor self, str p) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_cond_out(const Tensor & self, c10::string_view p, Tensor & out); // {"schema": "aten::linalg_cond.p_str_out(Tensor self, str p, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_pinv(const Tensor & self, const c10::optional<Tensor> & atol, const c10::optional<Tensor> & rtol, bool hermitian); // {"schema": "aten::linalg_pinv.atol_rtol_tensor(Tensor self, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & linalg_pinv_out(const Tensor & self, const c10::optional<Tensor> & atol, const c10::optional<Tensor> & rtol, bool hermitian, Tensor & out); // {"schema": "aten::linalg_pinv.atol_rtol_tensor_out(Tensor self, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor linalg_pinv(const Tensor & self, c10::optional<double> atol, c10::optional<double> rtol, bool hermitian); // {"schema": "aten::linalg_pinv.atol_rtol_float(Tensor self, *, float? atol=None, float? rtol=None, bool hermitian=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_pinv_out(const Tensor & self, c10::optional<double> atol, c10::optional<double> rtol, bool hermitian, Tensor & out); // {"schema": "aten::linalg_pinv.atol_rtol_float_out(Tensor self, *, float? atol=None, float? rtol=None, bool hermitian=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_pinv(const Tensor & self, double rcond, bool hermitian); // {"schema": "aten::linalg_pinv(Tensor self, float rcond, bool hermitian=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_pinv(const Tensor & self, const Tensor & rcond, bool hermitian); // {"schema": "aten::linalg_pinv.rcond_tensor(Tensor self, Tensor rcond, bool hermitian=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_pinv_out(const Tensor & self, double rcond, bool hermitian, Tensor & out); // {"schema": "aten::linalg_pinv.out(Tensor self, float rcond, bool hermitian=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_pinv_out(const Tensor & self, const Tensor & rcond, bool hermitian, Tensor & out); // {"schema": "aten::linalg_pinv.out_rcond_tensor(Tensor self, Tensor rcond, bool hermitian=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> _linalg_solve_ex(const Tensor & A, const Tensor & B, bool left, bool check_errors); // {"schema": "aten::_linalg_solve_ex(Tensor A, Tensor B, *, bool left=True, bool check_errors=False) -> (Tensor result, Tensor LU, Tensor pivots, Tensor info)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &,Tensor &> _linalg_solve_ex_out(const Tensor & A, const Tensor & B, bool left, bool check_errors, Tensor & result, Tensor & LU, Tensor & pivots, Tensor & info); // {"schema": "aten::_linalg_solve_ex.result(Tensor A, Tensor B, *, bool left=True, bool check_errors=False, Tensor(a!) result, Tensor(b!) LU, Tensor(c!) pivots, Tensor(d!) info) -> (Tensor(a!) result, Tensor(b!) LU, Tensor(c!) pivots, Tensor(d!) info)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> linalg_solve_ex(const Tensor & A, const Tensor & B, bool left, bool check_errors); // {"schema": "aten::linalg_solve_ex(Tensor A, Tensor B, *, bool left=True, bool check_errors=False) -> (Tensor result, Tensor info)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> linalg_solve_ex_out(const Tensor & A, const Tensor & B, bool left, bool check_errors, Tensor & result, Tensor & info); // {"schema": "aten::linalg_solve_ex.out(Tensor A, Tensor B, *, bool left=True, bool check_errors=False, Tensor(a!) result, Tensor(b!) info) -> (Tensor(a!) result, Tensor(b!) info)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_solve(const Tensor & A, const Tensor & B, bool left); // {"schema": "aten::linalg_solve(Tensor A, Tensor B, *, bool left=True) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_solve_out(const Tensor & A, const Tensor & B, bool left, Tensor & out); // {"schema": "aten::linalg_solve.out(Tensor A, Tensor B, *, bool left=True, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_tensorinv(const Tensor & self, int64_t ind); // {"schema": "aten::linalg_tensorinv(Tensor self, int ind=2) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_tensorinv_out(const Tensor & self, int64_t ind, Tensor & out); // {"schema": "aten::linalg_tensorinv.out(Tensor self, int ind=2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_tensorsolve(const Tensor & self, const Tensor & other, OptionalIntArrayRef dims); // {"schema": "aten::linalg_tensorsolve(Tensor self, Tensor other, int[]? dims=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_tensorsolve_out(const Tensor & self, const Tensor & other, OptionalIntArrayRef dims, Tensor & out); // {"schema": "aten::linalg_tensorsolve.out(Tensor self, Tensor other, int[]? dims=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> linalg_qr(const Tensor & A, c10::string_view mode); // {"schema": "aten::linalg_qr(Tensor A, str mode='reduced') -> (Tensor Q, Tensor R)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> linalg_qr_out(const Tensor & A, c10::string_view mode, Tensor & Q, Tensor & R); // {"schema": "aten::linalg_qr.out(Tensor A, str mode='reduced', *, Tensor(a!) Q, Tensor(b!) R) -> (Tensor(a!) Q, Tensor(b!) R)", "dispatch": "True", "default": "False"}
|
||
|
Tensor linalg_matrix_power(const Tensor & self, int64_t n); // {"schema": "aten::linalg_matrix_power(Tensor self, int n) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_matrix_power_out(const Tensor & self, int64_t n, Tensor & out); // {"schema": "aten::linalg_matrix_power.out(Tensor self, int n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_matrix_rank(const Tensor & input, const c10::optional<Tensor> & atol, const c10::optional<Tensor> & rtol, bool hermitian); // {"schema": "aten::linalg_matrix_rank.atol_rtol_tensor(Tensor input, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_matrix_rank_out(const Tensor & input, const c10::optional<Tensor> & atol, const c10::optional<Tensor> & rtol, bool hermitian, Tensor & out); // {"schema": "aten::linalg_matrix_rank.atol_rtol_tensor_out(Tensor input, *, Tensor? atol=None, Tensor? rtol=None, bool hermitian=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_matrix_rank(const Tensor & self, c10::optional<double> atol, c10::optional<double> rtol, bool hermitian); // {"schema": "aten::linalg_matrix_rank.atol_rtol_float(Tensor self, *, float? atol=None, float? rtol=None, bool hermitian=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_matrix_rank_out(const Tensor & self, c10::optional<double> atol, c10::optional<double> rtol, bool hermitian, Tensor & out); // {"schema": "aten::linalg_matrix_rank.atol_rtol_float_out(Tensor self, *, float? atol=None, float? rtol=None, bool hermitian=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_matrix_rank(const Tensor & self, double tol, bool hermitian); // {"schema": "aten::linalg_matrix_rank(Tensor self, float tol, bool hermitian=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_matrix_rank_out(const Tensor & self, double tol, bool hermitian, Tensor & out); // {"schema": "aten::linalg_matrix_rank.out(Tensor self, float tol, bool hermitian=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_matrix_rank(const Tensor & input, const Tensor & tol, bool hermitian); // {"schema": "aten::linalg_matrix_rank.tol_tensor(Tensor input, Tensor tol, bool hermitian=False) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_matrix_rank_out(const Tensor & input, const Tensor & tol, bool hermitian, Tensor & out); // {"schema": "aten::linalg_matrix_rank.out_tol_tensor(Tensor input, Tensor tol, bool hermitian=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor linalg_multi_dot(TensorList tensors); // {"schema": "aten::linalg_multi_dot(Tensor[] tensors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor & linalg_multi_dot_out(TensorList tensors, Tensor & out); // {"schema": "aten::linalg_multi_dot.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "False", "default": "True"}
|
||
|
Tensor nested_to_padded_tensor(const Tensor & self, double padding, OptionalIntArrayRef output_size); // {"schema": "aten::nested_to_padded_tensor(Tensor self, float padding, int[]? output_size=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _test_serialization_subcmul(const Tensor & self, const Tensor & other, const Scalar & alpha); // {"schema": "aten::_test_serialization_subcmul(Tensor self, Tensor other, Scalar alpha=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _test_parallel_materialize(const Tensor & self, int64_t num_parallel, bool skip_first); // {"schema": "aten::_test_parallel_materialize(Tensor self, int num_parallel, bool skip_first=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _test_optional_intlist(const Tensor & values, OptionalIntArrayRef addends); // {"schema": "aten::_test_optional_intlist(Tensor values, int[]? addends) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _test_optional_filled_intlist(const Tensor & values, OptionalIntArrayRef addends); // {"schema": "aten::_test_optional_filled_intlist(Tensor values, int[2]? addends) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _test_optional_floatlist(const Tensor & values, c10::optional<ArrayRef<double>> addends); // {"schema": "aten::_test_optional_floatlist(Tensor values, float[]? addends) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _test_string_default(const Tensor & dummy, c10::string_view a, c10::string_view b); // {"schema": "aten::_test_string_default(Tensor dummy, str a=\"\\\"'\\\\\", str b='\"\\'\\\\') -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _test_ambiguous_defaults(const Tensor & dummy, int64_t a, int64_t b); // {"schema": "aten::_test_ambiguous_defaults.a(Tensor dummy, int a=1, int b=1) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _test_ambiguous_defaults(const Tensor & dummy, int64_t a, c10::string_view b); // {"schema": "aten::_test_ambiguous_defaults.b(Tensor dummy, int a=2, str b=\"2\") -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor _test_warn_in_autograd(const Tensor & self); // {"schema": "aten::_test_warn_in_autograd(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _test_autograd_multiple_dispatch(const Tensor & self); // {"schema": "aten::_test_autograd_multiple_dispatch.fullcoverage(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _test_autograd_multiple_dispatch(const Tensor & self, bool b); // {"schema": "aten::_test_autograd_multiple_dispatch.ntonly(Tensor self, bool b) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _test_autograd_multiple_dispatch_view(const Tensor & self); // {"schema": "aten::_test_autograd_multiple_dispatch_view(Tensor(a) self) -> Tensor(a)", "dispatch": "True", "default": "True"}
|
||
|
Tensor _test_autograd_multiple_dispatch_view_copy(const Tensor & self); // {"schema": "aten::_test_autograd_multiple_dispatch_view_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor segment_reduce(const Tensor & data, c10::string_view reduce, const c10::optional<Tensor> & lengths, const c10::optional<Tensor> & indices, const c10::optional<Tensor> & offsets, int64_t axis, bool unsafe, const c10::optional<Scalar> & initial); // {"schema": "aten::segment_reduce(Tensor data, str reduce, *, Tensor? lengths=None, Tensor? indices=None, Tensor? offsets=None, int axis=0, bool unsafe=False, Scalar? initial=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _segment_reduce_backward(const Tensor & grad, const Tensor & output, const Tensor & data, c10::string_view reduce, const c10::optional<Tensor> & lengths, const c10::optional<Tensor> & offsets, int64_t axis, const c10::optional<Scalar> & initial); // {"schema": "aten::_segment_reduce_backward(Tensor grad, Tensor output, Tensor data, str reduce, *, Tensor? lengths=None, Tensor? offsets=None, int axis=0, Scalar? initial=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor pad_sequence(TensorList sequences, bool batch_first, double padding_value); // {"schema": "aten::pad_sequence(Tensor[] sequences, bool batch_first=False, float padding_value=0.0) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
Tensor flatten_dense_tensors(TensorList tensors); // {"schema": "aten::flatten_dense_tensors(Tensor[] tensors) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
::std::vector<Tensor> unflatten_dense_tensors(const Tensor & flat, TensorList tensors); // {"schema": "aten::unflatten_dense_tensors(Tensor flat, Tensor[] tensors) -> Tensor[]", "dispatch": "False", "default": "True"}
|
||
|
Tensor _nested_tensor_from_tensor_list(TensorList list, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory); // {"schema": "aten::_nested_tensor_from_tensor_list(Tensor[] list, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _fw_primal_copy(const Tensor & self, int64_t level); // {"schema": "aten::_fw_primal_copy(Tensor self, int level) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _make_dual_copy(const Tensor & primal, const Tensor & tangent, int64_t level); // {"schema": "aten::_make_dual_copy(Tensor primal, Tensor tangent, int level) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor view_as_real_copy(const Tensor & self); // {"schema": "aten::view_as_real_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor view_as_complex_copy(const Tensor & self); // {"schema": "aten::view_as_complex_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _conj_copy(const Tensor & self); // {"schema": "aten::_conj_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _neg_view_copy(const Tensor & self); // {"schema": "aten::_neg_view_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor as_strided_copy(const Tensor & self, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset); // {"schema": "aten::as_strided_copy(Tensor self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _sparse_broadcast_to_copy(const Tensor & self, IntArrayRef size); // {"schema": "aten::_sparse_broadcast_to_copy(Tensor self, int[] size) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor diagonal_copy(const Tensor & self, int64_t offset, int64_t dim1, int64_t dim2); // {"schema": "aten::diagonal_copy(Tensor self, int offset=0, int dim1=0, int dim2=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor expand_copy(const Tensor & self, c10::SymIntArrayRef size, bool implicit); // {"schema": "aten::expand_copy(Tensor self, SymInt[] size, *, bool implicit=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor permute_copy(const Tensor & self, IntArrayRef dims); // {"schema": "aten::permute_copy(Tensor self, int[] dims) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _reshape_alias_copy(const Tensor & self, c10::SymIntArrayRef size, c10::SymIntArrayRef stride); // {"schema": "aten::_reshape_alias_copy(Tensor self, SymInt[] size, SymInt[] stride) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor select_copy(const Tensor & self, int64_t dim, c10::SymInt index); // {"schema": "aten::select_copy.int(Tensor self, int dim, SymInt index) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor detach_copy(const Tensor & self); // {"schema": "aten::detach_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor slice_copy(const Tensor & self, int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step); // {"schema": "aten::slice_copy.Tensor(Tensor self, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::vector<Tensor> split_copy(const Tensor & self, c10::SymInt split_size, int64_t dim); // {"schema": "aten::split_copy.Tensor(Tensor self, SymInt split_size, int dim=0) -> Tensor[]", "dispatch": "True", "default": "True"}
|
||
|
::std::vector<Tensor> split_with_sizes_copy(const Tensor & self, c10::SymIntArrayRef split_sizes, int64_t dim); // {"schema": "aten::split_with_sizes_copy(Tensor self, SymInt[] split_sizes, int dim=0) -> Tensor[]", "dispatch": "True", "default": "True"}
|
||
|
Tensor squeeze_copy(const Tensor & self); // {"schema": "aten::squeeze_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor squeeze_copy(const Tensor & self, int64_t dim); // {"schema": "aten::squeeze_copy.dim(Tensor self, int dim) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor squeeze_copy(const Tensor & self, IntArrayRef dim); // {"schema": "aten::squeeze_copy.dims(Tensor self, int[] dim) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor t_copy(const Tensor & self); // {"schema": "aten::t_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor transpose_copy(const Tensor & self, int64_t dim0, int64_t dim1); // {"schema": "aten::transpose_copy.int(Tensor self, int dim0, int dim1) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor unsqueeze_copy(const Tensor & self, int64_t dim); // {"schema": "aten::unsqueeze_copy(Tensor self, int dim) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _indices_copy(const Tensor & self); // {"schema": "aten::_indices_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor _values_copy(const Tensor & self); // {"schema": "aten::_values_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor indices_copy(const Tensor & self); // {"schema": "aten::indices_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor values_copy(const Tensor & self); // {"schema": "aten::values_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor crow_indices_copy(const Tensor & self); // {"schema": "aten::crow_indices_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor col_indices_copy(const Tensor & self); // {"schema": "aten::col_indices_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor ccol_indices_copy(const Tensor & self); // {"schema": "aten::ccol_indices_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor row_indices_copy(const Tensor & self); // {"schema": "aten::row_indices_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::vector<Tensor> unbind_copy(const Tensor & self, int64_t dim); // {"schema": "aten::unbind_copy.int(Tensor self, int dim=0) -> Tensor[]", "dispatch": "True", "default": "True"}
|
||
|
void unbind_copy_out(const Tensor & self, int64_t dim, TensorList out); // {"schema": "aten::unbind_copy.int_out(Tensor self, int dim=0, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void split_copy_out(const Tensor & self, c10::SymInt split_size, int64_t dim, TensorList out); // {"schema": "aten::split_copy.Tensor_out(Tensor self, SymInt split_size, int dim=0, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void split_with_sizes_copy_out(const Tensor & self, c10::SymIntArrayRef split_sizes, int64_t dim, TensorList out); // {"schema": "aten::split_with_sizes_copy.out(Tensor self, SymInt[] split_sizes, int dim=0, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
Tensor view_copy(const Tensor & self, c10::SymIntArrayRef size); // {"schema": "aten::view_copy(Tensor self, SymInt[] size) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor view_copy(const Tensor & self, ScalarType dtype); // {"schema": "aten::view_copy.dtype(Tensor self, ScalarType dtype) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor unfold_copy(const Tensor & self, int64_t dimension, int64_t size, int64_t step); // {"schema": "aten::unfold_copy(Tensor self, int dimension, int size, int step) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor alias_copy(const Tensor & self); // {"schema": "aten::alias_copy(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor to_padded_tensor(const Tensor & self, double padding, OptionalSymIntArrayRef output_size); // {"schema": "aten::to_padded_tensor(Tensor self, float padding, SymInt[]? output_size=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _nested_tensor_softmax_with_shape(const Tensor & self, const Tensor & query); // {"schema": "aten::_nested_tensor_softmax_with_shape(Tensor self, Tensor query) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor _transformer_encoder_layer_fwd(const Tensor & src, int64_t embed_dim, int64_t num_heads, const Tensor & qkv_weight, const Tensor & qkv_bias, const Tensor & proj_weight, const Tensor & proj_bias, bool use_gelu, bool norm_first, double eps, const Tensor & norm_weight_1, const Tensor & norm_bias_1, const Tensor & norm_weight_2, const Tensor & norm_bias_2, const Tensor & ffn_weight_1, const Tensor & ffn_bias_1, const Tensor & ffn_weight_2, const Tensor & ffn_bias_2, const c10::optional<Tensor> & mask, c10::optional<int64_t> mask_type); // {"schema": "aten::_transformer_encoder_layer_fwd(Tensor src, int embed_dim, int num_heads, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, bool use_gelu, bool norm_first, float eps, Tensor norm_weight_1, Tensor norm_bias_1, Tensor norm_weight_2, Tensor norm_bias_2, Tensor ffn_weight_1, Tensor ffn_bias_1, Tensor ffn_weight_2, Tensor ffn_bias_2, Tensor? mask=None, int? mask_type=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _native_multi_head_attention(const Tensor & query, const Tensor & key, const Tensor & value, int64_t embed_dim, int64_t num_head, const Tensor & qkv_weight, const Tensor & qkv_bias, const Tensor & proj_weight, const Tensor & proj_bias, const c10::optional<Tensor> & mask, bool need_weights, bool average_attn_weights, c10::optional<int64_t> mask_type); // {"schema": "aten::_native_multi_head_attention(Tensor query, Tensor key, Tensor value, int embed_dim, int num_head, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, Tensor? mask=None, bool need_weights=True, bool average_attn_weights=True, int? mask_type=None) -> (Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor scaled_dot_product_attention(const Tensor & query, const Tensor & key, const Tensor & value, const c10::optional<Tensor> & attn_mask, double dropout_p, bool is_causal, c10::optional<double> scale); // {"schema": "aten::scaled_dot_product_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_mask=None, float dropout_p=0.0, bool is_causal=False, *, float? scale=None) -> Tensor", "dispatch": "False", "default": "True"}
|
||
|
int64_t _fused_sdp_choice(const Tensor & query, const Tensor & key, const Tensor & value, const c10::optional<Tensor> & attn_mask, double dropout_p, bool is_causal, c10::optional<double> scale); // {"schema": "aten::_fused_sdp_choice(Tensor query, Tensor key, Tensor value, Tensor? attn_mask=None, float dropout_p=0.0, bool is_causal=False, *, float? scale=None) -> int", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _scaled_dot_product_attention_math(const Tensor & query, const Tensor & key, const Tensor & value, const c10::optional<Tensor> & attn_mask, double dropout_p, bool is_causal, const c10::optional<Tensor> & dropout_mask, c10::optional<double> scale); // {"schema": "aten::_scaled_dot_product_attention_math(Tensor query, Tensor key, Tensor value, Tensor? attn_mask=None, float dropout_p=0.0, bool is_causal=False, Tensor? dropout_mask=None, *, float? scale=None) -> (Tensor, Tensor)", "dispatch": "False", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,c10::SymInt,c10::SymInt,Tensor,Tensor,Tensor> _scaled_dot_product_flash_attention(const Tensor & query, const Tensor & key, const Tensor & value, double dropout_p, bool is_causal, bool return_debug_mask, c10::optional<double> scale); // {"schema": "aten::_scaled_dot_product_flash_attention(Tensor query, Tensor key, Tensor value, float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor> _scaled_dot_product_flash_attention_for_cpu(const Tensor & query, const Tensor & key, const Tensor & value, double dropout_p, bool is_causal, const c10::optional<Tensor> & attn_mask, c10::optional<double> scale); // {"schema": "aten::_scaled_dot_product_flash_attention_for_cpu(Tensor query, Tensor key, Tensor value, float dropout_p=0.0, bool is_causal=False, *, Tensor? attn_mask=None, float? scale=None) -> (Tensor output, Tensor logsumexp)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _scaled_dot_product_flash_attention_backward(const Tensor & grad_out, const Tensor & query, const Tensor & key, const Tensor & value, const Tensor & out, const Tensor & logsumexp, const Tensor & cum_seq_q, const Tensor & cum_seq_k, c10::SymInt max_q, c10::SymInt max_k, double dropout_p, bool is_causal, const Tensor & philox_seed, const Tensor & philox_offset, c10::optional<double> scale); // {"schema": "aten::_scaled_dot_product_flash_attention_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, Tensor philox_seed, Tensor philox_offset, *, float? scale=None) -> (Tensor grad_query, Tensor grad_key, Tensor grad_value)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _scaled_dot_product_flash_attention_for_cpu_backward(const Tensor & grad_out, const Tensor & query, const Tensor & key, const Tensor & value, const Tensor & out, const Tensor & logsumexp, double dropout_p, bool is_causal, const c10::optional<Tensor> & attn_mask, c10::optional<double> scale); // {"schema": "aten::_scaled_dot_product_flash_attention_for_cpu_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, float dropout_p, bool is_causal, *, Tensor? attn_mask=None, float? scale=None) -> (Tensor grad_query, Tensor grad_key, Tensor grad_value)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> _scaled_dot_product_efficient_attention(const Tensor & query, const Tensor & key, const Tensor & value, const c10::optional<Tensor> & attn_bias, bool compute_log_sumexp, double dropout_p, bool is_causal, c10::optional<double> scale); // {"schema": "aten::_scaled_dot_product_efficient_attention(Tensor query, Tensor key, Tensor value, Tensor? attn_bias, bool compute_log_sumexp, float dropout_p=0.0, bool is_causal=False, *, float? scale=None) -> (Tensor output, Tensor log_sumexp, Tensor philox_seed, Tensor philox_offset)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> _scaled_dot_product_efficient_attention_backward(const Tensor & grad_out_, const Tensor & query, const Tensor & key, const Tensor & value, const Tensor & attn_bias, const Tensor & out, const Tensor & logsumexp, const Tensor & philox_seed, const Tensor & philox_offset, double dropout_p, ::std::array<bool,4> grad_input_mask, bool is_causal, c10::optional<double> scale); // {"schema": "aten::_scaled_dot_product_efficient_attention_backward(Tensor grad_out_, Tensor query, Tensor key, Tensor value, Tensor attn_bias, Tensor out, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset, float dropout_p, bool[4] grad_input_mask, bool is_causal=False, *, float? scale=None) -> (Tensor, Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> _scaled_dot_product_cudnn_attention(const Tensor & query, const Tensor & key, const Tensor & value, double dropout_p, bool is_causal, bool return_debug_mask, c10::optional<double> scale); // {"schema": "aten::_scaled_dot_product_cudnn_attention(Tensor query, Tensor key, Tensor value, float dropout_p=0.0, bool is_causal=False, bool return_debug_mask=False, *, float? scale=None) -> (Tensor output, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor> _flash_attention_forward(const Tensor & query, const Tensor & key, const Tensor & value, const c10::optional<Tensor> & cum_seq_q, const c10::optional<Tensor> & cum_seq_k, c10::SymInt max_q, c10::SymInt max_k, double dropout_p, bool is_causal, bool return_debug_mask, c10::optional<double> scale); // {"schema": "aten::_flash_attention_forward(Tensor query, Tensor key, Tensor value, Tensor? cum_seq_q, Tensor? cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, bool return_debug_mask, *, float? scale=None) -> (Tensor output, Tensor softmax_logsumexp, Tensor philox_seed, Tensor philox_offset, Tensor debug_attn_mask)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor> _flash_attention_backward(const Tensor & grad_out, const Tensor & query, const Tensor & key, const Tensor & value, const Tensor & out, const Tensor & logsumexp, const Tensor & cum_seq_q, const Tensor & cum_seq_k, c10::SymInt max_q, c10::SymInt max_k, double dropout_p, bool is_causal, const Tensor & philox_seed, const Tensor & philox_offset, c10::optional<double> scale); // {"schema": "aten::_flash_attention_backward(Tensor grad_out, Tensor query, Tensor key, Tensor value, Tensor out, Tensor logsumexp, Tensor cum_seq_q, Tensor cum_seq_k, SymInt max_q, SymInt max_k, float dropout_p, bool is_causal, Tensor philox_seed, Tensor philox_offset, *, float? scale=None) -> (Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,c10::SymInt,c10::SymInt> _efficient_attention_forward(const Tensor & query, const Tensor & key, const Tensor & value, const c10::optional<Tensor> & bias, const c10::optional<Tensor> & cu_seqlens_q, const c10::optional<Tensor> & cu_seqlens_k, c10::optional<int64_t> max_seqlen_q, c10::optional<int64_t> max_seqlen_k, double dropout_p, int64_t custom_mask_type, bool compute_log_sumexp, c10::optional<double> scale, const c10::optional<Tensor> & causal_diagonal, const c10::optional<Tensor> & seqlen_k); // {"schema": "aten::_efficient_attention_forward(Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, int? max_seqlen_q, int? max_seqlen_k, float dropout_p, int custom_mask_type, bool compute_log_sumexp=False, *, float? scale=None, Tensor? causal_diagonal=None, Tensor? seqlen_k=None) -> (Tensor output, Tensor logsumexp, Tensor philox_seed, Tensor philox_offset, SymInt max_seqlen_batch_q, SymInt max_seqlen_batch_k)", "dispatch": "True", "default": "False"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor> _efficient_attention_backward(const Tensor & grad_out_, const Tensor & query, const Tensor & key, const Tensor & value, const c10::optional<Tensor> & bias, const Tensor & out, const c10::optional<Tensor> & cu_seqlens_q, const c10::optional<Tensor> & cu_seqlens_k, c10::SymInt max_seqlen_q, c10::SymInt max_seqlen_k, const Tensor & logsumexp, double dropout_p, const Tensor & philox_seed, const Tensor & philox_offset, int64_t custom_mask_type, bool bias_requires_grad, c10::optional<double> scale, c10::optional<int64_t> num_splits_key); // {"schema": "aten::_efficient_attention_backward(Tensor grad_out_, Tensor query, Tensor key, Tensor value, Tensor? bias, Tensor out, Tensor? cu_seqlens_q, Tensor? cu_seqlens_k, SymInt max_seqlen_q, SymInt max_seqlen_k, Tensor logsumexp, float dropout_p, Tensor philox_seed, Tensor philox_offset, int custom_mask_type, bool bias_requires_grad, *, float? scale=None, int? num_splits_key=None) -> (Tensor, Tensor, Tensor, Tensor)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _triton_scaled_dot_attention(const Tensor & q, const Tensor & k, const Tensor & v, double dropout_p); // {"schema": "aten::_triton_scaled_dot_attention(Tensor q, Tensor k, Tensor v, float dropout_p=0.0) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor & _fill_mem_eff_dropout_mask_(Tensor & self, double dropout_p, int64_t seed, int64_t offset); // {"schema": "aten::_fill_mem_eff_dropout_mask_(Tensor(a!) self, float dropout_p, int seed, int offset) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _triton_multi_head_attention(const Tensor & query, const Tensor & key, const Tensor & value, int64_t embed_dim, int64_t num_head, const Tensor & qkv_weight, const Tensor & qkv_bias, const Tensor & proj_weight, const Tensor & proj_bias, const c10::optional<Tensor> & mask); // {"schema": "aten::_triton_multi_head_attention(Tensor query, Tensor key, Tensor value, int embed_dim, int num_head, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, Tensor? mask=None) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_airy_ai(const Tensor & x); // {"schema": "aten::special_airy_ai(Tensor x) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_airy_ai_out(const Tensor & x, Tensor & out); // {"schema": "aten::special_airy_ai.out(Tensor x, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_bessel_j0(const Tensor & self); // {"schema": "aten::special_bessel_j0(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_bessel_j0_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_bessel_j0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_bessel_j1(const Tensor & self); // {"schema": "aten::special_bessel_j1(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_bessel_j1_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_bessel_j1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_bessel_y0(const Tensor & self); // {"schema": "aten::special_bessel_y0(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_bessel_y0_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_bessel_y0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_bessel_y1(const Tensor & self); // {"schema": "aten::special_bessel_y1(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_bessel_y1_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_bessel_y1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_chebyshev_polynomial_t(const Tensor & x, const Tensor & n); // {"schema": "aten::special_chebyshev_polynomial_t(Tensor x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_chebyshev_polynomial_t(const Scalar & x, const Tensor & n); // {"schema": "aten::special_chebyshev_polynomial_t.x_scalar(Scalar x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_chebyshev_polynomial_t(const Tensor & x, const Scalar & n); // {"schema": "aten::special_chebyshev_polynomial_t.n_scalar(Tensor x, Scalar n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_chebyshev_polynomial_t_out(const Tensor & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_chebyshev_polynomial_t.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_chebyshev_polynomial_t_out(const Scalar & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_chebyshev_polynomial_t.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_chebyshev_polynomial_t_out(const Tensor & x, const Scalar & n, Tensor & out); // {"schema": "aten::special_chebyshev_polynomial_t.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_chebyshev_polynomial_u(const Tensor & x, const Tensor & n); // {"schema": "aten::special_chebyshev_polynomial_u(Tensor x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_chebyshev_polynomial_u(const Scalar & x, const Tensor & n); // {"schema": "aten::special_chebyshev_polynomial_u.x_scalar(Scalar x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_chebyshev_polynomial_u(const Tensor & x, const Scalar & n); // {"schema": "aten::special_chebyshev_polynomial_u.n_scalar(Tensor x, Scalar n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_chebyshev_polynomial_u_out(const Tensor & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_chebyshev_polynomial_u.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_chebyshev_polynomial_u_out(const Scalar & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_chebyshev_polynomial_u.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_chebyshev_polynomial_u_out(const Tensor & x, const Scalar & n, Tensor & out); // {"schema": "aten::special_chebyshev_polynomial_u.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_chebyshev_polynomial_v(const Tensor & x, const Tensor & n); // {"schema": "aten::special_chebyshev_polynomial_v(Tensor x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_chebyshev_polynomial_v(const Scalar & x, const Tensor & n); // {"schema": "aten::special_chebyshev_polynomial_v.x_scalar(Scalar x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_chebyshev_polynomial_v(const Tensor & x, const Scalar & n); // {"schema": "aten::special_chebyshev_polynomial_v.n_scalar(Tensor x, Scalar n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_chebyshev_polynomial_v_out(const Tensor & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_chebyshev_polynomial_v.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_chebyshev_polynomial_v_out(const Scalar & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_chebyshev_polynomial_v.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_chebyshev_polynomial_v_out(const Tensor & x, const Scalar & n, Tensor & out); // {"schema": "aten::special_chebyshev_polynomial_v.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_chebyshev_polynomial_w(const Tensor & x, const Tensor & n); // {"schema": "aten::special_chebyshev_polynomial_w(Tensor x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_chebyshev_polynomial_w(const Scalar & x, const Tensor & n); // {"schema": "aten::special_chebyshev_polynomial_w.x_scalar(Scalar x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_chebyshev_polynomial_w(const Tensor & x, const Scalar & n); // {"schema": "aten::special_chebyshev_polynomial_w.n_scalar(Tensor x, Scalar n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_chebyshev_polynomial_w_out(const Tensor & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_chebyshev_polynomial_w.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_chebyshev_polynomial_w_out(const Scalar & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_chebyshev_polynomial_w.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_chebyshev_polynomial_w_out(const Tensor & x, const Scalar & n, Tensor & out); // {"schema": "aten::special_chebyshev_polynomial_w.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_hermite_polynomial_h(const Tensor & x, const Tensor & n); // {"schema": "aten::special_hermite_polynomial_h(Tensor x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_hermite_polynomial_h(const Scalar & x, const Tensor & n); // {"schema": "aten::special_hermite_polynomial_h.x_scalar(Scalar x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_hermite_polynomial_h(const Tensor & x, const Scalar & n); // {"schema": "aten::special_hermite_polynomial_h.n_scalar(Tensor x, Scalar n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_hermite_polynomial_h_out(const Tensor & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_hermite_polynomial_h.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_hermite_polynomial_h_out(const Scalar & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_hermite_polynomial_h.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_hermite_polynomial_h_out(const Tensor & x, const Scalar & n, Tensor & out); // {"schema": "aten::special_hermite_polynomial_h.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_hermite_polynomial_he(const Tensor & x, const Tensor & n); // {"schema": "aten::special_hermite_polynomial_he(Tensor x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_hermite_polynomial_he(const Scalar & x, const Tensor & n); // {"schema": "aten::special_hermite_polynomial_he.x_scalar(Scalar x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_hermite_polynomial_he(const Tensor & x, const Scalar & n); // {"schema": "aten::special_hermite_polynomial_he.n_scalar(Tensor x, Scalar n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_hermite_polynomial_he_out(const Tensor & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_hermite_polynomial_he.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_hermite_polynomial_he_out(const Scalar & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_hermite_polynomial_he.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_hermite_polynomial_he_out(const Tensor & x, const Scalar & n, Tensor & out); // {"schema": "aten::special_hermite_polynomial_he.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_laguerre_polynomial_l(const Tensor & x, const Tensor & n); // {"schema": "aten::special_laguerre_polynomial_l(Tensor x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_laguerre_polynomial_l(const Scalar & x, const Tensor & n); // {"schema": "aten::special_laguerre_polynomial_l.x_scalar(Scalar x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_laguerre_polynomial_l(const Tensor & x, const Scalar & n); // {"schema": "aten::special_laguerre_polynomial_l.n_scalar(Tensor x, Scalar n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_laguerre_polynomial_l_out(const Tensor & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_laguerre_polynomial_l.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_laguerre_polynomial_l_out(const Scalar & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_laguerre_polynomial_l.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_laguerre_polynomial_l_out(const Tensor & x, const Scalar & n, Tensor & out); // {"schema": "aten::special_laguerre_polynomial_l.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_legendre_polynomial_p(const Tensor & x, const Tensor & n); // {"schema": "aten::special_legendre_polynomial_p(Tensor x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_legendre_polynomial_p(const Scalar & x, const Tensor & n); // {"schema": "aten::special_legendre_polynomial_p.x_scalar(Scalar x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_legendre_polynomial_p(const Tensor & x, const Scalar & n); // {"schema": "aten::special_legendre_polynomial_p.n_scalar(Tensor x, Scalar n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_legendre_polynomial_p_out(const Tensor & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_legendre_polynomial_p.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_legendre_polynomial_p_out(const Scalar & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_legendre_polynomial_p.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_legendre_polynomial_p_out(const Tensor & x, const Scalar & n, Tensor & out); // {"schema": "aten::special_legendre_polynomial_p.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_modified_bessel_i0(const Tensor & self); // {"schema": "aten::special_modified_bessel_i0(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_modified_bessel_i0_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_modified_bessel_i0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_modified_bessel_i1(const Tensor & self); // {"schema": "aten::special_modified_bessel_i1(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_modified_bessel_i1_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_modified_bessel_i1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_modified_bessel_k0(const Tensor & self); // {"schema": "aten::special_modified_bessel_k0(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_modified_bessel_k0_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_modified_bessel_k0.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_modified_bessel_k1(const Tensor & self); // {"schema": "aten::special_modified_bessel_k1(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_modified_bessel_k1_out(const Tensor & self, Tensor & out); // {"schema": "aten::special_modified_bessel_k1.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_scaled_modified_bessel_k0(const Tensor & x); // {"schema": "aten::special_scaled_modified_bessel_k0(Tensor x) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_scaled_modified_bessel_k0_out(const Tensor & x, Tensor & out); // {"schema": "aten::special_scaled_modified_bessel_k0.out(Tensor x, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_scaled_modified_bessel_k1(const Tensor & x); // {"schema": "aten::special_scaled_modified_bessel_k1(Tensor x) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_scaled_modified_bessel_k1_out(const Tensor & x, Tensor & out); // {"schema": "aten::special_scaled_modified_bessel_k1.out(Tensor x, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor special_shifted_chebyshev_polynomial_t(const Tensor & x, const Tensor & n); // {"schema": "aten::special_shifted_chebyshev_polynomial_t(Tensor x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_shifted_chebyshev_polynomial_t(const Scalar & x, const Tensor & n); // {"schema": "aten::special_shifted_chebyshev_polynomial_t.x_scalar(Scalar x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_shifted_chebyshev_polynomial_t(const Tensor & x, const Scalar & n); // {"schema": "aten::special_shifted_chebyshev_polynomial_t.n_scalar(Tensor x, Scalar n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_shifted_chebyshev_polynomial_t_out(const Tensor & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_shifted_chebyshev_polynomial_t.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_shifted_chebyshev_polynomial_t_out(const Scalar & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_shifted_chebyshev_polynomial_t.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_shifted_chebyshev_polynomial_t_out(const Tensor & x, const Scalar & n, Tensor & out); // {"schema": "aten::special_shifted_chebyshev_polynomial_t.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_shifted_chebyshev_polynomial_u(const Tensor & x, const Tensor & n); // {"schema": "aten::special_shifted_chebyshev_polynomial_u(Tensor x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_shifted_chebyshev_polynomial_u(const Scalar & x, const Tensor & n); // {"schema": "aten::special_shifted_chebyshev_polynomial_u.x_scalar(Scalar x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_shifted_chebyshev_polynomial_u(const Tensor & x, const Scalar & n); // {"schema": "aten::special_shifted_chebyshev_polynomial_u.n_scalar(Tensor x, Scalar n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_shifted_chebyshev_polynomial_u_out(const Tensor & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_shifted_chebyshev_polynomial_u.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_shifted_chebyshev_polynomial_u_out(const Scalar & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_shifted_chebyshev_polynomial_u.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_shifted_chebyshev_polynomial_u_out(const Tensor & x, const Scalar & n, Tensor & out); // {"schema": "aten::special_shifted_chebyshev_polynomial_u.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_shifted_chebyshev_polynomial_v(const Tensor & x, const Tensor & n); // {"schema": "aten::special_shifted_chebyshev_polynomial_v(Tensor x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_shifted_chebyshev_polynomial_v(const Scalar & x, const Tensor & n); // {"schema": "aten::special_shifted_chebyshev_polynomial_v.x_scalar(Scalar x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_shifted_chebyshev_polynomial_v(const Tensor & x, const Scalar & n); // {"schema": "aten::special_shifted_chebyshev_polynomial_v.n_scalar(Tensor x, Scalar n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_shifted_chebyshev_polynomial_v_out(const Tensor & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_shifted_chebyshev_polynomial_v.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_shifted_chebyshev_polynomial_v_out(const Scalar & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_shifted_chebyshev_polynomial_v.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_shifted_chebyshev_polynomial_v_out(const Tensor & x, const Scalar & n, Tensor & out); // {"schema": "aten::special_shifted_chebyshev_polynomial_v.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_shifted_chebyshev_polynomial_w(const Tensor & x, const Tensor & n); // {"schema": "aten::special_shifted_chebyshev_polynomial_w(Tensor x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_shifted_chebyshev_polynomial_w(const Scalar & x, const Tensor & n); // {"schema": "aten::special_shifted_chebyshev_polynomial_w.x_scalar(Scalar x, Tensor n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_shifted_chebyshev_polynomial_w(const Tensor & x, const Scalar & n); // {"schema": "aten::special_shifted_chebyshev_polynomial_w.n_scalar(Tensor x, Scalar n) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_shifted_chebyshev_polynomial_w_out(const Tensor & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_shifted_chebyshev_polynomial_w.out(Tensor x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor & special_shifted_chebyshev_polynomial_w_out(const Scalar & x, const Tensor & n, Tensor & out); // {"schema": "aten::special_shifted_chebyshev_polynomial_w.x_scalar_out(Scalar x, Tensor n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_shifted_chebyshev_polynomial_w_out(const Tensor & x, const Scalar & n, Tensor & out); // {"schema": "aten::special_shifted_chebyshev_polynomial_w.n_scalar_out(Tensor x, Scalar n, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor special_spherical_bessel_j0(const Tensor & x); // {"schema": "aten::special_spherical_bessel_j0(Tensor x) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & special_spherical_bessel_j0_out(const Tensor & x, Tensor & out); // {"schema": "aten::special_spherical_bessel_j0.out(Tensor x, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "False"}
|
||
|
Tensor _foobar(const Tensor & self, bool arg1, bool arg2, bool arg3); // {"schema": "aten::_foobar(Tensor self, bool arg1=True, bool arg2=True, *, bool arg3=True) -> Tensor", "dispatch": "True", "default": "False"}
|
||
|
void _fused_adam_(TensorList self, TensorList grads, TensorList exp_avgs, TensorList exp_avg_sqs, TensorList max_exp_avg_sqs, TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf); // {"schema": "aten::_fused_adam_(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _fused_adam_(TensorList self, TensorList grads, TensorList exp_avgs, TensorList exp_avg_sqs, TensorList max_exp_avg_sqs, TensorList state_steps, const Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf); // {"schema": "aten::_fused_adam_.tensor_lr(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _fused_adamw_(TensorList self, TensorList grads, TensorList exp_avgs, TensorList exp_avg_sqs, TensorList max_exp_avg_sqs, TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf); // {"schema": "aten::_fused_adamw_(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _fused_adamw_(TensorList self, TensorList grads, TensorList exp_avgs, TensorList exp_avg_sqs, TensorList max_exp_avg_sqs, TensorList state_steps, const Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf); // {"schema": "aten::_fused_adamw_.tensor_lr(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _fused_sgd_(TensorList self, TensorList grads, TensorList momentum_buffer_list, double weight_decay, double momentum, double lr, double dampening, bool nesterov, bool maximize, bool is_first_step, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf); // {"schema": "aten::_fused_sgd_(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] momentum_buffer_list, *, float weight_decay, float momentum, float lr, float dampening, bool nesterov, bool maximize, bool is_first_step, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _fused_sgd_(TensorList self, TensorList grads, TensorList momentum_buffer_list, double weight_decay, double momentum, const Tensor & lr, double dampening, bool nesterov, bool maximize, bool is_first_step, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf); // {"schema": "aten::_fused_sgd_.tensor_lr(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] momentum_buffer_list, *, float weight_decay, float momentum, Tensor lr, float dampening, bool nesterov, bool maximize, bool is_first_step, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()", "dispatch": "True", "default": "False"}
|
||
|
void _propagate_xla_data(const Tensor & input, const Tensor & output); // {"schema": "aten::_propagate_xla_data(Tensor input, Tensor output) -> ()", "dispatch": "False", "default": "True"}
|
||
|
Tensor & _new_zeros_with_same_feature_meta_out(const Tensor & self, const Tensor & other, int64_t self_num_batch_dims, Tensor & out); // {"schema": "aten::_new_zeros_with_same_feature_meta.out(Tensor self, Tensor other, *, int self_num_batch_dims=0, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _cudnn_ctc_loss_out(const Tensor & log_probs, const Tensor & targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank, bool deterministic, bool zero_infinity, Tensor & out0, Tensor & out1); // {"schema": "aten::_cudnn_ctc_loss.out(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank, bool deterministic, bool zero_infinity, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _cudnn_rnn_flatten_weight_out(TensorList weight_arr, int64_t weight_stride0, c10::SymInt input_size, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, bool bidirectional, Tensor & out); // {"schema": "aten::_cudnn_rnn_flatten_weight.out(Tensor[] weight_arr, int weight_stride0, SymInt input_size, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, bool bidirectional, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &,Tensor &,Tensor &> _cudnn_rnn_out(const Tensor & input, TensorList weight, int64_t weight_stride0, const c10::optional<Tensor> & weight_buf, const Tensor & hx, const c10::optional<Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<Tensor> & dropout_state, Tensor & out0, Tensor & out1, Tensor & out2, Tensor & out3, Tensor & out4); // {"schema": "aten::_cudnn_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor? weight_buf, Tensor hx, Tensor? cx, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))", "dispatch": "True", "default": "True"}
|
||
|
void _cudnn_rnn_backward_out(const Tensor & input, TensorList weight, int64_t weight_stride0, const Tensor & weight_buf, const Tensor & hx, const c10::optional<Tensor> & cx, const Tensor & output, const c10::optional<Tensor> & grad_output, const c10::optional<Tensor> & grad_hy, const c10::optional<Tensor> & grad_cy, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<Tensor> & dropout_state, const Tensor & reserve, ::std::array<bool,4> output_mask, Tensor & out0, Tensor & out1, Tensor & out2, TensorList out3); // {"schema": "aten::_cudnn_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, SymInt hidden_size, SymInt proj_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, SymInt[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _cudnn_init_dropout_state_out(double dropout, bool train, int64_t dropout_seed, Tensor & out); // {"schema": "aten::_cudnn_init_dropout_state.out(float dropout, bool train, int dropout_seed, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _fused_dropout_out(const Tensor & self, double p, c10::optional<Generator> generator, Tensor & out0, Tensor & out1); // {"schema": "aten::_fused_dropout.out(Tensor self, float p, Generator? generator=None, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _masked_scale_out(const Tensor & self, const Tensor & mask, double scale, Tensor & out); // {"schema": "aten::_masked_scale.out(Tensor self, Tensor mask, float scale, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> native_dropout_out(const Tensor & input, double p, c10::optional<bool> train, Tensor & out0, Tensor & out1); // {"schema": "aten::native_dropout.out(Tensor input, float p, bool? train, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & native_dropout_backward_out(const Tensor & grad_output, const Tensor & mask, double scale, Tensor & out); // {"schema": "aten::native_dropout_backward.out(Tensor grad_output, Tensor mask, float scale, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _conj_physical_out(const Tensor & self, Tensor & out); // {"schema": "aten::_conj_physical.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _add_relu_out(const Tensor & self, const Scalar & other, const Scalar & alpha, Tensor & out); // {"schema": "aten::_add_relu.Scalar_out(Tensor self, Scalar other, Scalar alpha=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & add_out(const Tensor & self, const Scalar & other, const Scalar & alpha, Tensor & out); // {"schema": "aten::add.Scalar_out(Tensor self, Scalar other, Scalar alpha=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & affine_grid_generator_out(const Tensor & theta, c10::SymIntArrayRef size, bool align_corners, Tensor & out); // {"schema": "aten::affine_grid_generator.out(Tensor theta, SymInt[] size, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _test_functorch_fallback_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::_test_functorch_fallback.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bartlett_window_out(int64_t window_length, Tensor & out); // {"schema": "aten::bartlett_window.out(int window_length, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bartlett_window_out(int64_t window_length, bool periodic, Tensor & out); // {"schema": "aten::bartlett_window.periodic_out(int window_length, bool periodic, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & quantized_batch_norm_out(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, const Tensor & mean, const Tensor & var, double eps, double output_scale, int64_t output_zero_point, Tensor & out); // {"schema": "aten::quantized_batch_norm.out(Tensor input, Tensor? weight, Tensor? bias, Tensor mean, Tensor var, float eps, float output_scale, int output_zero_point, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bernoulli_out(const Tensor & self, const Tensor & p, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::bernoulli.Tensor_out(Tensor self, Tensor p, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor bernoulli(const Tensor & self, const Tensor & p, c10::optional<Generator> generator); // {"schema": "aten::bernoulli.Tensor(Tensor self, Tensor p, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bernoulli_out(const Tensor & self, double p, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::bernoulli.float_out(Tensor self, float p=0.5, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & binary_cross_entropy_with_logits_out(const Tensor & self, const Tensor & target, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & pos_weight, int64_t reduction, Tensor & out); // {"schema": "aten::binary_cross_entropy_with_logits.out(Tensor self, Tensor target, Tensor? weight=None, Tensor? pos_weight=None, int reduction=Mean, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bincount_out(const Tensor & self, const c10::optional<Tensor> & weights, int64_t minlength, Tensor & out); // {"schema": "aten::bincount.out(Tensor self, Tensor? weights=None, int minlength=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & blackman_window_out(int64_t window_length, Tensor & out); // {"schema": "aten::blackman_window.out(int window_length, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & blackman_window_out(int64_t window_length, bool periodic, Tensor & out); // {"schema": "aten::blackman_window.periodic_out(int window_length, bool periodic, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & block_diag_out(TensorList tensors, Tensor & out); // {"schema": "aten::block_diag.out(Tensor[] tensors, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & constant_pad_nd_out(const Tensor & self, c10::SymIntArrayRef pad, const Scalar & value, Tensor & out); // {"schema": "aten::constant_pad_nd.out(Tensor self, SymInt[] pad, Scalar value=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & convolution_out(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, Tensor & out); // {"schema": "aten::convolution.out(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> convolution_backward_out(const Tensor & grad_output, const Tensor & input, const Tensor & weight, OptionalSymIntArrayRef bias_sizes, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::convolution_backward.out(Tensor grad_output, Tensor input, Tensor weight, SymInt[]? bias_sizes, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & convolution_overrideable_out(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, Tensor & out); // {"schema": "aten::convolution_overrideable.out(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> convolution_backward_overrideable_out(const Tensor & grad_output, const Tensor & input, const Tensor & weight, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, ::std::array<bool,3> output_mask, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::convolution_backward_overrideable.out(Tensor grad_output, Tensor input, Tensor weight, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _convolution_out(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, bool transposed, c10::SymIntArrayRef output_padding, c10::SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32, Tensor & out); // {"schema": "aten::_convolution.out(Tensor input, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, bool transposed, SymInt[] output_padding, SymInt groups, bool benchmark, bool deterministic, bool cudnn_enabled, bool allow_tf32, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & conv_tbc_out(const Tensor & self, const Tensor & weight, const Tensor & bias, int64_t pad, Tensor & out); // {"schema": "aten::conv_tbc.out(Tensor self, Tensor weight, Tensor bias, int pad=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & copy_out(const Tensor & self, const Tensor & src, bool non_blocking, Tensor & out); // {"schema": "aten::copy.out(Tensor self, Tensor src, bool non_blocking=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _copy_from_out(const Tensor & self, const Tensor & dst, bool non_blocking, Tensor & out); // {"schema": "aten::_copy_from.out(Tensor self, Tensor dst, bool non_blocking=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _copy_from_and_resize_out(const Tensor & self, const Tensor & dst, Tensor & out); // {"schema": "aten::_copy_from_and_resize.out(Tensor self, Tensor dst, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & count_nonzero_out(const Tensor & self, IntArrayRef dim, Tensor & out); // {"schema": "aten::count_nonzero.dim_IntList_out(Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & count_nonzero_out(const Tensor & self, c10::optional<int64_t> dim, Tensor & out); // {"schema": "aten::count_nonzero.out(Tensor self, int? dim=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cudnn_affine_grid_generator_out(const Tensor & theta, int64_t N, int64_t C, int64_t H, int64_t W, Tensor & out); // {"schema": "aten::cudnn_affine_grid_generator.out(Tensor theta, int N, int C, int H, int W, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cudnn_affine_grid_generator_backward_out(const Tensor & grad, int64_t N, int64_t C, int64_t H, int64_t W, Tensor & out); // {"schema": "aten::cudnn_affine_grid_generator_backward.out(Tensor grad, int N, int C, int H, int W, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &,Tensor &> cudnn_batch_norm_out(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, bool training, double exponential_average_factor, double epsilon, Tensor & out0, Tensor & out1, Tensor & out2, Tensor & out3); // {"schema": "aten::cudnn_batch_norm.out(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> cudnn_batch_norm_backward_out(const Tensor & input, const Tensor & grad_output, const Tensor & weight, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, const c10::optional<Tensor> & save_mean, const c10::optional<Tensor> & save_var, double epsilon, const Tensor & reserveSpace, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::cudnn_batch_norm_backward.out(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon, Tensor reserveSpace, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cudnn_convolution_transpose_out(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, bool allow_tf32, Tensor & out); // {"schema": "aten::cudnn_convolution_transpose.out(Tensor self, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, bool allow_tf32, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _mps_convolution_transpose_out(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, Tensor & out); // {"schema": "aten::_mps_convolution_transpose.out(Tensor self, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> mps_convolution_transpose_backward_out(const Tensor & self, const Tensor & grad_output, const Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, ::std::array<bool,2> output_mask, Tensor & out0, Tensor & out1); // {"schema": "aten::mps_convolution_transpose_backward.out(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[2] output_mask, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cudnn_convolution_relu_out(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups, Tensor & out); // {"schema": "aten::cudnn_convolution_relu.out(Tensor self, Tensor weight, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cudnn_convolution_add_relu_out(const Tensor & self, const Tensor & weight, const Tensor & z, const c10::optional<Scalar> & alpha, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, c10::SymInt groups, Tensor & out); // {"schema": "aten::cudnn_convolution_add_relu.out(Tensor self, Tensor weight, Tensor z, Scalar? alpha, Tensor? bias, SymInt[] stride, SymInt[] padding, SymInt[] dilation, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cudnn_grid_sampler_out(const Tensor & self, const Tensor & grid, Tensor & out); // {"schema": "aten::cudnn_grid_sampler.out(Tensor self, Tensor grid, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> cudnn_grid_sampler_backward_out(const Tensor & self, const Tensor & grid, const Tensor & grad_output, Tensor & out0, Tensor & out1); // {"schema": "aten::cudnn_grid_sampler_backward.out(Tensor self, Tensor grid, Tensor grad_output, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _ctc_loss_out(const Tensor & log_probs, const Tensor & targets, IntArrayRef input_lengths, IntArrayRef target_lengths, int64_t blank, bool zero_infinity, Tensor & out0, Tensor & out1); // {"schema": "aten::_ctc_loss.out(Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, int blank=0, bool zero_infinity=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _ctc_loss_out(const Tensor & log_probs, const Tensor & targets, const Tensor & input_lengths, const Tensor & target_lengths, int64_t blank, bool zero_infinity, Tensor & out0, Tensor & out1); // {"schema": "aten::_ctc_loss.Tensor_out(Tensor log_probs, Tensor targets, Tensor input_lengths, Tensor target_lengths, int blank=0, bool zero_infinity=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _ctc_loss_backward_out(const Tensor & grad, const Tensor & log_probs, const Tensor & targets, IntArrayRef input_lengths, IntArrayRef target_lengths, const Tensor & neg_log_likelihood, const Tensor & log_alpha, int64_t blank, bool zero_infinity, Tensor & out); // {"schema": "aten::_ctc_loss_backward.out(Tensor grad, Tensor log_probs, Tensor targets, int[] input_lengths, int[] target_lengths, Tensor neg_log_likelihood, Tensor log_alpha, int blank, bool zero_infinity=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & diag_embed_out(const Tensor & self, int64_t offset, int64_t dim1, int64_t dim2, Tensor & out); // {"schema": "aten::diag_embed.out(Tensor self, int offset=0, int dim1=-2, int dim2=-1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & diagonal_backward_out(const Tensor & grad_output, c10::SymIntArrayRef input_sizes, int64_t offset, int64_t dim1, int64_t dim2, Tensor & out); // {"schema": "aten::diagonal_backward.out(Tensor grad_output, SymInt[] input_sizes, int offset, int dim1, int dim2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & div_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::div.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & div_out(const Tensor & self, const Scalar & other, c10::optional<c10::string_view> rounding_mode, Tensor & out); // {"schema": "aten::div.Scalar_mode_out(Tensor self, Scalar other, *, str? rounding_mode, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & embedding_out(const Tensor & weight, const Tensor & indices, c10::SymInt padding_idx, bool scale_grad_by_freq, bool sparse, Tensor & out); // {"schema": "aten::embedding.out(Tensor weight, Tensor indices, SymInt padding_idx=-1, bool scale_grad_by_freq=False, bool sparse=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & embedding_dense_backward_out(const Tensor & grad_output, const Tensor & indices, c10::SymInt num_weights, c10::SymInt padding_idx, bool scale_grad_by_freq, Tensor & out); // {"schema": "aten::embedding_dense_backward.out(Tensor grad_output, Tensor indices, SymInt num_weights, SymInt padding_idx, bool scale_grad_by_freq, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & embedding_renorm_out(const Tensor & self, const Tensor & indices, double max_norm, double norm_type, Tensor & out); // {"schema": "aten::embedding_renorm.out(Tensor self, Tensor indices, float max_norm, float norm_type, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor embedding_renorm(const Tensor & self, const Tensor & indices, double max_norm, double norm_type); // {"schema": "aten::embedding_renorm(Tensor self, Tensor indices, float max_norm, float norm_type) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &,Tensor &> _embedding_bag_forward_only_out(const Tensor & weight, const Tensor & indices, const Tensor & offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, const c10::optional<Tensor> & per_sample_weights, bool include_last_offset, int64_t padding_idx, Tensor & out0, Tensor & out1, Tensor & out2, Tensor & out3); // {"schema": "aten::_embedding_bag_forward_only.out(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &,Tensor &> _embedding_bag_out(const Tensor & weight, const Tensor & indices, const Tensor & offsets, bool scale_grad_by_freq, int64_t mode, bool sparse, const c10::optional<Tensor> & per_sample_weights, bool include_last_offset, int64_t padding_idx, Tensor & out0, Tensor & out1, Tensor & out2, Tensor & out3); // {"schema": "aten::_embedding_bag.out(Tensor weight, Tensor indices, Tensor offsets, bool scale_grad_by_freq=False, int mode=0, bool sparse=False, Tensor? per_sample_weights=None, bool include_last_offset=False, int padding_idx=-1, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _embedding_bag_dense_backward_out(const Tensor & grad, const Tensor & indices, const Tensor & offset2bag, const Tensor & bag_size, const Tensor & maximum_indices, c10::SymInt num_weights, bool scale_grad_by_freq, int64_t mode, const c10::optional<Tensor> & per_sample_weights, int64_t padding_idx, Tensor & out); // {"schema": "aten::_embedding_bag_dense_backward.out(Tensor grad, Tensor indices, Tensor offset2bag, Tensor bag_size, Tensor maximum_indices, SymInt num_weights, bool scale_grad_by_freq, int mode, Tensor? per_sample_weights, int padding_idx=-1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _embedding_bag_per_sample_weights_backward_out(const Tensor & grad, const Tensor & weight, const Tensor & indices, const Tensor & offsets, const Tensor & offset2bag, int64_t mode, int64_t padding_idx, Tensor & out); // {"schema": "aten::_embedding_bag_per_sample_weights_backward.out(Tensor grad, Tensor weight, Tensor indices, Tensor offsets, Tensor offset2bag, int mode, int padding_idx=-1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & empty_out(IntArrayRef size, c10::optional<DimnameList> names, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::empty.names_out(int[] size, *, Dimname[]? names, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & empty_permuted_out(c10::SymIntArrayRef size, IntArrayRef physical_layout, Tensor & out); // {"schema": "aten::empty_permuted.out(SymInt[] size, int[] physical_layout, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & new_empty_out(const Tensor & self, c10::SymIntArrayRef size, Tensor & out); // {"schema": "aten::new_empty.out(Tensor self, SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & new_empty_strided_out(const Tensor & self, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, Tensor & out); // {"schema": "aten::new_empty_strided.out(Tensor self, SymInt[] size, SymInt[] stride, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & new_full_out(const Tensor & self, c10::SymIntArrayRef size, const Scalar & fill_value, Tensor & out); // {"schema": "aten::new_full.out(Tensor self, SymInt[] size, Scalar fill_value, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & new_zeros_out(const Tensor & self, c10::SymIntArrayRef size, Tensor & out); // {"schema": "aten::new_zeros.out(Tensor self, SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & new_ones_out(const Tensor & self, c10::SymIntArrayRef size, Tensor & out); // {"schema": "aten::new_ones.out(Tensor self, SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _empty_affine_quantized_out(c10::SymIntArrayRef size, double scale, int64_t zero_point, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::_empty_affine_quantized.out(SymInt[] size, *, float scale=1, int zero_point=0, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _empty_per_channel_affine_quantized_out(c10::SymIntArrayRef size, const Tensor & scales, const Tensor & zero_points, int64_t axis, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::_empty_per_channel_affine_quantized.out(SymInt[] size, *, Tensor scales, Tensor zero_points, int axis, MemoryFormat? memory_format=contiguous_format, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
const Tensor & resize_out(const Tensor & self, c10::SymIntArrayRef size, c10::optional<MemoryFormat> memory_format, const Tensor & out); // {"schema": "aten::resize.out(Tensor self, SymInt[] size, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor resize(const Tensor & self, c10::SymIntArrayRef size, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::resize(Tensor self, SymInt[] size, *, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
const Tensor & _resize_output_out(const Tensor & self, c10::SymIntArrayRef size, Device device, const Tensor & out); // {"schema": "aten::_resize_output.out(Tensor self, SymInt[] size, Device device, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor _resize_output(const Tensor & self, c10::SymIntArrayRef size, Device device); // {"schema": "aten::_resize_output(Tensor self, SymInt[] size, Device device) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & empty_quantized_out(IntArrayRef size, const Tensor & qtensor, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::empty_quantized.out(int[] size, Tensor qtensor, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & empty_like_out(const Tensor & self, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::empty_like.out(Tensor self, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & empty_strided_out(c10::SymIntArrayRef size, c10::SymIntArrayRef stride, Tensor & out); // {"schema": "aten::empty_strided.out(SymInt[] size, SymInt[] stride, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & fill_out(const Tensor & self, const Scalar & value, Tensor & out); // {"schema": "aten::fill.Scalar_out(Tensor self, Scalar value, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & fill_out(const Tensor & self, const Tensor & value, Tensor & out); // {"schema": "aten::fill.Tensor_out(Tensor self, Tensor value, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & floor_divide_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::floor_divide.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & full_out(IntArrayRef size, const Scalar & fill_value, c10::optional<DimnameList> names, Tensor & out); // {"schema": "aten::full.names_out(int[] size, Scalar fill_value, *, Dimname[]? names, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & full_like_out(const Tensor & self, const Scalar & fill_value, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::full_like.out(Tensor self, Scalar fill_value, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & from_file_out(c10::string_view filename, c10::optional<bool> shared, c10::optional<int64_t> size, Tensor & out); // {"schema": "aten::from_file.out(str filename, bool? shared=None, int? size=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & grid_sampler_2d_out(const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, Tensor & out); // {"schema": "aten::grid_sampler_2d.out(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> grid_sampler_2d_backward_out(const Tensor & grad_output, const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask, Tensor & out0, Tensor & out1); // {"schema": "aten::grid_sampler_2d_backward.out(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, bool[2] output_mask, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _grid_sampler_2d_cpu_fallback_out(const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, Tensor & out); // {"schema": "aten::_grid_sampler_2d_cpu_fallback.out(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & grid_sampler_3d_out(const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, Tensor & out); // {"schema": "aten::grid_sampler_3d.out(Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> grid_sampler_3d_backward_out(const Tensor & grad_output, const Tensor & input, const Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask, Tensor & out0, Tensor & out1); // {"schema": "aten::grid_sampler_3d_backward.out(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, bool[2] output_mask, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hann_window_out(int64_t window_length, Tensor & out); // {"schema": "aten::hann_window.out(int window_length, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hann_window_out(int64_t window_length, bool periodic, Tensor & out); // {"schema": "aten::hann_window.periodic_out(int window_length, bool periodic, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hamming_window_out(int64_t window_length, Tensor & out); // {"schema": "aten::hamming_window.out(int window_length, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hamming_window_out(int64_t window_length, bool periodic, Tensor & out); // {"schema": "aten::hamming_window.periodic_out(int window_length, bool periodic, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hamming_window_out(int64_t window_length, bool periodic, double alpha, Tensor & out); // {"schema": "aten::hamming_window.periodic_alpha_out(int window_length, bool periodic, float alpha, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hamming_window_out(int64_t window_length, bool periodic, double alpha, double beta, Tensor & out); // {"schema": "aten::hamming_window.periodic_alpha_beta_out(int window_length, bool periodic, float alpha, float beta, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & kaiser_window_out(int64_t window_length, Tensor & out); // {"schema": "aten::kaiser_window.out(int window_length, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & kaiser_window_out(int64_t window_length, bool periodic, Tensor & out); // {"schema": "aten::kaiser_window.periodic_out(int window_length, bool periodic, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & kaiser_window_out(int64_t window_length, bool periodic, double beta, Tensor & out); // {"schema": "aten::kaiser_window.beta_out(int window_length, bool periodic, float beta, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> native_group_norm_out(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, c10::SymInt N, c10::SymInt C, c10::SymInt HxW, int64_t group, double eps, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::native_group_norm.out(Tensor input, Tensor? weight, Tensor? bias, SymInt N, SymInt C, SymInt HxW, int group, float eps, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> native_group_norm_backward_out(const Tensor & grad_out, const Tensor & input, const Tensor & mean, const Tensor & rstd, const c10::optional<Tensor> & weight, c10::SymInt N, c10::SymInt C, c10::SymInt HxW, int64_t group, ::std::array<bool,3> output_mask, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::native_group_norm_backward.out(Tensor grad_out, Tensor input, Tensor mean, Tensor rstd, Tensor? weight, SymInt N, SymInt C, SymInt HxW, int group, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & index_put_out(const Tensor & self, const c10::List<c10::optional<Tensor>> & indices, const Tensor & values, bool accumulate, Tensor & out); // {"schema": "aten::index_put.out(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _index_put_impl_out(const Tensor & self, const c10::List<c10::optional<Tensor>> & indices, const Tensor & values, bool accumulate, bool unsafe, Tensor & out); // {"schema": "aten::_index_put_impl.out(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False, bool unsafe=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor _index_put_impl(const Tensor & self, const c10::List<c10::optional<Tensor>> & indices, const Tensor & values, bool accumulate, bool unsafe); // {"schema": "aten::_index_put_impl(Tensor self, Tensor?[] indices, Tensor values, bool accumulate=False, bool unsafe=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & isnan_out(const Tensor & self, Tensor & out); // {"schema": "aten::isnan.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> native_layer_norm_out(const Tensor & input, c10::SymIntArrayRef normalized_shape, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, double eps, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::native_layer_norm.out(Tensor input, SymInt[] normalized_shape, Tensor? weight, Tensor? bias, float eps, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> native_layer_norm_backward_out(const Tensor & grad_out, const Tensor & input, c10::SymIntArrayRef normalized_shape, const Tensor & mean, const Tensor & rstd, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, ::std::array<bool,3> output_mask, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::native_layer_norm_backward.out(Tensor grad_out, Tensor input, SymInt[] normalized_shape, Tensor mean, Tensor rstd, Tensor? weight, Tensor? bias, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> linear_backward_out(const Tensor & self, const Tensor & grad_output, const Tensor & weight, ::std::array<bool,3> output_mask, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::linear_backward.out(Tensor self, Tensor grad_output, Tensor weight, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mkldnn_linear_out(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, Tensor & out); // {"schema": "aten::mkldnn_linear.out(Tensor self, Tensor weight, Tensor? bias=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mkldnn_linear_backward_input_out(IntArrayRef input_size, const Tensor & grad_output, const Tensor & weight, Tensor & out); // {"schema": "aten::mkldnn_linear_backward_input.out(int[] input_size, Tensor grad_output, Tensor weight, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> mkldnn_linear_backward_weights_out(const Tensor & grad_output, const Tensor & input, const Tensor & weight, bool bias_defined, Tensor & out0, Tensor & out1); // {"schema": "aten::mkldnn_linear_backward_weights.out(Tensor grad_output, Tensor input, Tensor weight, bool bias_defined, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> mkldnn_linear_backward_out(const Tensor & self, const Tensor & grad_output, const Tensor & weight, ::std::array<bool,3> output_mask, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::mkldnn_linear_backward.out(Tensor self, Tensor grad_output, Tensor weight, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> matmul_backward_out(const Tensor & grad, const Tensor & self, const Tensor & other, ::std::array<bool,2> mask, Tensor & out0, Tensor & out1); // {"schema": "aten::matmul_backward.out(Tensor grad, Tensor self, Tensor other, bool[2] mask, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _aminmax_out(const Tensor & self, Tensor & out0, Tensor & out1); // {"schema": "aten::_aminmax.out(Tensor self, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _aminmax_out(const Tensor & self, int64_t dim, bool keepdim, Tensor & out0, Tensor & out1); // {"schema": "aten::_aminmax.dim_out(Tensor self, int dim, bool keepdim=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & max_pool2d_backward_out(const Tensor & grad_output, const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor & out); // {"schema": "aten::max_pool2d_backward.out(Tensor grad_output, Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mkldnn_max_pool2d_out(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor & out); // {"schema": "aten::mkldnn_max_pool2d.out(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mkldnn_max_pool2d_backward_out(const Tensor & grad_output, const Tensor & output, const Tensor & input, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor & out); // {"schema": "aten::mkldnn_max_pool2d_backward.out(Tensor grad_output, Tensor output, Tensor input, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mkldnn_max_pool3d_out(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor & out); // {"schema": "aten::mkldnn_max_pool3d.out(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mkldnn_max_pool3d_backward_out(const Tensor & grad_output, const Tensor & output, const Tensor & input, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor & out); // {"schema": "aten::mkldnn_max_pool3d_backward.out(Tensor grad_output, Tensor output, Tensor input, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & quantized_max_pool1d_out(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor & out); // {"schema": "aten::quantized_max_pool1d.out(Tensor self, int[1] kernel_size, int[1] stride=[], int[1] padding=0, int[1] dilation=1, bool ceil_mode=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & quantized_max_pool2d_out(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor & out); // {"schema": "aten::quantized_max_pool2d.out(Tensor self, int[2] kernel_size, int[2] stride=[], int[2] padding=0, int[2] dilation=1, bool ceil_mode=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & quantized_max_pool3d_out(const Tensor & self, IntArrayRef kernel_size, IntArrayRef stride, IntArrayRef padding, IntArrayRef dilation, bool ceil_mode, Tensor & out); // {"schema": "aten::quantized_max_pool3d.out(Tensor self, int[3] kernel_size, int[3] stride=[], int[3] padding=0, int[3] dilation=1, bool ceil_mode=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & median_out(const Tensor & self, Tensor & out); // {"schema": "aten::median.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & nanmedian_out(const Tensor & self, Tensor & out); // {"schema": "aten::nanmedian.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _mps_convolution_out(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, Tensor & out); // {"schema": "aten::_mps_convolution.out(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> mps_convolution_backward_out(const Tensor & self, const Tensor & grad_output, const Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, ::std::array<bool,3> output_mask, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::mps_convolution_backward.out(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mkldnn_convolution_out(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, Tensor & out); // {"schema": "aten::mkldnn_convolution.out(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &,Tensor &> mkldnn_rnn_layer_out(const Tensor & input, const Tensor & weight0, const Tensor & weight1, const Tensor & weight2, const Tensor & weight3, const Tensor & hx_, const Tensor & cx_, bool reverse, IntArrayRef batch_sizes, int64_t mode, int64_t hidden_size, int64_t num_layers, bool has_biases, bool bidirectional, bool batch_first, bool train, Tensor & out0, Tensor & out1, Tensor & out2, Tensor & out3); // {"schema": "aten::mkldnn_rnn_layer.out(Tensor input, Tensor weight0, Tensor weight1, Tensor weight2, Tensor weight3, Tensor hx_, Tensor cx_, bool reverse, int[] batch_sizes, int mode, int hidden_size, int num_layers, bool has_biases, bool bidirectional, bool batch_first, bool train, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &,Tensor &,Tensor &,Tensor &,Tensor &> mkldnn_rnn_layer_backward_out(const Tensor & input, const Tensor & weight1, const Tensor & weight2, const Tensor & weight3, const Tensor & weight4, const Tensor & hx_, const Tensor & cx_tmp, const Tensor & output, const Tensor & hy_, const Tensor & cy_, const c10::optional<Tensor> & grad_output, const c10::optional<Tensor> & grad_hy, const c10::optional<Tensor> & grad_cy, bool reverse, int64_t mode, int64_t hidden_size, int64_t num_layers, bool has_biases, bool train, bool bidirectional, IntArrayRef batch_sizes, bool batch_first, const Tensor & workspace, Tensor & out0, Tensor & out1, Tensor & out2, Tensor & out3, Tensor & out4, Tensor & out5, Tensor & out6); // {"schema": "aten::mkldnn_rnn_layer_backward.out(Tensor input, Tensor weight1, Tensor weight2, Tensor weight3, Tensor weight4, Tensor hx_, Tensor cx_tmp, Tensor output, Tensor hy_, Tensor cy_, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, bool reverse, int mode, int hidden_size, int num_layers, bool has_biases, bool train, bool bidirectional, int[] batch_sizes, bool batch_first, Tensor workspace, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4, Tensor(f!) out5, Tensor(g!) out6) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!), Tensor(f!), Tensor(g!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> miopen_batch_norm_out(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, bool training, double exponential_average_factor, double epsilon, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::miopen_batch_norm.out(Tensor input, Tensor weight, Tensor? bias, Tensor? running_mean, Tensor? running_var, bool training, float exponential_average_factor, float epsilon, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> miopen_batch_norm_backward_out(const Tensor & input, const Tensor & grad_output, const Tensor & weight, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, const c10::optional<Tensor> & save_mean, const c10::optional<Tensor> & save_var, double epsilon, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::miopen_batch_norm_backward.out(Tensor input, Tensor grad_output, Tensor weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_var, float epsilon, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & miopen_convolution_out(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, Tensor & out); // {"schema": "aten::miopen_convolution.out(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & miopen_convolution_transpose_out(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef output_padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, Tensor & out); // {"schema": "aten::miopen_convolution_transpose.out(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] output_padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & miopen_depthwise_convolution_out(const Tensor & self, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, bool benchmark, bool deterministic, Tensor & out); // {"schema": "aten::miopen_depthwise_convolution.out(Tensor self, Tensor weight, Tensor? bias, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool benchmark, bool deterministic, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &,Tensor &,Tensor &> miopen_rnn_out(const Tensor & input, TensorList weight, int64_t weight_stride0, const Tensor & hx, const c10::optional<Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, IntArrayRef batch_sizes, const c10::optional<Tensor> & dropout_state, Tensor & out0, Tensor & out1, Tensor & out2, Tensor & out3, Tensor & out4); // {"schema": "aten::miopen_rnn.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor hx, Tensor? cx, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))", "dispatch": "True", "default": "True"}
|
||
|
void miopen_rnn_backward_out(const Tensor & input, TensorList weight, int64_t weight_stride0, const Tensor & weight_buf, const Tensor & hx, const c10::optional<Tensor> & cx, const Tensor & output, const c10::optional<Tensor> & grad_output, const c10::optional<Tensor> & grad_hy, const c10::optional<Tensor> & grad_cy, int64_t mode, int64_t hidden_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, IntArrayRef batch_sizes, const c10::optional<Tensor> & dropout_state, const Tensor & reserve, ::std::array<bool,4> output_mask, Tensor & out0, Tensor & out1, Tensor & out2, TensorList out3); // {"schema": "aten::miopen_rnn_backward.out(Tensor input, Tensor[] weight, int weight_stride0, Tensor weight_buf, Tensor hx, Tensor? cx, Tensor output, Tensor? grad_output, Tensor? grad_hy, Tensor? grad_cy, int mode, int hidden_size, int num_layers, bool batch_first, float dropout, bool train, bool bidirectional, int[] batch_sizes, Tensor? dropout_state, Tensor reserve, bool[4] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!)[] out3) -> ()", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_sparse_matmul_out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::_sparse_sparse_matmul.out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mul_out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::mul.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor> _native_batch_norm_legit_functional(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, const Tensor & running_mean, const Tensor & running_var, bool training, double momentum, double eps); // {"schema": "aten::_native_batch_norm_legit_functional(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, bool training, float momentum, float eps) -> (Tensor, Tensor, Tensor, Tensor running_mean_out, Tensor running_var_out)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> _native_batch_norm_legit_no_training_out(const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & bias, const Tensor & running_mean, const Tensor & running_var, double momentum, double eps, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::_native_batch_norm_legit_no_training.out(Tensor input, Tensor? weight, Tensor? bias, Tensor running_mean, Tensor running_var, float momentum, float eps, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> batch_norm_stats_out(const Tensor & input, double eps, Tensor & out0, Tensor & out1); // {"schema": "aten::batch_norm_stats.out(Tensor input, float eps, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> batch_norm_gather_stats_out(const Tensor & input, const Tensor & mean, const Tensor & invstd, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, double momentum, double eps, int64_t count, Tensor & out0, Tensor & out1); // {"schema": "aten::batch_norm_gather_stats.out(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, int count, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> batch_norm_gather_stats_with_counts_out(const Tensor & input, const Tensor & mean, const Tensor & invstd, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, double momentum, double eps, const Tensor & counts, Tensor & out0, Tensor & out1); // {"schema": "aten::batch_norm_gather_stats_with_counts.out(Tensor input, Tensor mean, Tensor invstd, Tensor? running_mean, Tensor? running_var, float momentum, float eps, Tensor counts, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> native_batch_norm_backward_out(const Tensor & grad_out, const Tensor & input, const c10::optional<Tensor> & weight, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, const c10::optional<Tensor> & save_mean, const c10::optional<Tensor> & save_invstd, bool train, double eps, ::std::array<bool,3> output_mask, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::native_batch_norm_backward.out(Tensor grad_out, Tensor input, Tensor? weight, Tensor? running_mean, Tensor? running_var, Tensor? save_mean, Tensor? save_invstd, bool train, float eps, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &,Tensor &> batch_norm_backward_reduce_out(const Tensor & grad_out, const Tensor & input, const Tensor & mean, const Tensor & invstd, const c10::optional<Tensor> & weight, bool input_g, bool weight_g, bool bias_g, Tensor & out0, Tensor & out1, Tensor & out2, Tensor & out3); // {"schema": "aten::batch_norm_backward_reduce.out(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, bool input_g, bool weight_g, bool bias_g, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & batch_norm_backward_elemt_out(const Tensor & grad_out, const Tensor & input, const Tensor & mean, const Tensor & invstd, const c10::optional<Tensor> & weight, const Tensor & sum_dy, const Tensor & sum_dy_xmu, const Tensor & count, Tensor & out); // {"schema": "aten::batch_norm_backward_elemt.out(Tensor grad_out, Tensor input, Tensor mean, Tensor invstd, Tensor? weight, Tensor sum_dy, Tensor sum_dy_xmu, Tensor count, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> batch_norm_update_stats_out(const Tensor & input, const c10::optional<Tensor> & running_mean, const c10::optional<Tensor> & running_var, double momentum, Tensor & out0, Tensor & out1); // {"schema": "aten::batch_norm_update_stats.out(Tensor input, Tensor? running_mean, Tensor? running_var, float momentum, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _nnpack_spatial_convolution_out(const Tensor & input, const Tensor & weight, const c10::optional<Tensor> & bias, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, Tensor & out); // {"schema": "aten::_nnpack_spatial_convolution.out(Tensor input, Tensor weight, Tensor? bias, SymInt[2] padding, SymInt[2] stride=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & ones_out(IntArrayRef size, c10::optional<DimnameList> names, Tensor & out); // {"schema": "aten::ones.names_out(int[] size, *, Dimname[]? names, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & ones_like_out(const Tensor & self, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::ones_like.out(Tensor self, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _euclidean_dist_out(const Tensor & x1, const Tensor & x2, Tensor & out); // {"schema": "aten::_euclidean_dist.out(Tensor x1, Tensor x2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _cdist_forward_out(const Tensor & x1, const Tensor & x2, double p, c10::optional<int64_t> compute_mode, Tensor & out); // {"schema": "aten::_cdist_forward.out(Tensor x1, Tensor x2, float p, int? compute_mode, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _cdist_backward_out(const Tensor & grad, const Tensor & x1, const Tensor & x2, double p, const Tensor & cdist, Tensor & out); // {"schema": "aten::_cdist_backward.out(Tensor grad, Tensor x1, Tensor x2, float p, Tensor cdist, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _pdist_forward_out(const Tensor & self, double p, Tensor & out); // {"schema": "aten::_pdist_forward.out(Tensor self, float p=2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _pdist_backward_out(const Tensor & grad, const Tensor & self, double p, const Tensor & pdist, Tensor & out); // {"schema": "aten::_pdist_backward.out(Tensor grad, Tensor self, float p, Tensor pdist, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & pixel_shuffle_out(const Tensor & self, int64_t upscale_factor, Tensor & out); // {"schema": "aten::pixel_shuffle.out(Tensor self, int upscale_factor, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & pixel_unshuffle_out(const Tensor & self, int64_t downscale_factor, Tensor & out); // {"schema": "aten::pixel_unshuffle.out(Tensor self, int downscale_factor, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & channel_shuffle_out(const Tensor & self, c10::SymInt groups, Tensor & out); // {"schema": "aten::channel_shuffle.out(Tensor self, SymInt groups, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _pin_memory_out(const Tensor & self, c10::optional<Device> device, Tensor & out); // {"schema": "aten::_pin_memory.out(Tensor self, Device? device=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & scalar_tensor_out(const Scalar & s, Tensor & out); // {"schema": "aten::scalar_tensor.out(Scalar s, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rand_out(c10::SymIntArrayRef size, c10::optional<DimnameList> names, Tensor & out); // {"schema": "aten::rand.names_out(SymInt[] size, *, Dimname[]? names, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rand_out(c10::SymIntArrayRef size, c10::optional<Generator> generator, c10::optional<DimnameList> names, Tensor & out); // {"schema": "aten::rand.generator_with_names_out(SymInt[] size, *, Generator? generator, Dimname[]? names, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rand_like_out(const Tensor & self, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::rand_like.out(Tensor self, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & randint_like_out(const Tensor & self, c10::SymInt high, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::randint_like.out(Tensor self, SymInt high, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & randint_like_out(const Tensor & self, c10::SymInt low, c10::SymInt high, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::randint_like.low_dtype_out(Tensor self, SymInt low, SymInt high, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & randn_out(c10::SymIntArrayRef size, c10::optional<DimnameList> names, Tensor & out); // {"schema": "aten::randn.names_out(SymInt[] size, *, Dimname[]? names, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & randn_out(c10::SymIntArrayRef size, c10::optional<Generator> generator, c10::optional<DimnameList> names, Tensor & out); // {"schema": "aten::randn.generator_with_names_out(SymInt[] size, *, Generator? generator, Dimname[]? names, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & randn_like_out(const Tensor & self, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::randn_like.out(Tensor self, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & repeat_out(const Tensor & self, c10::SymIntArrayRef repeats, Tensor & out); // {"schema": "aten::repeat.out(Tensor self, SymInt[] repeats, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & repeat_interleave_out(const Tensor & repeats, c10::optional<c10::SymInt> output_size, Tensor & out); // {"schema": "aten::repeat_interleave.Tensor_out(Tensor repeats, *, SymInt? output_size=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _mkldnn_reshape_out(const Tensor & self, IntArrayRef shape, Tensor & out); // {"schema": "aten::_mkldnn_reshape.out(Tensor self, int[] shape, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & relu_out(const Tensor & self, Tensor & out); // {"schema": "aten::relu.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & select_backward_out(const Tensor & grad_output, c10::SymIntArrayRef input_sizes, int64_t dim, c10::SymInt index, Tensor & out); // {"schema": "aten::select_backward.out(Tensor grad_output, SymInt[] input_sizes, int dim, SymInt index, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & celu_out(const Tensor & self, const Scalar & alpha, Tensor & out); // {"schema": "aten::celu.out(Tensor self, Scalar alpha=1.0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & slice_backward_out(const Tensor & grad_output, c10::SymIntArrayRef input_sizes, int64_t dim, c10::SymInt start, c10::SymInt end, c10::SymInt step, Tensor & out); // {"schema": "aten::slice_backward.out(Tensor grad_output, SymInt[] input_sizes, int dim, SymInt start, SymInt end, SymInt step, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & slice_scatter_out(const Tensor & self, const Tensor & src, int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step, Tensor & out); // {"schema": "aten::slice_scatter.out(Tensor self, Tensor src, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & select_scatter_out(const Tensor & self, const Tensor & src, int64_t dim, c10::SymInt index, Tensor & out); // {"schema": "aten::select_scatter.out(Tensor self, Tensor src, int dim, SymInt index, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & diagonal_scatter_out(const Tensor & self, const Tensor & src, int64_t offset, int64_t dim1, int64_t dim2, Tensor & out); // {"schema": "aten::diagonal_scatter.out(Tensor self, Tensor src, int offset=0, int dim1=0, int dim2=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & as_strided_scatter_out(const Tensor & self, const Tensor & src, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset, Tensor & out); // {"schema": "aten::as_strided_scatter.out(Tensor self, Tensor src, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
void unsafe_split_out(const Tensor & self, c10::SymInt split_size, int64_t dim, TensorList out); // {"schema": "aten::unsafe_split.Tensor_out(Tensor self, SymInt split_size, int dim=0, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void unsafe_split_with_sizes_out(const Tensor & self, c10::SymIntArrayRef split_sizes, int64_t dim, TensorList out); // {"schema": "aten::unsafe_split_with_sizes.out(Tensor self, SymInt[] split_sizes, int dim=0, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sum_out(const Tensor & self, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::sum.out(Tensor self, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> std_mean_out(const Tensor & self, OptionalIntArrayRef dim, const c10::optional<Scalar> & correction, bool keepdim, Tensor & out0, Tensor & out1); // {"schema": "aten::std_mean.correction_out(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & prod_out(const Tensor & self, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::prod.out(Tensor self, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _mkldnn_transpose_out(const Tensor & self, int64_t dim0, int64_t dim1, Tensor & out); // {"schema": "aten::_mkldnn_transpose.out(Tensor self, int dim0, int dim1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & flip_out(const Tensor & self, IntArrayRef dims, Tensor & out); // {"schema": "aten::flip.out(Tensor self, int[] dims, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & roll_out(const Tensor & self, c10::SymIntArrayRef shifts, IntArrayRef dims, Tensor & out); // {"schema": "aten::roll.out(Tensor self, SymInt[1] shifts, int[1] dims=[], *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rot90_out(const Tensor & self, int64_t k, IntArrayRef dims, Tensor & out); // {"schema": "aten::rot90.out(Tensor self, int k=1, int[] dims=[0,1], *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> _transform_bias_rescale_qkv_out(const Tensor & qkv, const Tensor & qkv_bias, int64_t num_heads, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::_transform_bias_rescale_qkv.out(Tensor qkv, Tensor qkv_bias, int num_heads, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _nested_tensor_from_mask_out(const Tensor & t, const Tensor & mask, bool mask_check, Tensor & out); // {"schema": "aten::_nested_tensor_from_mask.out(Tensor t, Tensor mask, bool mask_check=True, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _nested_from_padded_out(const Tensor & padded, const Tensor & cpu_nested_shape_example, bool fuse_transform_0213, Tensor & out); // {"schema": "aten::_nested_from_padded.out(Tensor padded, Tensor cpu_nested_shape_example, bool fuse_transform_0213=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _nested_tensor_size_out(const Tensor & self, Tensor & out); // {"schema": "aten::_nested_tensor_size.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _nested_tensor_strides_out(const Tensor & self, Tensor & out); // {"schema": "aten::_nested_tensor_strides.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _nested_tensor_storage_offsets_out(const Tensor & self, Tensor & out); // {"schema": "aten::_nested_tensor_storage_offsets.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _nested_from_padded_and_nested_example_out(const Tensor & padded, const Tensor & nt_example, Tensor & out); // {"schema": "aten::_nested_from_padded_and_nested_example.out(Tensor padded, Tensor nt_example, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _nested_view_from_buffer_copy_out(const Tensor & self, const Tensor & nested_size, const Tensor & nested_strides, const Tensor & offsets, Tensor & out); // {"schema": "aten::_nested_view_from_buffer_copy.out(Tensor self, Tensor nested_size, Tensor nested_strides, Tensor offsets, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _nested_view_from_jagged_copy_out(const Tensor & self, const Tensor & offsets, const Tensor & dummy, const c10::optional<Tensor> & lengths, int64_t ragged_idx, Tensor & out); // {"schema": "aten::_nested_view_from_jagged_copy.out(Tensor self, Tensor offsets, Tensor dummy, Tensor? lengths=None, int ragged_idx=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _nested_get_values_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::_nested_get_values_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _trilinear_out(const Tensor & i1, const Tensor & i2, const Tensor & i3, IntArrayRef expand1, IntArrayRef expand2, IntArrayRef expand3, IntArrayRef sumdim, int64_t unroll_dim, Tensor & out); // {"schema": "aten::_trilinear.out(Tensor i1, Tensor i2, Tensor i3, int[] expand1, int[] expand2, int[] expand3, int[] sumdim, int unroll_dim=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _unique_out(const Tensor & self, bool sorted, bool return_inverse, Tensor & out0, Tensor & out1); // {"schema": "aten::_unique.out(Tensor self, bool sorted=True, bool return_inverse=False, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> unique_dim_out(const Tensor & self, int64_t dim, bool sorted, bool return_inverse, bool return_counts, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::unique_dim.out(Tensor self, int dim, bool sorted=True, bool return_inverse=False, bool return_counts=False, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> unique_consecutive_out(const Tensor & self, bool return_inverse, bool return_counts, c10::optional<int64_t> dim, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::unique_consecutive.out(Tensor self, bool return_inverse=False, bool return_counts=False, int? dim=None, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> unique_dim_consecutive_out(const Tensor & self, int64_t dim, bool return_inverse, bool return_counts, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::unique_dim_consecutive.out(Tensor self, int dim, bool return_inverse=False, bool return_counts=False, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> _unique2_out(const Tensor & self, bool sorted, bool return_inverse, bool return_counts, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::_unique2.out(Tensor self, bool sorted=True, bool return_inverse=False, bool return_counts=False, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _unsafe_view_out(const Tensor & self, c10::SymIntArrayRef size, Tensor & out); // {"schema": "aten::_unsafe_view.out(Tensor self, SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> var_mean_out(const Tensor & self, OptionalIntArrayRef dim, const c10::optional<Scalar> & correction, bool keepdim, Tensor & out0, Tensor & out1); // {"schema": "aten::var_mean.correction_out(Tensor self, int[1]? dim=None, *, Scalar? correction=None, bool keepdim=False, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _weight_norm_interface_out(const Tensor & v, const Tensor & g, int64_t dim, Tensor & out0, Tensor & out1); // {"schema": "aten::_weight_norm_interface.out(Tensor v, Tensor g, int dim=0, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _weight_norm_interface_backward_out(const Tensor & grad_w, const Tensor & saved_v, const Tensor & saved_g, const Tensor & saved_norms, int64_t dim, Tensor & out0, Tensor & out1); // {"schema": "aten::_weight_norm_interface_backward.out(Tensor grad_w, Tensor saved_v, Tensor saved_g, Tensor saved_norms, int dim, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & zeros_out(IntArrayRef size, c10::optional<DimnameList> names, Tensor & out); // {"schema": "aten::zeros.names_out(int[] size, *, Dimname[]? names, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _efficientzerotensor_out(c10::SymIntArrayRef size, Tensor & out); // {"schema": "aten::_efficientzerotensor.out(SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & zeros_like_out(const Tensor & self, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::zeros_like.out(Tensor self, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _standard_gamma_grad_out(const Tensor & self, const Tensor & output, Tensor & out); // {"schema": "aten::_standard_gamma_grad.out(Tensor self, Tensor output, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _standard_gamma_out(const Tensor & self, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::_standard_gamma.out(Tensor self, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _dirichlet_grad_out(const Tensor & x, const Tensor & alpha, const Tensor & total, Tensor & out); // {"schema": "aten::_dirichlet_grad.out(Tensor x, Tensor alpha, Tensor total, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sample_dirichlet_out(const Tensor & self, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::_sample_dirichlet.out(Tensor self, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & poisson_out(const Tensor & self, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::poisson.out(Tensor self, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & binomial_out(const Tensor & count, const Tensor & prob, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::binomial.out(Tensor count, Tensor prob, Generator? generator=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & native_norm_out(const Tensor & self, const Scalar & p, Tensor & out); // {"schema": "aten::native_norm.out(Tensor self, Scalar p=2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & native_norm_out(const Tensor & self, const c10::optional<Scalar> & p, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::native_norm.ScalarOpt_dim_dtype_out(Tensor self, Scalar? p, int[1] dim, bool keepdim, ScalarType? dtype, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_sum_out(const Tensor & self, IntArrayRef dim, Tensor & out); // {"schema": "aten::_sparse_sum.dim_out(Tensor self, int[1] dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_sum_backward_out(const Tensor & grad, const Tensor & self, IntArrayRef dim, Tensor & out); // {"schema": "aten::_sparse_sum_backward.out(Tensor grad, Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_csr_sum_out(const Tensor & self, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::_sparse_csr_sum.dim_dtype_out(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_csr_prod_out(const Tensor & self, IntArrayRef dim, bool keepdim, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::_sparse_csr_prod.dim_dtype_out(Tensor self, int[1] dim, bool keepdim=False, *, ScalarType? dtype=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_softmax_out(const Tensor & self, int64_t dim, bool half_to_float, Tensor & out); // {"schema": "aten::_sparse_softmax.out(Tensor self, int dim, bool half_to_float, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_softmax_backward_data_out(const Tensor & grad_output, const Tensor & output, int64_t dim, const Tensor & self, Tensor & out); // {"schema": "aten::_sparse_softmax_backward_data.out(Tensor grad_output, Tensor output, int dim, Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_log_softmax_out(const Tensor & self, int64_t dim, bool half_to_float, Tensor & out); // {"schema": "aten::_sparse_log_softmax.out(Tensor self, int dim, bool half_to_float, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_log_softmax_backward_data_out(const Tensor & grad_output, const Tensor & output, int64_t dim, const Tensor & self, Tensor & out); // {"schema": "aten::_sparse_log_softmax_backward_data.out(Tensor grad_output, Tensor output, int dim, Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _spdiags_out(const Tensor & diagonals, const Tensor & offsets, IntArrayRef shape, c10::optional<Layout> layout, Tensor & out); // {"schema": "aten::_spdiags.out(Tensor diagonals, Tensor offsets, int[] shape, Layout? layout=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & norm_out(const Tensor & self, const c10::optional<Scalar> & p, ScalarType dtype, Tensor & out); // {"schema": "aten::norm.ScalarOpt_dtype_out(Tensor self, Scalar? p, *, ScalarType dtype, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & norm_out(const Tensor & self, const Scalar & p, Tensor & out); // {"schema": "aten::norm.Scalar_out(Tensor self, Scalar p=2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & clone_out(const Tensor & self, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::clone.out(Tensor self, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
const Tensor & resize_as_out(const Tensor & self, const Tensor & the_template, c10::optional<MemoryFormat> memory_format, const Tensor & out); // {"schema": "aten::resize_as.out(Tensor self, Tensor the_template, *, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor resize_as(const Tensor & self, const Tensor & the_template, c10::optional<MemoryFormat> memory_format); // {"schema": "aten::resize_as(Tensor self, Tensor the_template, *, MemoryFormat? memory_format=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
const Tensor & resize_as_sparse_out(const Tensor & self, const Tensor & the_template, const Tensor & out); // {"schema": "aten::resize_as_sparse.out(Tensor self, Tensor the_template, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor resize_as_sparse(const Tensor & self, const Tensor & the_template); // {"schema": "aten::resize_as_sparse(Tensor self, Tensor the_template) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & zero_out(const Tensor & self, Tensor & out); // {"schema": "aten::zero.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor zero(const Tensor & self); // {"schema": "aten::zero(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sub_out(const Tensor & self, const Scalar & other, const Scalar & alpha, Tensor & out); // {"schema": "aten::sub.Scalar_out(Tensor self, Scalar other, Scalar alpha=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rsub_out(const Tensor & self, const Tensor & other, const Scalar & alpha, Tensor & out); // {"schema": "aten::rsub.Tensor_out(Tensor self, Tensor other, *, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rsub_out(const Tensor & self, const Scalar & other, const Scalar & alpha, Tensor & out); // {"schema": "aten::rsub.Scalar_out(Tensor self, Scalar other, Scalar alpha=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_addmm_out(const Tensor & self, const Tensor & mat1, const Tensor & mat2, const Scalar & beta, const Scalar & alpha, Tensor & out); // {"schema": "aten::_sparse_addmm.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sparse_coo_tensor_out(IntArrayRef size, Tensor & out); // {"schema": "aten::sparse_coo_tensor.size_out(int[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_coo_tensor_with_dims_out(int64_t sparse_dim, int64_t dense_dim, IntArrayRef size, Tensor & out); // {"schema": "aten::_sparse_coo_tensor_with_dims.out(int sparse_dim, int dense_dim, int[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_coo_tensor_with_dims_and_tensors_out(int64_t sparse_dim, int64_t dense_dim, c10::SymIntArrayRef size, const Tensor & indices, const Tensor & values, c10::optional<bool> is_coalesced, Tensor & out); // {"schema": "aten::_sparse_coo_tensor_with_dims_and_tensors.out(int sparse_dim, int dense_dim, SymInt[] size, Tensor indices, Tensor values, *, bool? is_coalesced=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
const Tensor & sparse_resize_out(const Tensor & self, IntArrayRef size, int64_t sparse_dim, int64_t dense_dim, const Tensor & out); // {"schema": "aten::sparse_resize.out(Tensor self, int[] size, int sparse_dim, int dense_dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor sparse_resize(const Tensor & self, IntArrayRef size, int64_t sparse_dim, int64_t dense_dim); // {"schema": "aten::sparse_resize(Tensor self, int[] size, int sparse_dim, int dense_dim) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
const Tensor & sparse_resize_and_clear_out(const Tensor & self, IntArrayRef size, int64_t sparse_dim, int64_t dense_dim, const Tensor & out); // {"schema": "aten::sparse_resize_and_clear.out(Tensor self, int[] size, int sparse_dim, int dense_dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor sparse_resize_and_clear(const Tensor & self, IntArrayRef size, int64_t sparse_dim, int64_t dense_dim); // {"schema": "aten::sparse_resize_and_clear(Tensor self, int[] size, int sparse_dim, int dense_dim) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & sparse_mask_out(const Tensor & self, const Tensor & mask, Tensor & out); // {"schema": "aten::sparse_mask.out(Tensor self, Tensor mask, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_mask_projection_out(const Tensor & self, const Tensor & mask, bool accumulate_matches, Tensor & out); // {"schema": "aten::_sparse_mask_projection.out(Tensor self, Tensor mask, bool accumulate_matches=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _to_dense_out(const Tensor & self, c10::optional<ScalarType> dtype, c10::optional<bool> masked_grad, Tensor & out); // {"schema": "aten::_to_dense.out(Tensor self, ScalarType? dtype=None, bool? masked_grad=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _coalesce_out(const Tensor & self, Tensor & out); // {"schema": "aten::_coalesce.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _coalesced_out(const Tensor & self, bool coalesced, Tensor & out); // {"schema": "aten::_coalesced.out(Tensor self, bool coalesced, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor _coalesced(const Tensor & self, bool coalesced); // {"schema": "aten::_coalesced(Tensor self, bool coalesced) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & copy_sparse_to_sparse_out(const Tensor & self, const Tensor & src, bool non_blocking, Tensor & out); // {"schema": "aten::copy_sparse_to_sparse.out(Tensor self, Tensor src, bool non_blocking=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor copy_sparse_to_sparse(const Tensor & self, const Tensor & src, bool non_blocking); // {"schema": "aten::copy_sparse_to_sparse(Tensor self, Tensor src, bool non_blocking=False) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _to_sparse_out(const Tensor & self, int64_t sparse_dim, Tensor & out); // {"schema": "aten::_to_sparse.sparse_dim_out(Tensor self, int sparse_dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _to_sparse_out(const Tensor & self, c10::optional<Layout> layout, OptionalIntArrayRef blocksize, c10::optional<int64_t> dense_dim, Tensor & out); // {"schema": "aten::_to_sparse.out(Tensor self, *, Layout? layout=None, int[2]? blocksize=None, int? dense_dim=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _to_sparse_csr_out(const Tensor & self, c10::optional<int64_t> dense_dim, Tensor & out); // {"schema": "aten::_to_sparse_csr.out(Tensor self, int? dense_dim=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _to_sparse_csc_out(const Tensor & self, c10::optional<int64_t> dense_dim, Tensor & out); // {"schema": "aten::_to_sparse_csc.out(Tensor self, int? dense_dim=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _to_sparse_bsr_out(const Tensor & self, IntArrayRef blocksize, c10::optional<int64_t> dense_dim, Tensor & out); // {"schema": "aten::_to_sparse_bsr.out(Tensor self, int[2] blocksize, int? dense_dim=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _to_sparse_bsc_out(const Tensor & self, IntArrayRef blocksize, c10::optional<int64_t> dense_dim, Tensor & out); // {"schema": "aten::_to_sparse_bsc.out(Tensor self, int[2] blocksize, int? dense_dim=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & to_mkldnn_out(const Tensor & self, c10::optional<ScalarType> dtype, Tensor & out); // {"schema": "aten::to_mkldnn.out(Tensor self, ScalarType? dtype=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mkldnn_reorder_conv2d_weight_out(const Tensor & self, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, OptionalSymIntArrayRef input_size, Tensor & out); // {"schema": "aten::mkldnn_reorder_conv2d_weight.out(Tensor self, SymInt[2] padding=0, SymInt[2] stride=1, SymInt[2] dilation=1, SymInt groups=1, SymInt[]? input_size=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mkldnn_reorder_conv3d_weight_out(const Tensor & self, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, Tensor & out); // {"schema": "aten::mkldnn_reorder_conv3d_weight.out(Tensor self, SymInt[3] padding=0, SymInt[3] stride=1, SymInt[3] dilation=1, SymInt groups=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & quantize_per_tensor_dynamic_out(const Tensor & self, ScalarType dtype, bool reduce_range, Tensor & out); // {"schema": "aten::quantize_per_tensor_dynamic.out(Tensor self, ScalarType dtype, bool reduce_range, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & quantize_per_tensor_out(const Tensor & self, double scale, int64_t zero_point, ScalarType dtype, Tensor & out); // {"schema": "aten::quantize_per_tensor.out(Tensor self, float scale, int zero_point, ScalarType dtype, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & quantize_per_tensor_out(const Tensor & self, const Tensor & scale, const Tensor & zero_point, ScalarType dtype, Tensor & out); // {"schema": "aten::quantize_per_tensor.tensor_qparams_out(Tensor self, Tensor scale, Tensor zero_point, ScalarType dtype, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
void quantize_per_tensor_out(TensorList tensors, const Tensor & scales, const Tensor & zero_points, ScalarType dtype, TensorList out); // {"schema": "aten::quantize_per_tensor.tensors_out(Tensor[] tensors, Tensor scales, Tensor zero_points, ScalarType dtype, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
Tensor & quantize_per_channel_out(const Tensor & self, const Tensor & scales, const Tensor & zero_points, int64_t axis, ScalarType dtype, Tensor & out); // {"schema": "aten::quantize_per_channel.out(Tensor self, Tensor scales, Tensor zero_points, int axis, ScalarType dtype, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & dequantize_out(const Tensor & self, Tensor & out); // {"schema": "aten::dequantize.self_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
void dequantize_out(TensorList tensors, TensorList out); // {"schema": "aten::dequantize.tensors_out(Tensor[] tensors, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
Tensor & q_per_channel_scales_out(const Tensor & self, Tensor & out); // {"schema": "aten::q_per_channel_scales.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & q_per_channel_zero_points_out(const Tensor & self, Tensor & out); // {"schema": "aten::q_per_channel_zero_points.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & int_repr_out(const Tensor & self, Tensor & out); // {"schema": "aten::int_repr.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _make_per_tensor_quantized_tensor_out(const Tensor & self, double scale, int64_t zero_point, Tensor & out); // {"schema": "aten::_make_per_tensor_quantized_tensor.out(Tensor self, float scale, int zero_point, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _make_per_channel_quantized_tensor_out(const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t axis, Tensor & out); // {"schema": "aten::_make_per_channel_quantized_tensor.out(Tensor self, Tensor scale, Tensor zero_point, int axis, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> fake_quantize_per_tensor_affine_cachemask_out(const Tensor & self, double scale, int64_t zero_point, int64_t quant_min, int64_t quant_max, Tensor & out0, Tensor & out1); // {"schema": "aten::fake_quantize_per_tensor_affine_cachemask.out(Tensor self, float scale, int zero_point, int quant_min, int quant_max, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _fake_quantize_per_tensor_affine_cachemask_tensor_qparams_out(const Tensor & self, const Tensor & scale, const Tensor & zero_point, const Tensor & fake_quant_enabled, int64_t quant_min, int64_t quant_max, Tensor & out0, Tensor & out1); // {"schema": "aten::_fake_quantize_per_tensor_affine_cachemask_tensor_qparams.out(Tensor self, Tensor scale, Tensor zero_point, Tensor fake_quant_enabled, int quant_min, int quant_max, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _fake_quantize_learnable_per_tensor_affine_out(const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t quant_min, int64_t quant_max, double grad_factor, Tensor & out); // {"schema": "aten::_fake_quantize_learnable_per_tensor_affine.out(Tensor self, Tensor scale, Tensor zero_point, int quant_min, int quant_max, float grad_factor=1.0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> fake_quantize_per_channel_affine_cachemask_out(const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, Tensor & out0, Tensor & out1); // {"schema": "aten::fake_quantize_per_channel_affine_cachemask.out(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _fake_quantize_learnable_per_channel_affine_out(const Tensor & self, const Tensor & scale, const Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max, double grad_factor, Tensor & out); // {"schema": "aten::_fake_quantize_learnable_per_channel_affine.out(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max, float grad_factor=1.0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _fused_moving_avg_obs_fq_helper_out(const Tensor & self, const Tensor & observer_on, const Tensor & fake_quant_on, Tensor & running_min, Tensor & running_max, Tensor & scale, Tensor & zero_point, double averaging_const, int64_t quant_min, int64_t quant_max, int64_t ch_axis, bool per_row_fake_quant, bool symmetric_quant, Tensor & out0, Tensor & out1); // {"schema": "aten::_fused_moving_avg_obs_fq_helper.out(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False, *, Tensor(e!) out0, Tensor(f!) out1) -> (Tensor(e!), Tensor(f!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor,Tensor,Tensor,Tensor,Tensor> _fused_moving_avg_obs_fq_helper_functional(const Tensor & self, const Tensor & observer_on, const Tensor & fake_quant_on, const Tensor & running_min, const Tensor & running_max, const Tensor & scale, const Tensor & zero_point, double averaging_const, int64_t quant_min, int64_t quant_max, int64_t ch_axis, bool per_row_fake_quant, bool symmetric_quant); // {"schema": "aten::_fused_moving_avg_obs_fq_helper_functional(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor running_min, Tensor running_max, Tensor scale, Tensor zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask, Tensor running_min_out, Tensor running_max_out, Tensor scale_out, Tensor zero_point_out)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _to_copy_out(const Tensor & self, bool non_blocking, c10::optional<MemoryFormat> memory_format, Tensor & out); // {"schema": "aten::_to_copy.out(Tensor self, *, bool non_blocking=False, MemoryFormat? memory_format=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &,Tensor &,Tensor &,Tensor &> _lstm_mps_out(const Tensor & input, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first, Tensor & out0, Tensor & out1, Tensor & out2, Tensor & out3, Tensor & out4, Tensor & out5); // {"schema": "aten::_lstm_mps.out(Tensor input, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4, Tensor(f!) out5) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!), Tensor(f!))", "dispatch": "True", "default": "True"}
|
||
|
void lstm_mps_backward_out(const c10::optional<Tensor> & grad_y, const c10::optional<Tensor> & grad_hy, const c10::optional<Tensor> & grad_cy, const Tensor & z_state, const Tensor & cell_state_fwd, const Tensor & input, const Tensor & layersOutputs, TensorList hx, TensorList params, bool has_biases, int64_t num_layers, double dropout, bool train, bool bidirectional, bool batch_first, Tensor & out0, TensorList out1, TensorList out2); // {"schema": "aten::lstm_mps_backward.out(Tensor? grad_y, Tensor? grad_hy, Tensor? grad_cy, Tensor z_state, Tensor cell_state_fwd, Tensor input, Tensor layersOutputs, Tensor[] hx, Tensor[] params, bool has_biases, int num_layers, float dropout, bool train, bool bidirectional, bool batch_first, *, Tensor(a!) out0, Tensor(b!)[] out1, Tensor(c!)[] out2) -> ()", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> _thnn_fused_lstm_cell_out(const Tensor & input_gates, const Tensor & hidden_gates, const Tensor & cx, const c10::optional<Tensor> & input_bias, const c10::optional<Tensor> & hidden_bias, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::_thnn_fused_lstm_cell.out(Tensor input_gates, Tensor hidden_gates, Tensor cx, Tensor? input_bias=None, Tensor? hidden_bias=None, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> _thnn_fused_lstm_cell_backward_impl_out(const c10::optional<Tensor> & grad_hy, const c10::optional<Tensor> & grad_cy, const Tensor & cx, const Tensor & cy, const Tensor & workspace, bool has_bias, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::_thnn_fused_lstm_cell_backward_impl.out(Tensor? grad_hy, Tensor? grad_cy, Tensor cx, Tensor cy, Tensor workspace, bool has_bias, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _thnn_fused_gru_cell_out(const Tensor & input_gates, const Tensor & hidden_gates, const Tensor & hx, const c10::optional<Tensor> & input_bias, const c10::optional<Tensor> & hidden_bias, Tensor & out0, Tensor & out1); // {"schema": "aten::_thnn_fused_gru_cell.out(Tensor input_gates, Tensor hidden_gates, Tensor hx, Tensor? input_bias=None, Tensor? hidden_bias=None, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &,Tensor &,Tensor &> _thnn_fused_gru_cell_backward_out(const Tensor & grad_hy, const Tensor & workspace, bool has_bias, Tensor & out0, Tensor & out1, Tensor & out2, Tensor & out3, Tensor & out4); // {"schema": "aten::_thnn_fused_gru_cell_backward.out(Tensor grad_hy, Tensor workspace, bool has_bias, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2, Tensor(d!) out3, Tensor(e!) out4) -> (Tensor(a!), Tensor(b!), Tensor(c!), Tensor(d!), Tensor(e!))", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _pack_padded_sequence_out(const Tensor & input, const Tensor & lengths, bool batch_first, Tensor & out0, Tensor & out1); // {"schema": "aten::_pack_padded_sequence.out(Tensor input, Tensor lengths, bool batch_first, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & set_out(const Tensor & self, Storage source, Tensor & out); // {"schema": "aten::set.source_Storage_out(Tensor self, Storage source, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor set(const Tensor & self, Storage source); // {"schema": "aten::set.source_Storage(Tensor self, Storage source) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & set_out(const Tensor & self, Storage source, c10::SymInt storage_offset, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, Tensor & out); // {"schema": "aten::set.source_Storage_storage_offset_out(Tensor self, Storage source, SymInt storage_offset, SymInt[] size, SymInt[] stride=[], *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor set(const Tensor & self, Storage source, c10::SymInt storage_offset, c10::SymIntArrayRef size, c10::SymIntArrayRef stride); // {"schema": "aten::set.source_Storage_storage_offset(Tensor self, Storage source, SymInt storage_offset, SymInt[] size, SymInt[] stride=[]) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & set_out(const Tensor & self, const Tensor & source, Tensor & out); // {"schema": "aten::set.source_Tensor_out(Tensor self, Tensor source, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor set(const Tensor & self, const Tensor & source); // {"schema": "aten::set.source_Tensor(Tensor self, Tensor source) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & set_out(const Tensor & self, Tensor & out); // {"schema": "aten::set.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor set(const Tensor & self); // {"schema": "aten::set(Tensor self) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & lift_out(const Tensor & self, Tensor & out); // {"schema": "aten::lift.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & lift_fresh_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::lift_fresh_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & masked_fill_out(const Tensor & self, const Tensor & mask, const Scalar & value, Tensor & out); // {"schema": "aten::masked_fill.Scalar_out(Tensor self, Tensor mask, Scalar value, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & masked_fill_out(const Tensor & self, const Tensor & mask, const Tensor & value, Tensor & out); // {"schema": "aten::masked_fill.Tensor_out(Tensor self, Tensor mask, Tensor value, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & masked_scatter_out(const Tensor & self, const Tensor & mask, const Tensor & source, Tensor & out); // {"schema": "aten::masked_scatter.out(Tensor self, Tensor mask, Tensor source, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _masked_softmax_out(const Tensor & self, const Tensor & mask, c10::optional<int64_t> dim, c10::optional<int64_t> mask_type, Tensor & out); // {"schema": "aten::_masked_softmax.out(Tensor self, Tensor mask, int? dim=None, int? mask_type=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _masked_softmax_backward_out(const Tensor & grad_output, const Tensor & output, const Tensor & mask, c10::optional<int64_t> dim, Tensor & out); // {"schema": "aten::_masked_softmax_backward.out(Tensor grad_output, Tensor output, Tensor mask, int? dim=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & put_out(const Tensor & self, const Tensor & index, const Tensor & source, bool accumulate, Tensor & out); // {"schema": "aten::put.out(Tensor self, Tensor index, Tensor source, bool accumulate=False, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & index_fill_out(const Tensor & self, int64_t dim, const Tensor & index, const Scalar & value, Tensor & out); // {"schema": "aten::index_fill.int_Scalar_out(Tensor self, int dim, Tensor index, Scalar value, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & index_fill_out(const Tensor & self, int64_t dim, const Tensor & index, const Tensor & value, Tensor & out); // {"schema": "aten::index_fill.int_Tensor_out(Tensor self, int dim, Tensor index, Tensor value, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_and_out(const Scalar & self, const Tensor & other, Tensor & out); // {"schema": "aten::bitwise_and.Scalar_Tensor_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_or_out(const Scalar & self, const Tensor & other, Tensor & out); // {"schema": "aten::bitwise_or.Scalar_Tensor_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_xor_out(const Scalar & self, const Tensor & other, Tensor & out); // {"schema": "aten::bitwise_xor.Scalar_Tensor_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & __lshift___out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::__lshift__.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & __lshift___out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::__lshift__.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_left_shift_out(const Scalar & self, const Tensor & other, Tensor & out); // {"schema": "aten::bitwise_left_shift.Scalar_Tensor_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & __rshift___out(const Tensor & self, const Scalar & other, Tensor & out); // {"schema": "aten::__rshift__.Scalar_out(Tensor self, Scalar other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & __rshift___out(const Tensor & self, const Tensor & other, Tensor & out); // {"schema": "aten::__rshift__.Tensor_out(Tensor self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bitwise_right_shift_out(const Scalar & self, const Tensor & other, Tensor & out); // {"schema": "aten::bitwise_right_shift.Scalar_Tensor_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & random_out(const Tensor & self, int64_t from, c10::optional<int64_t> to, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::random.from_out(Tensor self, int from, int? to, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor random(const Tensor & self, int64_t from, c10::optional<int64_t> to, c10::optional<Generator> generator); // {"schema": "aten::random.from(Tensor self, int from, int? to, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & random_out(const Tensor & self, int64_t to, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::random.to_out(Tensor self, int to, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor random(const Tensor & self, int64_t to, c10::optional<Generator> generator); // {"schema": "aten::random.to(Tensor self, int to, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & random_out(const Tensor & self, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::random.out(Tensor self, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor random(const Tensor & self, c10::optional<Generator> generator); // {"schema": "aten::random(Tensor self, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & uniform_out(const Tensor & self, double from, double to, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::uniform.out(Tensor self, float from=0, float to=1, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor uniform(const Tensor & self, double from, double to, c10::optional<Generator> generator); // {"schema": "aten::uniform(Tensor self, float from=0, float to=1, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & cauchy_out(const Tensor & self, double median, double sigma, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::cauchy.out(Tensor self, float median=0, float sigma=1, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor cauchy(const Tensor & self, double median, double sigma, c10::optional<Generator> generator); // {"schema": "aten::cauchy(Tensor self, float median=0, float sigma=1, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & log_normal_out(const Tensor & self, double mean, double std, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::log_normal.out(Tensor self, float mean=1, float std=2, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor log_normal(const Tensor & self, double mean, double std, c10::optional<Generator> generator); // {"schema": "aten::log_normal(Tensor self, float mean=1, float std=2, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & exponential_out(const Tensor & self, double lambd, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::exponential.out(Tensor self, float lambd=1, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor exponential(const Tensor & self, double lambd, c10::optional<Generator> generator); // {"schema": "aten::exponential(Tensor self, float lambd=1, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & geometric_out(const Tensor & self, double p, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::geometric.out(Tensor self, float p, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor geometric(const Tensor & self, double p, c10::optional<Generator> generator); // {"schema": "aten::geometric(Tensor self, float p, *, Generator? generator=None) -> Tensor", "dispatch": "True", "default": "True"}
|
||
|
Tensor & tril_indices_out(int64_t row, int64_t col, int64_t offset, Tensor & out); // {"schema": "aten::tril_indices.out(int row, int col, int offset=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & triu_indices_out(int64_t row, int64_t col, int64_t offset, Tensor & out); // {"schema": "aten::triu_indices.out(int row, int col, int offset=0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & trace_out(const Tensor & self, Tensor & out); // {"schema": "aten::trace.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _cholesky_solve_helper_out(const Tensor & self, const Tensor & A, bool upper, Tensor & out); // {"schema": "aten::_cholesky_solve_helper.out(Tensor self, Tensor A, bool upper, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & dist_out(const Tensor & self, const Tensor & other, const Scalar & p, Tensor & out); // {"schema": "aten::dist.out(Tensor self, Tensor other, Scalar p=2, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
void _histogramdd_bin_edges_out(const Tensor & self, IntArrayRef bins, c10::optional<ArrayRef<double>> range, const c10::optional<Tensor> & weight, bool density, TensorList out); // {"schema": "aten::_histogramdd_bin_edges.out(Tensor self, int[] bins, *, float[]? range=None, Tensor? weight=None, bool density=False, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _histogramdd_from_bin_cts_out(const Tensor & self, IntArrayRef bins, c10::optional<ArrayRef<double>> range, const c10::optional<Tensor> & weight, bool density, Tensor & out); // {"schema": "aten::_histogramdd_from_bin_cts.out(Tensor self, int[] bins, *, float[]? range=None, Tensor? weight=None, bool density=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _histogramdd_from_bin_tensors_out(const Tensor & self, TensorList bins, const c10::optional<Tensor> & weight, bool density, Tensor & out); // {"schema": "aten::_histogramdd_from_bin_tensors.out(Tensor self, Tensor[] bins, *, Tensor? weight=None, bool density=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & remainder_out(const Scalar & self, const Tensor & other, Tensor & out); // {"schema": "aten::remainder.Scalar_Tensor_out(Scalar self, Tensor other, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & argsort_out(const Tensor & self, bool stable, int64_t dim, bool descending, Tensor & out); // {"schema": "aten::argsort.stable_out(Tensor self, *, bool stable, int dim=-1, bool descending=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & unfold_backward_out(const Tensor & grad_in, c10::SymIntArrayRef input_sizes, int64_t dim, int64_t size, int64_t step, Tensor & out); // {"schema": "aten::unfold_backward.out(Tensor grad_in, SymInt[] input_sizes, int dim, int size, int step, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & normal_out(const Tensor & self, double mean, double std, c10::optional<Generator> generator, Tensor & out); // {"schema": "aten::normal.out(Tensor self, float mean=0, float std=1, *, Generator? generator=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
void _amp_foreach_non_finite_check_and_unscale_out(TensorList self, Tensor & found_inf, const Tensor & inv_scale, TensorList out); // {"schema": "aten::_amp_foreach_non_finite_check_and_unscale.out(Tensor[] self, Tensor(b!) found_inf, Tensor inv_scale, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<::std::vector<Tensor>,Tensor> _amp_foreach_non_finite_check_and_unscale(TensorList self, const Tensor & found_inf, const Tensor & inv_scale); // {"schema": "aten::_amp_foreach_non_finite_check_and_unscale(Tensor[] self, Tensor found_inf, Tensor inv_scale) -> (Tensor[] self_out, Tensor found_inf_out)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _amp_update_scale_out(const Tensor & self, Tensor & growth_tracker, const Tensor & found_inf, double scale_growth_factor, double scale_backoff_factor, int64_t growth_interval, Tensor & out); // {"schema": "aten::_amp_update_scale.out(Tensor self, Tensor(b!) growth_tracker, Tensor found_inf, float scale_growth_factor, float scale_backoff_factor, int growth_interval, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor,Tensor> _amp_update_scale(const Tensor & self, const Tensor & growth_tracker, const Tensor & found_inf, double scale_growth_factor, double scale_backoff_factor, int64_t growth_interval); // {"schema": "aten::_amp_update_scale(Tensor self, Tensor growth_tracker, Tensor found_inf, float scale_growth_factor, float scale_backoff_factor, int growth_interval) -> (Tensor, Tensor growth_tracker_out)", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_add_out(TensorList self, const Scalar & scalar, TensorList out); // {"schema": "aten::_foreach_add.Scalar_out(Tensor[] self, Scalar scalar, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_add_out(TensorList self, TensorList other, const Scalar & alpha, TensorList out); // {"schema": "aten::_foreach_add.List_out(Tensor[] self, Tensor[] other, *, Scalar alpha=1, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_add_out(TensorList self, ArrayRef<Scalar> scalars, TensorList out); // {"schema": "aten::_foreach_add.ScalarList_out(Tensor[] self, Scalar[] scalars, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_add_out(TensorList self, const Tensor & other, const Scalar & alpha, TensorList out); // {"schema": "aten::_foreach_add.Tensor_out(Tensor[] self, Tensor other, *, Scalar alpha=1, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_sub_out(TensorList self, const Scalar & scalar, TensorList out); // {"schema": "aten::_foreach_sub.Scalar_out(Tensor[] self, Scalar scalar, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_sub_out(TensorList self, TensorList other, const Scalar & alpha, TensorList out); // {"schema": "aten::_foreach_sub.List_out(Tensor[] self, Tensor[] other, *, Scalar alpha=1, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_sub_out(TensorList self, ArrayRef<Scalar> scalars, TensorList out); // {"schema": "aten::_foreach_sub.ScalarList_out(Tensor[] self, Scalar[] scalars, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_mul_out(TensorList self, const Scalar & scalar, TensorList out); // {"schema": "aten::_foreach_mul.Scalar_out(Tensor[] self, Scalar scalar, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_mul_out(TensorList self, TensorList other, TensorList out); // {"schema": "aten::_foreach_mul.List_out(Tensor[] self, Tensor[] other, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_mul_out(TensorList self, ArrayRef<Scalar> scalars, TensorList out); // {"schema": "aten::_foreach_mul.ScalarList_out(Tensor[] self, Scalar[] scalars, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_mul_out(TensorList self, const Tensor & other, TensorList out); // {"schema": "aten::_foreach_mul.Tensor_out(Tensor[] self, Tensor other, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_div_out(TensorList self, const Scalar & scalar, TensorList out); // {"schema": "aten::_foreach_div.Scalar_out(Tensor[] self, Scalar scalar, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_div_out(TensorList self, TensorList other, TensorList out); // {"schema": "aten::_foreach_div.List_out(Tensor[] self, Tensor[] other, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_div_out(TensorList self, ArrayRef<Scalar> scalars, TensorList out); // {"schema": "aten::_foreach_div.ScalarList_out(Tensor[] self, Scalar[] scalars, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_div_out(TensorList self, const Tensor & other, TensorList out); // {"schema": "aten::_foreach_div.Tensor_out(Tensor[] self, Tensor other, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_clamp_max_out(TensorList self, const Scalar & scalar, TensorList out); // {"schema": "aten::_foreach_clamp_max.Scalar_out(Tensor[] self, Scalar scalar, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_clamp_max_out(TensorList self, TensorList other, TensorList out); // {"schema": "aten::_foreach_clamp_max.List_out(Tensor[] self, Tensor[] other, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_clamp_max_out(TensorList self, ArrayRef<Scalar> scalars, TensorList out); // {"schema": "aten::_foreach_clamp_max.ScalarList_out(Tensor[] self, Scalar[] scalars, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_clamp_min_out(TensorList self, const Scalar & scalar, TensorList out); // {"schema": "aten::_foreach_clamp_min.Scalar_out(Tensor[] self, Scalar scalar, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_clamp_min_out(TensorList self, TensorList other, TensorList out); // {"schema": "aten::_foreach_clamp_min.List_out(Tensor[] self, Tensor[] other, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_clamp_min_out(TensorList self, ArrayRef<Scalar> scalars, TensorList out); // {"schema": "aten::_foreach_clamp_min.ScalarList_out(Tensor[] self, Scalar[] scalars, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_maximum_out(TensorList self, const Scalar & scalar, TensorList out); // {"schema": "aten::_foreach_maximum.Scalar_out(Tensor[] self, Scalar scalar, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_maximum_out(TensorList self, TensorList other, TensorList out); // {"schema": "aten::_foreach_maximum.List_out(Tensor[] self, Tensor[] other, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_maximum_out(TensorList self, ArrayRef<Scalar> scalars, TensorList out); // {"schema": "aten::_foreach_maximum.ScalarList_out(Tensor[] self, Scalar[] scalars, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_minimum_out(TensorList self, const Scalar & scalar, TensorList out); // {"schema": "aten::_foreach_minimum.Scalar_out(Tensor[] self, Scalar scalar, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_minimum_out(TensorList self, TensorList other, TensorList out); // {"schema": "aten::_foreach_minimum.List_out(Tensor[] self, Tensor[] other, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_minimum_out(TensorList self, ArrayRef<Scalar> scalars, TensorList out); // {"schema": "aten::_foreach_minimum.ScalarList_out(Tensor[] self, Scalar[] scalars, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_addcdiv_out(TensorList self, TensorList tensor1, TensorList tensor2, const Scalar & value, TensorList out); // {"schema": "aten::_foreach_addcdiv.Scalar_out(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_addcdiv_out(TensorList self, TensorList tensor1, TensorList tensor2, ArrayRef<Scalar> scalars, TensorList out); // {"schema": "aten::_foreach_addcdiv.ScalarList_out(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_addcdiv_out(TensorList self, TensorList tensor1, TensorList tensor2, const Tensor & scalars, TensorList out); // {"schema": "aten::_foreach_addcdiv.Tensor_out(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Tensor scalars, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_addcmul_out(TensorList self, TensorList tensor1, TensorList tensor2, const Scalar & value, TensorList out); // {"schema": "aten::_foreach_addcmul.Scalar_out(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar value=1, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_addcmul_out(TensorList self, TensorList tensor1, TensorList tensor2, ArrayRef<Scalar> scalars, TensorList out); // {"schema": "aten::_foreach_addcmul.ScalarList_out(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Scalar[] scalars, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_addcmul_out(TensorList self, TensorList tensor1, TensorList tensor2, const Tensor & scalars, TensorList out); // {"schema": "aten::_foreach_addcmul.Tensor_out(Tensor[] self, Tensor[] tensor1, Tensor[] tensor2, Tensor scalars, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_abs_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_abs.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_acos_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_acos.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_asin_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_asin.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_atan_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_atan.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_ceil_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_ceil.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_cos_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_cos.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_cosh_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_cosh.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_erf_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_erf.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_erfc_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_erfc.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_exp_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_exp.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_expm1_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_expm1.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_floor_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_floor.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_frac_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_frac.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_lerp_out(TensorList self, TensorList tensors1, TensorList weights, TensorList out); // {"schema": "aten::_foreach_lerp.List_out(Tensor[] self, Tensor[] tensors1, Tensor[] weights, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_lerp_out(TensorList self, TensorList tensors1, const Scalar & weight, TensorList out); // {"schema": "aten::_foreach_lerp.Scalar_out(Tensor[] self, Tensor[] tensors1, Scalar weight, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_lgamma_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_lgamma.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_log_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_log.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_log10_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_log10.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_log1p_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_log1p.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_log2_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_log2.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_neg_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_neg.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_norm_out(TensorList self, const Scalar & ord, TensorList out); // {"schema": "aten::_foreach_norm.Scalar_out(Tensor[] self, Scalar ord=2, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_pow_out(TensorList self, TensorList exponent, TensorList out); // {"schema": "aten::_foreach_pow.List_out(Tensor[] self, Tensor[] exponent, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_pow_out(TensorList self, const Scalar & exponent, TensorList out); // {"schema": "aten::_foreach_pow.Scalar_out(Tensor[] self, Scalar exponent, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_pow_out(TensorList self, ArrayRef<Scalar> exponent, TensorList out); // {"schema": "aten::_foreach_pow.ScalarList_out(Tensor[] self, Scalar[] exponent, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_reciprocal_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_reciprocal.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_round_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_round.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_sigmoid_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_sigmoid.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_sign_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_sign.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_sin_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_sin.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_sinh_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_sinh.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_sqrt_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_sqrt.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_tan_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_tan.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_tanh_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_tanh.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_trunc_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_trunc.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_zero_out(TensorList self, TensorList out); // {"schema": "aten::_foreach_zero.out(Tensor[] self, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
::std::vector<Tensor> _foreach_zero(TensorList self); // {"schema": "aten::_foreach_zero(Tensor[] self) -> Tensor[] self_out", "dispatch": "True", "default": "True"}
|
||
|
void _foreach_copy_out(TensorList self, TensorList src, bool non_blocking, TensorList out); // {"schema": "aten::_foreach_copy.out(Tensor[] self, Tensor[] src, bool non_blocking=False, *, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
::std::vector<Tensor> _foreach_copy(TensorList self, TensorList src, bool non_blocking); // {"schema": "aten::_foreach_copy(Tensor[] self, Tensor[] src, bool non_blocking=False) -> Tensor[] self_out", "dispatch": "True", "default": "True"}
|
||
|
Tensor & bucketize_out(const Scalar & self, const Tensor & boundaries, bool out_int32, bool right, Tensor & out); // {"schema": "aten::bucketize.Scalar_out(Scalar self, Tensor boundaries, *, bool out_int32=False, bool right=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & glu_jvp_out(const Tensor & glu, const Tensor & x, const Tensor & dx, int64_t dim, Tensor & out); // {"schema": "aten::glu_jvp.out(Tensor glu, Tensor x, Tensor dx, int dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & glu_backward_jvp_out(const Tensor & grad_x, const Tensor & grad_glu, const Tensor & x, const Tensor & dgrad_glu, const Tensor & dx, int64_t dim, Tensor & out); // {"schema": "aten::glu_backward_jvp.out(Tensor grad_x, Tensor grad_glu, Tensor x, Tensor dgrad_glu, Tensor dx, int dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & hardswish_backward_out(const Tensor & grad_output, const Tensor & self, Tensor & out); // {"schema": "aten::hardswish_backward.out(Tensor grad_output, Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & rrelu_with_noise_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & noise, const Scalar & lower, const Scalar & upper, bool training, bool self_is_result, Tensor & out); // {"schema": "aten::rrelu_with_noise_backward.out(Tensor grad_output, Tensor self, Tensor noise, Scalar lower, Scalar upper, bool training, bool self_is_result, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & mkldnn_adaptive_avg_pool2d_backward_out(const Tensor & grad_output, const Tensor & self, Tensor & out); // {"schema": "aten::mkldnn_adaptive_avg_pool2d_backward.out(Tensor grad_output, Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _adaptive_avg_pool2d_out(const Tensor & self, c10::SymIntArrayRef output_size, Tensor & out); // {"schema": "aten::_adaptive_avg_pool2d.out(Tensor self, SymInt[2] output_size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _adaptive_avg_pool2d_backward_out(const Tensor & grad_output, const Tensor & self, Tensor & out); // {"schema": "aten::_adaptive_avg_pool2d_backward.out(Tensor grad_output, Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _adaptive_avg_pool3d_out(const Tensor & self, c10::SymIntArrayRef output_size, Tensor & out); // {"schema": "aten::_adaptive_avg_pool3d.out(Tensor self, SymInt[3] output_size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _adaptive_avg_pool3d_backward_out(const Tensor & grad_output, const Tensor & self, Tensor & out); // {"schema": "aten::_adaptive_avg_pool3d_backward.out(Tensor grad_output, Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &,Tensor &> _slow_conv2d_backward_out(const Tensor & grad_output, const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, ::std::array<bool,3> output_mask, Tensor & out0, Tensor & out1, Tensor & out2); // {"schema": "aten::_slow_conv2d_backward.output_mask_out(Tensor grad_output, Tensor self, Tensor weight, SymInt[2] kernel_size, SymInt[2] stride, SymInt[2] padding, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & conv_depthwise3d_out(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, Tensor & out); // {"schema": "aten::conv_depthwise3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias, SymInt[3] stride, SymInt[3] padding, SymInt[3] dilation, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & slow_conv_dilated2d_out(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, Tensor & out); // {"schema": "aten::slow_conv_dilated2d.out(Tensor self, Tensor weight, SymInt[2] kernel_size, Tensor? bias=None, SymInt[2] stride=1, SymInt[2] padding=0, SymInt[2] dilation=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & slow_conv_dilated3d_out(const Tensor & self, const Tensor & weight, c10::SymIntArrayRef kernel_size, const c10::optional<Tensor> & bias, c10::SymIntArrayRef stride, c10::SymIntArrayRef padding, c10::SymIntArrayRef dilation, Tensor & out); // {"schema": "aten::slow_conv_dilated3d.out(Tensor self, Tensor weight, SymInt[3] kernel_size, Tensor? bias=None, SymInt[3] stride=1, SymInt[3] padding=0, SymInt[3] dilation=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & isinf_out(const Tensor & self, Tensor & out); // {"schema": "aten::isinf.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & linalg_matrix_exp_out(const Tensor & self, Tensor & out); // {"schema": "aten::linalg_matrix_exp.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _test_optional_intlist_out(const Tensor & values, OptionalIntArrayRef addends, Tensor & out); // {"schema": "aten::_test_optional_intlist.out(Tensor values, int[]? addends, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _test_optional_filled_intlist_out(const Tensor & values, OptionalIntArrayRef addends, Tensor & out); // {"schema": "aten::_test_optional_filled_intlist.out(Tensor values, int[2]? addends, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _test_optional_floatlist_out(const Tensor & values, c10::optional<ArrayRef<double>> addends, Tensor & out); // {"schema": "aten::_test_optional_floatlist.out(Tensor values, float[]? addends, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _test_warn_in_autograd_out(const Tensor & self, Tensor & out); // {"schema": "aten::_test_warn_in_autograd.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _test_autograd_multiple_dispatch_out(const Tensor & self, Tensor & out); // {"schema": "aten::_test_autograd_multiple_dispatch.fullcoverage_out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _test_autograd_multiple_dispatch_view_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::_test_autograd_multiple_dispatch_view_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & segment_reduce_out(const Tensor & data, c10::string_view reduce, const c10::optional<Tensor> & lengths, const c10::optional<Tensor> & indices, const c10::optional<Tensor> & offsets, int64_t axis, bool unsafe, const c10::optional<Scalar> & initial, Tensor & out); // {"schema": "aten::segment_reduce.out(Tensor data, str reduce, *, Tensor? lengths=None, Tensor? indices=None, Tensor? offsets=None, int axis=0, bool unsafe=False, Scalar? initial=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _segment_reduce_backward_out(const Tensor & grad, const Tensor & output, const Tensor & data, c10::string_view reduce, const c10::optional<Tensor> & lengths, const c10::optional<Tensor> & offsets, int64_t axis, const c10::optional<Scalar> & initial, Tensor & out); // {"schema": "aten::_segment_reduce_backward.out(Tensor grad, Tensor output, Tensor data, str reduce, *, Tensor? lengths=None, Tensor? offsets=None, int axis=0, Scalar? initial=None, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _nested_tensor_from_tensor_list_out(TensorList list, c10::optional<ScalarType> dtype, c10::optional<Layout> layout, c10::optional<Device> device, c10::optional<bool> pin_memory, Tensor & out); // {"schema": "aten::_nested_tensor_from_tensor_list.out(Tensor[] list, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _fw_primal_copy_out(const Tensor & self, int64_t level, Tensor & out); // {"schema": "aten::_fw_primal_copy.out(Tensor self, int level, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _make_dual_copy_out(const Tensor & primal, const Tensor & tangent, int64_t level, Tensor & out); // {"schema": "aten::_make_dual_copy.out(Tensor primal, Tensor tangent, int level, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & view_as_real_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::view_as_real_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & view_as_complex_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::view_as_complex_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _conj_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::_conj_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _neg_view_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::_neg_view_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & as_strided_copy_out(const Tensor & self, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, c10::optional<c10::SymInt> storage_offset, Tensor & out); // {"schema": "aten::as_strided_copy.out(Tensor self, SymInt[] size, SymInt[] stride, SymInt? storage_offset=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _sparse_broadcast_to_copy_out(const Tensor & self, IntArrayRef size, Tensor & out); // {"schema": "aten::_sparse_broadcast_to_copy.out(Tensor self, int[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & diagonal_copy_out(const Tensor & self, int64_t offset, int64_t dim1, int64_t dim2, Tensor & out); // {"schema": "aten::diagonal_copy.out(Tensor self, int offset=0, int dim1=0, int dim2=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & expand_copy_out(const Tensor & self, c10::SymIntArrayRef size, bool implicit, Tensor & out); // {"schema": "aten::expand_copy.out(Tensor self, SymInt[] size, *, bool implicit=False, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & permute_copy_out(const Tensor & self, IntArrayRef dims, Tensor & out); // {"schema": "aten::permute_copy.out(Tensor self, int[] dims, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _reshape_alias_copy_out(const Tensor & self, c10::SymIntArrayRef size, c10::SymIntArrayRef stride, Tensor & out); // {"schema": "aten::_reshape_alias_copy.out(Tensor self, SymInt[] size, SymInt[] stride, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & select_copy_out(const Tensor & self, int64_t dim, c10::SymInt index, Tensor & out); // {"schema": "aten::select_copy.int_out(Tensor self, int dim, SymInt index, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & detach_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::detach_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & slice_copy_out(const Tensor & self, int64_t dim, c10::optional<c10::SymInt> start, c10::optional<c10::SymInt> end, c10::SymInt step, Tensor & out); // {"schema": "aten::slice_copy.Tensor_out(Tensor self, int dim=0, SymInt? start=None, SymInt? end=None, SymInt step=1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & squeeze_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::squeeze_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & squeeze_copy_out(const Tensor & self, int64_t dim, Tensor & out); // {"schema": "aten::squeeze_copy.dim_out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & squeeze_copy_out(const Tensor & self, IntArrayRef dim, Tensor & out); // {"schema": "aten::squeeze_copy.dims_out(Tensor self, int[] dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & t_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::t_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & transpose_copy_out(const Tensor & self, int64_t dim0, int64_t dim1, Tensor & out); // {"schema": "aten::transpose_copy.int_out(Tensor self, int dim0, int dim1, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & unsqueeze_copy_out(const Tensor & self, int64_t dim, Tensor & out); // {"schema": "aten::unsqueeze_copy.out(Tensor self, int dim, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _indices_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::_indices_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _values_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::_values_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & indices_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::indices_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & values_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::values_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & crow_indices_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::crow_indices_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & col_indices_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::col_indices_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & ccol_indices_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::ccol_indices_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & row_indices_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::row_indices_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & view_copy_out(const Tensor & self, c10::SymIntArrayRef size, Tensor & out); // {"schema": "aten::view_copy.out(Tensor self, SymInt[] size, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & view_copy_out(const Tensor & self, ScalarType dtype, Tensor & out); // {"schema": "aten::view_copy.dtype_out(Tensor self, ScalarType dtype, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & unfold_copy_out(const Tensor & self, int64_t dimension, int64_t size, int64_t step, Tensor & out); // {"schema": "aten::unfold_copy.out(Tensor self, int dimension, int size, int step, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & alias_copy_out(const Tensor & self, Tensor & out); // {"schema": "aten::alias_copy.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & to_padded_tensor_out(const Tensor & self, double padding, OptionalSymIntArrayRef output_size, Tensor & out); // {"schema": "aten::to_padded_tensor.out(Tensor self, float padding, SymInt[]? output_size=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _transformer_encoder_layer_fwd_out(const Tensor & src, int64_t embed_dim, int64_t num_heads, const Tensor & qkv_weight, const Tensor & qkv_bias, const Tensor & proj_weight, const Tensor & proj_bias, bool use_gelu, bool norm_first, double eps, const Tensor & norm_weight_1, const Tensor & norm_bias_1, const Tensor & norm_weight_2, const Tensor & norm_bias_2, const Tensor & ffn_weight_1, const Tensor & ffn_bias_1, const Tensor & ffn_weight_2, const Tensor & ffn_bias_2, const c10::optional<Tensor> & mask, c10::optional<int64_t> mask_type, Tensor & out); // {"schema": "aten::_transformer_encoder_layer_fwd.out(Tensor src, int embed_dim, int num_heads, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, bool use_gelu, bool norm_first, float eps, Tensor norm_weight_1, Tensor norm_bias_1, Tensor norm_weight_2, Tensor norm_bias_2, Tensor ffn_weight_1, Tensor ffn_bias_1, Tensor ffn_weight_2, Tensor ffn_bias_2, Tensor? mask=None, int? mask_type=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<Tensor &,Tensor &> _native_multi_head_attention_out(const Tensor & query, const Tensor & key, const Tensor & value, int64_t embed_dim, int64_t num_head, const Tensor & qkv_weight, const Tensor & qkv_bias, const Tensor & proj_weight, const Tensor & proj_bias, const c10::optional<Tensor> & mask, bool need_weights, bool average_attn_weights, c10::optional<int64_t> mask_type, Tensor & out0, Tensor & out1); // {"schema": "aten::_native_multi_head_attention.out(Tensor query, Tensor key, Tensor value, int embed_dim, int num_head, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, Tensor? mask=None, bool need_weights=True, bool average_attn_weights=True, int? mask_type=None, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _triton_scaled_dot_attention_out(const Tensor & q, const Tensor & k, const Tensor & v, double dropout_p, Tensor & out); // {"schema": "aten::_triton_scaled_dot_attention.out(Tensor q, Tensor k, Tensor v, float dropout_p=0.0, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _triton_multi_head_attention_out(const Tensor & query, const Tensor & key, const Tensor & value, int64_t embed_dim, int64_t num_head, const Tensor & qkv_weight, const Tensor & qkv_bias, const Tensor & proj_weight, const Tensor & proj_bias, const c10::optional<Tensor> & mask, Tensor & out); // {"schema": "aten::_triton_multi_head_attention.out(Tensor query, Tensor key, Tensor value, int embed_dim, int num_head, Tensor qkv_weight, Tensor qkv_bias, Tensor proj_weight, Tensor proj_bias, Tensor? mask=None, *, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
Tensor & _foobar_out(const Tensor & self, bool arg1, bool arg2, bool arg3, Tensor & out); // {"schema": "aten::_foobar.out(Tensor self, bool arg1=True, bool arg2=True, *, bool arg3=True, Tensor(a!) out) -> Tensor(a!)", "dispatch": "True", "default": "True"}
|
||
|
void _fused_adam_out(TensorList self, TensorList grads, TensorList exp_avgs, TensorList exp_avg_sqs, TensorList max_exp_avg_sqs, TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf, TensorList out); // {"schema": "aten::_fused_adam.out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>> _fused_adam(TensorList self, TensorList grads, TensorList exp_avgs, TensorList exp_avg_sqs, TensorList max_exp_avg_sqs, TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf); // {"schema": "aten::_fused_adam(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)", "dispatch": "True", "default": "True"}
|
||
|
void _fused_adam_out(TensorList self, TensorList grads, TensorList exp_avgs, TensorList exp_avg_sqs, TensorList max_exp_avg_sqs, TensorList state_steps, const Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf, TensorList out); // {"schema": "aten::_fused_adam.tensor_lr_out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>> _fused_adam(TensorList self, TensorList grads, TensorList exp_avgs, TensorList exp_avg_sqs, TensorList max_exp_avg_sqs, TensorList state_steps, const Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf); // {"schema": "aten::_fused_adam.tensor_lr(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)", "dispatch": "True", "default": "True"}
|
||
|
void _fused_adamw_out(TensorList self, TensorList grads, TensorList exp_avgs, TensorList exp_avg_sqs, TensorList max_exp_avg_sqs, TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf, TensorList out); // {"schema": "aten::_fused_adamw.out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>> _fused_adamw(TensorList self, TensorList grads, TensorList exp_avgs, TensorList exp_avg_sqs, TensorList max_exp_avg_sqs, TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf); // {"schema": "aten::_fused_adamw(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)", "dispatch": "True", "default": "True"}
|
||
|
void _fused_adamw_out(TensorList self, TensorList grads, TensorList exp_avgs, TensorList exp_avg_sqs, TensorList max_exp_avg_sqs, TensorList state_steps, const Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf, TensorList out); // {"schema": "aten::_fused_adamw.tensor_lr_out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>> _fused_adamw(TensorList self, TensorList grads, TensorList exp_avgs, TensorList exp_avg_sqs, TensorList max_exp_avg_sqs, TensorList state_steps, const Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf); // {"schema": "aten::_fused_adamw.tensor_lr(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)", "dispatch": "True", "default": "True"}
|
||
|
void _fused_sgd_out(TensorList self, TensorList grads, TensorList momentum_buffer_list, double weight_decay, double momentum, double lr, double dampening, bool nesterov, bool maximize, bool is_first_step, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf, TensorList out); // {"schema": "aten::_fused_sgd.out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] momentum_buffer_list, *, float weight_decay, float momentum, float lr, float dampening, bool nesterov, bool maximize, bool is_first_step, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>> _fused_sgd(TensorList self, TensorList grads, TensorList momentum_buffer_list, double weight_decay, double momentum, double lr, double dampening, bool nesterov, bool maximize, bool is_first_step, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf); // {"schema": "aten::_fused_sgd(Tensor[] self, Tensor[] grads, Tensor[] momentum_buffer_list, *, float weight_decay, float momentum, float lr, float dampening, bool nesterov, bool maximize, bool is_first_step, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] momentum_buffer_list_out)", "dispatch": "True", "default": "True"}
|
||
|
void _fused_sgd_out(TensorList self, TensorList grads, TensorList momentum_buffer_list, double weight_decay, double momentum, const Tensor & lr, double dampening, bool nesterov, bool maximize, bool is_first_step, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf, TensorList out); // {"schema": "aten::_fused_sgd.tensor_lr_out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] momentum_buffer_list, *, float weight_decay, float momentum, Tensor lr, float dampening, bool nesterov, bool maximize, bool is_first_step, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()", "dispatch": "True", "default": "True"}
|
||
|
::std::tuple<::std::vector<Tensor>,::std::vector<Tensor>,::std::vector<Tensor>> _fused_sgd(TensorList self, TensorList grads, TensorList momentum_buffer_list, double weight_decay, double momentum, const Tensor & lr, double dampening, bool nesterov, bool maximize, bool is_first_step, const c10::optional<Tensor> & grad_scale, const c10::optional<Tensor> & found_inf); // {"schema": "aten::_fused_sgd.tensor_lr(Tensor[] self, Tensor[] grads, Tensor[] momentum_buffer_list, *, float weight_decay, float momentum, Tensor lr, float dampening, bool nesterov, bool maximize, bool is_first_step, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] momentum_buffer_list_out)", "dispatch": "True", "default": "True"}
|