You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1603 lines
71 KiB
1603 lines
71 KiB
5 months ago
|
import math
|
||
|
import warnings
|
||
|
|
||
|
import torch
|
||
|
from torch import Tensor
|
||
|
from torch.nn.parameter import Parameter, UninitializedParameter
|
||
|
from .. import functional as F
|
||
|
from .. import init
|
||
|
from .lazy import LazyModuleMixin
|
||
|
from .module import Module
|
||
|
from .utils import _single, _pair, _triple, _reverse_repeat_tuple
|
||
|
from torch._torch_docs import reproducibility_notes
|
||
|
|
||
|
from ..common_types import _size_1_t, _size_2_t, _size_3_t
|
||
|
from typing import Optional, List, Tuple, Union
|
||
|
|
||
|
__all__ = ['Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d',
|
||
|
'LazyConv1d', 'LazyConv2d', 'LazyConv3d', 'LazyConvTranspose1d', 'LazyConvTranspose2d',
|
||
|
'LazyConvTranspose3d']
|
||
|
|
||
|
convolution_notes = \
|
||
|
{"groups_note": r"""* :attr:`groups` controls the connections between inputs and outputs.
|
||
|
:attr:`in_channels` and :attr:`out_channels` must both be divisible by
|
||
|
:attr:`groups`. For example,
|
||
|
|
||
|
* At groups=1, all inputs are convolved to all outputs.
|
||
|
* At groups=2, the operation becomes equivalent to having two conv
|
||
|
layers side by side, each seeing half the input channels
|
||
|
and producing half the output channels, and both subsequently
|
||
|
concatenated.
|
||
|
* At groups= :attr:`in_channels`, each input channel is convolved with
|
||
|
its own set of filters (of size
|
||
|
:math:`\frac{\text{out\_channels}}{\text{in\_channels}}`).""",
|
||
|
|
||
|
"depthwise_separable_note": r"""When `groups == in_channels` and `out_channels == K * in_channels`,
|
||
|
where `K` is a positive integer, this operation is also known as a "depthwise convolution".
|
||
|
|
||
|
In other words, for an input of size :math:`(N, C_{in}, L_{in})`,
|
||
|
a depthwise convolution with a depthwise multiplier `K` can be performed with the arguments
|
||
|
:math:`(C_\text{in}=C_\text{in}, C_\text{out}=C_\text{in} \times \text{K}, ..., \text{groups}=C_\text{in})`."""} # noqa: B950
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
class _ConvNd(Module):
|
||
|
|
||
|
__constants__ = ['stride', 'padding', 'dilation', 'groups',
|
||
|
'padding_mode', 'output_padding', 'in_channels',
|
||
|
'out_channels', 'kernel_size']
|
||
|
__annotations__ = {'bias': Optional[torch.Tensor]}
|
||
|
|
||
|
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]) -> Tensor: # type: ignore[empty-body]
|
||
|
...
|
||
|
|
||
|
in_channels: int
|
||
|
_reversed_padding_repeated_twice: List[int]
|
||
|
out_channels: int
|
||
|
kernel_size: Tuple[int, ...]
|
||
|
stride: Tuple[int, ...]
|
||
|
padding: Union[str, Tuple[int, ...]]
|
||
|
dilation: Tuple[int, ...]
|
||
|
transposed: bool
|
||
|
output_padding: Tuple[int, ...]
|
||
|
groups: int
|
||
|
padding_mode: str
|
||
|
weight: Tensor
|
||
|
bias: Optional[Tensor]
|
||
|
|
||
|
def __init__(self,
|
||
|
in_channels: int,
|
||
|
out_channels: int,
|
||
|
kernel_size: Tuple[int, ...],
|
||
|
stride: Tuple[int, ...],
|
||
|
padding: Tuple[int, ...],
|
||
|
dilation: Tuple[int, ...],
|
||
|
transposed: bool,
|
||
|
output_padding: Tuple[int, ...],
|
||
|
groups: int,
|
||
|
bias: bool,
|
||
|
padding_mode: str,
|
||
|
device=None,
|
||
|
dtype=None) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
super().__init__()
|
||
|
if groups <= 0:
|
||
|
raise ValueError('groups must be a positive integer')
|
||
|
if in_channels % groups != 0:
|
||
|
raise ValueError('in_channels must be divisible by groups')
|
||
|
if out_channels % groups != 0:
|
||
|
raise ValueError('out_channels must be divisible by groups')
|
||
|
valid_padding_strings = {'same', 'valid'}
|
||
|
if isinstance(padding, str):
|
||
|
if padding not in valid_padding_strings:
|
||
|
raise ValueError(
|
||
|
f"Invalid padding string {padding!r}, should be one of {valid_padding_strings}")
|
||
|
if padding == 'same' and any(s != 1 for s in stride):
|
||
|
raise ValueError("padding='same' is not supported for strided convolutions")
|
||
|
|
||
|
valid_padding_modes = {'zeros', 'reflect', 'replicate', 'circular'}
|
||
|
if padding_mode not in valid_padding_modes:
|
||
|
raise ValueError(f"padding_mode must be one of {valid_padding_modes}, but got padding_mode='{padding_mode}'")
|
||
|
self.in_channels = in_channels
|
||
|
self.out_channels = out_channels
|
||
|
self.kernel_size = kernel_size
|
||
|
self.stride = stride
|
||
|
self.padding = padding
|
||
|
self.dilation = dilation
|
||
|
self.transposed = transposed
|
||
|
self.output_padding = output_padding
|
||
|
self.groups = groups
|
||
|
self.padding_mode = padding_mode
|
||
|
# `_reversed_padding_repeated_twice` is the padding to be passed to
|
||
|
# `F.pad` if needed (e.g., for non-zero padding types that are
|
||
|
# implemented as two ops: padding + conv). `F.pad` accepts paddings in
|
||
|
# reverse order than the dimension.
|
||
|
if isinstance(self.padding, str):
|
||
|
self._reversed_padding_repeated_twice = [0, 0] * len(kernel_size)
|
||
|
if padding == 'same':
|
||
|
for d, k, i in zip(dilation, kernel_size,
|
||
|
range(len(kernel_size) - 1, -1, -1)):
|
||
|
total_padding = d * (k - 1)
|
||
|
left_pad = total_padding // 2
|
||
|
self._reversed_padding_repeated_twice[2 * i] = left_pad
|
||
|
self._reversed_padding_repeated_twice[2 * i + 1] = (
|
||
|
total_padding - left_pad)
|
||
|
else:
|
||
|
self._reversed_padding_repeated_twice = _reverse_repeat_tuple(self.padding, 2)
|
||
|
|
||
|
if transposed:
|
||
|
self.weight = Parameter(torch.empty(
|
||
|
(in_channels, out_channels // groups, *kernel_size), **factory_kwargs))
|
||
|
else:
|
||
|
self.weight = Parameter(torch.empty(
|
||
|
(out_channels, in_channels // groups, *kernel_size), **factory_kwargs))
|
||
|
if bias:
|
||
|
self.bias = Parameter(torch.empty(out_channels, **factory_kwargs))
|
||
|
else:
|
||
|
self.register_parameter('bias', None)
|
||
|
|
||
|
self.reset_parameters()
|
||
|
|
||
|
def reset_parameters(self) -> None:
|
||
|
# Setting a=sqrt(5) in kaiming_uniform is the same as initializing with
|
||
|
# uniform(-1/sqrt(k), 1/sqrt(k)), where k = weight.size(1) * prod(*kernel_size)
|
||
|
# For more details see: https://github.com/pytorch/pytorch/issues/15314#issuecomment-477448573
|
||
|
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
||
|
if self.bias is not None:
|
||
|
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
|
||
|
if fan_in != 0:
|
||
|
bound = 1 / math.sqrt(fan_in)
|
||
|
init.uniform_(self.bias, -bound, bound)
|
||
|
|
||
|
def extra_repr(self):
|
||
|
s = ('{in_channels}, {out_channels}, kernel_size={kernel_size}'
|
||
|
', stride={stride}')
|
||
|
if self.padding != (0,) * len(self.padding):
|
||
|
s += ', padding={padding}'
|
||
|
if self.dilation != (1,) * len(self.dilation):
|
||
|
s += ', dilation={dilation}'
|
||
|
if self.output_padding != (0,) * len(self.output_padding):
|
||
|
s += ', output_padding={output_padding}'
|
||
|
if self.groups != 1:
|
||
|
s += ', groups={groups}'
|
||
|
if self.bias is None:
|
||
|
s += ', bias=False'
|
||
|
if self.padding_mode != 'zeros':
|
||
|
s += ', padding_mode={padding_mode}'
|
||
|
return s.format(**self.__dict__)
|
||
|
|
||
|
def __setstate__(self, state):
|
||
|
super().__setstate__(state)
|
||
|
if not hasattr(self, 'padding_mode'):
|
||
|
self.padding_mode = 'zeros'
|
||
|
|
||
|
|
||
|
class Conv1d(_ConvNd):
|
||
|
__doc__ = r"""Applies a 1D convolution over an input signal composed of several input
|
||
|
planes.
|
||
|
|
||
|
In the simplest case, the output value of the layer with input size
|
||
|
:math:`(N, C_{\text{in}}, L)` and output :math:`(N, C_{\text{out}}, L_{\text{out}})` can be
|
||
|
precisely described as:
|
||
|
|
||
|
.. math::
|
||
|
\text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
|
||
|
\sum_{k = 0}^{C_{in} - 1} \text{weight}(C_{\text{out}_j}, k)
|
||
|
\star \text{input}(N_i, k)
|
||
|
|
||
|
where :math:`\star` is the valid `cross-correlation`_ operator,
|
||
|
:math:`N` is a batch size, :math:`C` denotes a number of channels,
|
||
|
:math:`L` is a length of signal sequence.
|
||
|
""" + r"""
|
||
|
|
||
|
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
|
||
|
|
||
|
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
|
||
|
|
||
|
* :attr:`stride` controls the stride for the cross-correlation, a single
|
||
|
number or a one-element tuple.
|
||
|
|
||
|
* :attr:`padding` controls the amount of padding applied to the input. It
|
||
|
can be either a string {{'valid', 'same'}} or a tuple of ints giving the
|
||
|
amount of implicit padding applied on both sides.
|
||
|
|
||
|
* :attr:`dilation` controls the spacing between the kernel points; also
|
||
|
known as the à trous algorithm. It is harder to describe, but this `link`_
|
||
|
has a nice visualization of what :attr:`dilation` does.
|
||
|
|
||
|
{groups_note}
|
||
|
|
||
|
Note:
|
||
|
{depthwise_separable_note}
|
||
|
Note:
|
||
|
{cudnn_reproducibility_note}
|
||
|
|
||
|
Note:
|
||
|
``padding='valid'`` is the same as no padding. ``padding='same'`` pads
|
||
|
the input so the output has the shape as the input. However, this mode
|
||
|
doesn't support any stride values other than 1.
|
||
|
|
||
|
Note:
|
||
|
This module supports complex data types i.e. ``complex32, complex64, complex128``.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): Number of channels in the input image
|
||
|
out_channels (int): Number of channels produced by the convolution
|
||
|
kernel_size (int or tuple): Size of the convolving kernel
|
||
|
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||
|
padding (int, tuple or str, optional): Padding added to both sides of
|
||
|
the input. Default: 0
|
||
|
padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
|
||
|
``'replicate'`` or ``'circular'``. Default: ``'zeros'``
|
||
|
dilation (int or tuple, optional): Spacing between kernel
|
||
|
elements. Default: 1
|
||
|
groups (int, optional): Number of blocked connections from input
|
||
|
channels to output channels. Default: 1
|
||
|
bias (bool, optional): If ``True``, adds a learnable bias to the
|
||
|
output. Default: ``True``
|
||
|
|
||
|
""".format(**reproducibility_notes, **convolution_notes) + r"""
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})`
|
||
|
- Output: :math:`(N, C_{out}, L_{out})` or :math:`(C_{out}, L_{out})`, where
|
||
|
|
||
|
.. math::
|
||
|
L_{out} = \left\lfloor\frac{L_{in} + 2 \times \text{padding} - \text{dilation}
|
||
|
\times (\text{kernel\_size} - 1) - 1}{\text{stride}} + 1\right\rfloor
|
||
|
|
||
|
Attributes:
|
||
|
weight (Tensor): the learnable weights of the module of shape
|
||
|
:math:`(\text{out\_channels},
|
||
|
\frac{\text{in\_channels}}{\text{groups}}, \text{kernel\_size})`.
|
||
|
The values of these weights are sampled from
|
||
|
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
||
|
:math:`k = \frac{groups}{C_\text{in} * \text{kernel\_size}}`
|
||
|
bias (Tensor): the learnable bias of the module of shape
|
||
|
(out_channels). If :attr:`bias` is ``True``, then the values of these weights are
|
||
|
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
||
|
:math:`k = \frac{groups}{C_\text{in} * \text{kernel\_size}}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.Conv1d(16, 33, 3, stride=2)
|
||
|
>>> input = torch.randn(20, 16, 50)
|
||
|
>>> output = m(input)
|
||
|
|
||
|
.. _cross-correlation:
|
||
|
https://en.wikipedia.org/wiki/Cross-correlation
|
||
|
|
||
|
.. _link:
|
||
|
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
out_channels: int,
|
||
|
kernel_size: _size_1_t,
|
||
|
stride: _size_1_t = 1,
|
||
|
padding: Union[str, _size_1_t] = 0,
|
||
|
dilation: _size_1_t = 1,
|
||
|
groups: int = 1,
|
||
|
bias: bool = True,
|
||
|
padding_mode: str = 'zeros', # TODO: refine this type
|
||
|
device=None,
|
||
|
dtype=None
|
||
|
) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
# we create new variables below to make mypy happy since kernel_size has
|
||
|
# type Union[int, Tuple[int]] and kernel_size_ has type Tuple[int]
|
||
|
kernel_size_ = _single(kernel_size)
|
||
|
stride_ = _single(stride)
|
||
|
padding_ = padding if isinstance(padding, str) else _single(padding)
|
||
|
dilation_ = _single(dilation)
|
||
|
super().__init__(
|
||
|
in_channels, out_channels, kernel_size_, stride_, padding_, dilation_,
|
||
|
False, _single(0), groups, bias, padding_mode, **factory_kwargs)
|
||
|
|
||
|
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
|
||
|
if self.padding_mode != 'zeros':
|
||
|
return F.conv1d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
|
||
|
weight, bias, self.stride,
|
||
|
_single(0), self.dilation, self.groups)
|
||
|
return F.conv1d(input, weight, bias, self.stride,
|
||
|
self.padding, self.dilation, self.groups)
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return self._conv_forward(input, self.weight, self.bias)
|
||
|
|
||
|
|
||
|
class Conv2d(_ConvNd):
|
||
|
__doc__ = r"""Applies a 2D convolution over an input signal composed of several input
|
||
|
planes.
|
||
|
|
||
|
In the simplest case, the output value of the layer with input size
|
||
|
:math:`(N, C_{\text{in}}, H, W)` and output :math:`(N, C_{\text{out}}, H_{\text{out}}, W_{\text{out}})`
|
||
|
can be precisely described as:
|
||
|
|
||
|
.. math::
|
||
|
\text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
|
||
|
\sum_{k = 0}^{C_{\text{in}} - 1} \text{weight}(C_{\text{out}_j}, k) \star \text{input}(N_i, k)
|
||
|
|
||
|
|
||
|
where :math:`\star` is the valid 2D `cross-correlation`_ operator,
|
||
|
:math:`N` is a batch size, :math:`C` denotes a number of channels,
|
||
|
:math:`H` is a height of input planes in pixels, and :math:`W` is
|
||
|
width in pixels.
|
||
|
""" + r"""
|
||
|
|
||
|
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
|
||
|
|
||
|
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
|
||
|
|
||
|
* :attr:`stride` controls the stride for the cross-correlation, a single
|
||
|
number or a tuple.
|
||
|
|
||
|
* :attr:`padding` controls the amount of padding applied to the input. It
|
||
|
can be either a string {{'valid', 'same'}} or an int / a tuple of ints giving the
|
||
|
amount of implicit padding applied on both sides.
|
||
|
|
||
|
* :attr:`dilation` controls the spacing between the kernel points; also
|
||
|
known as the à trous algorithm. It is harder to describe, but this `link`_
|
||
|
has a nice visualization of what :attr:`dilation` does.
|
||
|
|
||
|
{groups_note}
|
||
|
|
||
|
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:
|
||
|
|
||
|
- a single ``int`` -- in which case the same value is used for the height and width dimension
|
||
|
- a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
|
||
|
and the second `int` for the width dimension
|
||
|
|
||
|
Note:
|
||
|
{depthwise_separable_note}
|
||
|
|
||
|
Note:
|
||
|
{cudnn_reproducibility_note}
|
||
|
|
||
|
Note:
|
||
|
``padding='valid'`` is the same as no padding. ``padding='same'`` pads
|
||
|
the input so the output has the shape as the input. However, this mode
|
||
|
doesn't support any stride values other than 1.
|
||
|
|
||
|
Note:
|
||
|
This module supports complex data types i.e. ``complex32, complex64, complex128``.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): Number of channels in the input image
|
||
|
out_channels (int): Number of channels produced by the convolution
|
||
|
kernel_size (int or tuple): Size of the convolving kernel
|
||
|
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||
|
padding (int, tuple or str, optional): Padding added to all four sides of
|
||
|
the input. Default: 0
|
||
|
padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
|
||
|
``'replicate'`` or ``'circular'``. Default: ``'zeros'``
|
||
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
||
|
groups (int, optional): Number of blocked connections from input
|
||
|
channels to output channels. Default: 1
|
||
|
bias (bool, optional): If ``True``, adds a learnable bias to the
|
||
|
output. Default: ``True``
|
||
|
""".format(**reproducibility_notes, **convolution_notes) + r"""
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})`
|
||
|
- Output: :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`, where
|
||
|
|
||
|
.. math::
|
||
|
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[0] - \text{dilation}[0]
|
||
|
\times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor
|
||
|
|
||
|
.. math::
|
||
|
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[1] - \text{dilation}[1]
|
||
|
\times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor
|
||
|
|
||
|
Attributes:
|
||
|
weight (Tensor): the learnable weights of the module of shape
|
||
|
:math:`(\text{out\_channels}, \frac{\text{in\_channels}}{\text{groups}},`
|
||
|
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]})`.
|
||
|
The values of these weights are sampled from
|
||
|
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
||
|
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`
|
||
|
bias (Tensor): the learnable bias of the module of shape
|
||
|
(out_channels). If :attr:`bias` is ``True``,
|
||
|
then the values of these weights are
|
||
|
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
||
|
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
>>> # With square kernels and equal stride
|
||
|
>>> m = nn.Conv2d(16, 33, 3, stride=2)
|
||
|
>>> # non-square kernels and unequal stride and with padding
|
||
|
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
|
||
|
>>> # non-square kernels and unequal stride and with padding and dilation
|
||
|
>>> m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 1))
|
||
|
>>> input = torch.randn(20, 16, 50, 100)
|
||
|
>>> output = m(input)
|
||
|
|
||
|
.. _cross-correlation:
|
||
|
https://en.wikipedia.org/wiki/Cross-correlation
|
||
|
|
||
|
.. _link:
|
||
|
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
out_channels: int,
|
||
|
kernel_size: _size_2_t,
|
||
|
stride: _size_2_t = 1,
|
||
|
padding: Union[str, _size_2_t] = 0,
|
||
|
dilation: _size_2_t = 1,
|
||
|
groups: int = 1,
|
||
|
bias: bool = True,
|
||
|
padding_mode: str = 'zeros', # TODO: refine this type
|
||
|
device=None,
|
||
|
dtype=None
|
||
|
) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
kernel_size_ = _pair(kernel_size)
|
||
|
stride_ = _pair(stride)
|
||
|
padding_ = padding if isinstance(padding, str) else _pair(padding)
|
||
|
dilation_ = _pair(dilation)
|
||
|
super().__init__(
|
||
|
in_channels, out_channels, kernel_size_, stride_, padding_, dilation_,
|
||
|
False, _pair(0), groups, bias, padding_mode, **factory_kwargs)
|
||
|
|
||
|
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
|
||
|
if self.padding_mode != 'zeros':
|
||
|
return F.conv2d(F.pad(input, self._reversed_padding_repeated_twice, mode=self.padding_mode),
|
||
|
weight, bias, self.stride,
|
||
|
_pair(0), self.dilation, self.groups)
|
||
|
return F.conv2d(input, weight, bias, self.stride,
|
||
|
self.padding, self.dilation, self.groups)
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return self._conv_forward(input, self.weight, self.bias)
|
||
|
|
||
|
class Conv3d(_ConvNd):
|
||
|
__doc__ = r"""Applies a 3D convolution over an input signal composed of several input
|
||
|
planes.
|
||
|
|
||
|
In the simplest case, the output value of the layer with input size :math:`(N, C_{in}, D, H, W)`
|
||
|
and output :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` can be precisely described as:
|
||
|
|
||
|
.. math::
|
||
|
out(N_i, C_{out_j}) = bias(C_{out_j}) +
|
||
|
\sum_{k = 0}^{C_{in} - 1} weight(C_{out_j}, k) \star input(N_i, k)
|
||
|
|
||
|
where :math:`\star` is the valid 3D `cross-correlation`_ operator
|
||
|
""" + r"""
|
||
|
|
||
|
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
|
||
|
|
||
|
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
|
||
|
|
||
|
* :attr:`stride` controls the stride for the cross-correlation.
|
||
|
|
||
|
* :attr:`padding` controls the amount of padding applied to the input. It
|
||
|
can be either a string {{'valid', 'same'}} or a tuple of ints giving the
|
||
|
amount of implicit padding applied on both sides.
|
||
|
|
||
|
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
|
||
|
It is harder to describe, but this `link`_ has a nice visualization of what :attr:`dilation` does.
|
||
|
|
||
|
{groups_note}
|
||
|
|
||
|
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`dilation` can either be:
|
||
|
|
||
|
- a single ``int`` -- in which case the same value is used for the depth, height and width dimension
|
||
|
- a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension,
|
||
|
the second `int` for the height dimension and the third `int` for the width dimension
|
||
|
|
||
|
Note:
|
||
|
{depthwise_separable_note}
|
||
|
|
||
|
Note:
|
||
|
{cudnn_reproducibility_note}
|
||
|
|
||
|
Note:
|
||
|
``padding='valid'`` is the same as no padding. ``padding='same'`` pads
|
||
|
the input so the output has the shape as the input. However, this mode
|
||
|
doesn't support any stride values other than 1.
|
||
|
|
||
|
Note:
|
||
|
This module supports complex data types i.e. ``complex32, complex64, complex128``.
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): Number of channels in the input image
|
||
|
out_channels (int): Number of channels produced by the convolution
|
||
|
kernel_size (int or tuple): Size of the convolving kernel
|
||
|
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||
|
padding (int, tuple or str, optional): Padding added to all six sides of
|
||
|
the input. Default: 0
|
||
|
padding_mode (str, optional): ``'zeros'``, ``'reflect'``, ``'replicate'`` or ``'circular'``. Default: ``'zeros'``
|
||
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
||
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
||
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
||
|
""".format(**reproducibility_notes, **convolution_notes) + r"""
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` or :math:`(C_{in}, D_{in}, H_{in}, W_{in})`
|
||
|
- Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` or :math:`(C_{out}, D_{out}, H_{out}, W_{out})`,
|
||
|
where
|
||
|
|
||
|
.. math::
|
||
|
D_{out} = \left\lfloor\frac{D_{in} + 2 \times \text{padding}[0] - \text{dilation}[0]
|
||
|
\times (\text{kernel\_size}[0] - 1) - 1}{\text{stride}[0]} + 1\right\rfloor
|
||
|
|
||
|
.. math::
|
||
|
H_{out} = \left\lfloor\frac{H_{in} + 2 \times \text{padding}[1] - \text{dilation}[1]
|
||
|
\times (\text{kernel\_size}[1] - 1) - 1}{\text{stride}[1]} + 1\right\rfloor
|
||
|
|
||
|
.. math::
|
||
|
W_{out} = \left\lfloor\frac{W_{in} + 2 \times \text{padding}[2] - \text{dilation}[2]
|
||
|
\times (\text{kernel\_size}[2] - 1) - 1}{\text{stride}[2]} + 1\right\rfloor
|
||
|
|
||
|
Attributes:
|
||
|
weight (Tensor): the learnable weights of the module of shape
|
||
|
:math:`(\text{out\_channels}, \frac{\text{in\_channels}}{\text{groups}},`
|
||
|
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]}, \text{kernel\_size[2]})`.
|
||
|
The values of these weights are sampled from
|
||
|
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
||
|
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`
|
||
|
bias (Tensor): the learnable bias of the module of shape (out_channels). If :attr:`bias` is ``True``,
|
||
|
then the values of these weights are
|
||
|
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
||
|
:math:`k = \frac{groups}{C_\text{in} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # With square kernels and equal stride
|
||
|
>>> m = nn.Conv3d(16, 33, 3, stride=2)
|
||
|
>>> # non-square kernels and unequal stride and with padding
|
||
|
>>> m = nn.Conv3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(4, 2, 0))
|
||
|
>>> input = torch.randn(20, 16, 10, 50, 100)
|
||
|
>>> output = m(input)
|
||
|
|
||
|
.. _cross-correlation:
|
||
|
https://en.wikipedia.org/wiki/Cross-correlation
|
||
|
|
||
|
.. _link:
|
||
|
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
out_channels: int,
|
||
|
kernel_size: _size_3_t,
|
||
|
stride: _size_3_t = 1,
|
||
|
padding: Union[str, _size_3_t] = 0,
|
||
|
dilation: _size_3_t = 1,
|
||
|
groups: int = 1,
|
||
|
bias: bool = True,
|
||
|
padding_mode: str = 'zeros',
|
||
|
device=None,
|
||
|
dtype=None
|
||
|
) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
kernel_size_ = _triple(kernel_size)
|
||
|
stride_ = _triple(stride)
|
||
|
padding_ = padding if isinstance(padding, str) else _triple(padding)
|
||
|
dilation_ = _triple(dilation)
|
||
|
super().__init__(
|
||
|
in_channels, out_channels, kernel_size_, stride_, padding_, dilation_,
|
||
|
False, _triple(0), groups, bias, padding_mode, **factory_kwargs)
|
||
|
|
||
|
def _conv_forward(self, input: Tensor, weight: Tensor, bias: Optional[Tensor]):
|
||
|
if self.padding_mode != "zeros":
|
||
|
return F.conv3d(
|
||
|
F.pad(
|
||
|
input, self._reversed_padding_repeated_twice, mode=self.padding_mode
|
||
|
),
|
||
|
weight,
|
||
|
bias,
|
||
|
self.stride,
|
||
|
_triple(0),
|
||
|
self.dilation,
|
||
|
self.groups,
|
||
|
)
|
||
|
return F.conv3d(
|
||
|
input, weight, bias, self.stride, self.padding, self.dilation, self.groups
|
||
|
)
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return self._conv_forward(input, self.weight, self.bias)
|
||
|
|
||
|
|
||
|
|
||
|
class _ConvTransposeNd(_ConvNd):
|
||
|
def __init__(self, in_channels, out_channels, kernel_size, stride,
|
||
|
padding, dilation, transposed, output_padding,
|
||
|
groups, bias, padding_mode, device=None, dtype=None) -> None:
|
||
|
if padding_mode != 'zeros':
|
||
|
raise ValueError(f'Only "zeros" padding mode is supported for {self.__class__.__name__}')
|
||
|
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
super().__init__(
|
||
|
in_channels, out_channels, kernel_size, stride,
|
||
|
padding, dilation, transposed, output_padding,
|
||
|
groups, bias, padding_mode, **factory_kwargs)
|
||
|
|
||
|
# dilation being an optional parameter is for backwards
|
||
|
# compatibility
|
||
|
def _output_padding(self, input: Tensor, output_size: Optional[List[int]],
|
||
|
stride: List[int], padding: List[int], kernel_size: List[int],
|
||
|
num_spatial_dims: int, dilation: Optional[List[int]] = None) -> List[int]:
|
||
|
if output_size is None:
|
||
|
ret = _single(self.output_padding) # converting to list if was not already
|
||
|
else:
|
||
|
has_batch_dim = input.dim() == num_spatial_dims + 2
|
||
|
num_non_spatial_dims = 2 if has_batch_dim else 1
|
||
|
if len(output_size) == num_non_spatial_dims + num_spatial_dims:
|
||
|
output_size = output_size[num_non_spatial_dims:]
|
||
|
if len(output_size) != num_spatial_dims:
|
||
|
raise ValueError(
|
||
|
"ConvTranspose{}D: for {}D input, output_size must have {} or {} elements (got {})"
|
||
|
.format(num_spatial_dims, input.dim(), num_spatial_dims,
|
||
|
num_non_spatial_dims + num_spatial_dims, len(output_size)))
|
||
|
|
||
|
min_sizes = torch.jit.annotate(List[int], [])
|
||
|
max_sizes = torch.jit.annotate(List[int], [])
|
||
|
for d in range(num_spatial_dims):
|
||
|
dim_size = ((input.size(d + num_non_spatial_dims) - 1) * stride[d] -
|
||
|
2 * padding[d] +
|
||
|
(dilation[d] if dilation is not None else 1) * (kernel_size[d] - 1) + 1)
|
||
|
min_sizes.append(dim_size)
|
||
|
max_sizes.append(min_sizes[d] + stride[d] - 1)
|
||
|
|
||
|
for i in range(len(output_size)):
|
||
|
size = output_size[i]
|
||
|
min_size = min_sizes[i]
|
||
|
max_size = max_sizes[i]
|
||
|
if size < min_size or size > max_size:
|
||
|
raise ValueError(
|
||
|
f"requested an output size of {output_size}, but valid sizes range "
|
||
|
f"from {min_sizes} to {max_sizes} (for an input of {input.size()[2:]})")
|
||
|
|
||
|
res = torch.jit.annotate(List[int], [])
|
||
|
for d in range(num_spatial_dims):
|
||
|
res.append(output_size[d] - min_sizes[d])
|
||
|
|
||
|
ret = res
|
||
|
return ret
|
||
|
|
||
|
|
||
|
class ConvTranspose1d(_ConvTransposeNd):
|
||
|
__doc__ = r"""Applies a 1D transposed convolution operator over an input image
|
||
|
composed of several input planes.
|
||
|
|
||
|
This module can be seen as the gradient of Conv1d with respect to its input.
|
||
|
It is also known as a fractionally-strided convolution or
|
||
|
a deconvolution (although it is not an actual deconvolution operation as it does
|
||
|
not compute a true inverse of convolution). For more information, see the visualizations
|
||
|
`here`_ and the `Deconvolutional Networks`_ paper.
|
||
|
|
||
|
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
|
||
|
|
||
|
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
|
||
|
|
||
|
* :attr:`stride` controls the stride for the cross-correlation.
|
||
|
|
||
|
* :attr:`padding` controls the amount of implicit zero padding on both
|
||
|
sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note
|
||
|
below for details.
|
||
|
|
||
|
* :attr:`output_padding` controls the additional size added to one side
|
||
|
of the output shape. See note below for details.
|
||
|
|
||
|
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
|
||
|
It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does.
|
||
|
|
||
|
{groups_note}
|
||
|
|
||
|
Note:
|
||
|
The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding``
|
||
|
amount of zero padding to both sizes of the input. This is set so that
|
||
|
when a :class:`~torch.nn.Conv1d` and a :class:`~torch.nn.ConvTranspose1d`
|
||
|
are initialized with same parameters, they are inverses of each other in
|
||
|
regard to the input and output shapes. However, when ``stride > 1``,
|
||
|
:class:`~torch.nn.Conv1d` maps multiple input shapes to the same output
|
||
|
shape. :attr:`output_padding` is provided to resolve this ambiguity by
|
||
|
effectively increasing the calculated output shape on one side. Note
|
||
|
that :attr:`output_padding` is only used to find output shape, but does
|
||
|
not actually add zero-padding to output.
|
||
|
|
||
|
Note:
|
||
|
In some circumstances when using the CUDA backend with CuDNN, this operator
|
||
|
may select a nondeterministic algorithm to increase performance. If this is
|
||
|
undesirable, you can try to make the operation deterministic (potentially at
|
||
|
a performance cost) by setting ``torch.backends.cudnn.deterministic =
|
||
|
True``.
|
||
|
Please see the notes on :doc:`/notes/randomness` for background.
|
||
|
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): Number of channels in the input image
|
||
|
out_channels (int): Number of channels produced by the convolution
|
||
|
kernel_size (int or tuple): Size of the convolving kernel
|
||
|
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||
|
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
|
||
|
will be added to both sides of the input. Default: 0
|
||
|
output_padding (int or tuple, optional): Additional size added to one side
|
||
|
of the output shape. Default: 0
|
||
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
||
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
||
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
||
|
""".format(**reproducibility_notes, **convolution_notes) + r"""
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C_{in}, L_{in})` or :math:`(C_{in}, L_{in})`
|
||
|
- Output: :math:`(N, C_{out}, L_{out})` or :math:`(C_{out}, L_{out})`, where
|
||
|
|
||
|
.. math::
|
||
|
L_{out} = (L_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation}
|
||
|
\times (\text{kernel\_size} - 1) + \text{output\_padding} + 1
|
||
|
|
||
|
Attributes:
|
||
|
weight (Tensor): the learnable weights of the module of shape
|
||
|
:math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},`
|
||
|
:math:`\text{kernel\_size})`.
|
||
|
The values of these weights are sampled from
|
||
|
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
||
|
:math:`k = \frac{groups}{C_\text{out} * \text{kernel\_size}}`
|
||
|
bias (Tensor): the learnable bias of the module of shape (out_channels).
|
||
|
If :attr:`bias` is ``True``, then the values of these weights are
|
||
|
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
||
|
:math:`k = \frac{groups}{C_\text{out} * \text{kernel\_size}}`
|
||
|
|
||
|
.. _`here`:
|
||
|
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
||
|
|
||
|
.. _`Deconvolutional Networks`:
|
||
|
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
out_channels: int,
|
||
|
kernel_size: _size_1_t,
|
||
|
stride: _size_1_t = 1,
|
||
|
padding: _size_1_t = 0,
|
||
|
output_padding: _size_1_t = 0,
|
||
|
groups: int = 1,
|
||
|
bias: bool = True,
|
||
|
dilation: _size_1_t = 1,
|
||
|
padding_mode: str = 'zeros',
|
||
|
device=None,
|
||
|
dtype=None
|
||
|
) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
kernel_size = _single(kernel_size)
|
||
|
stride = _single(stride)
|
||
|
padding = _single(padding)
|
||
|
dilation = _single(dilation)
|
||
|
output_padding = _single(output_padding)
|
||
|
super().__init__(
|
||
|
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
||
|
True, output_padding, groups, bias, padding_mode, **factory_kwargs)
|
||
|
|
||
|
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
|
||
|
if self.padding_mode != 'zeros':
|
||
|
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose1d')
|
||
|
|
||
|
assert isinstance(self.padding, tuple)
|
||
|
# One cannot replace List by Tuple or Sequence in "_output_padding" because
|
||
|
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
|
||
|
num_spatial_dims = 1
|
||
|
output_padding = self._output_padding(
|
||
|
input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type]
|
||
|
num_spatial_dims, self.dilation) # type: ignore[arg-type]
|
||
|
return F.conv_transpose1d(
|
||
|
input, self.weight, self.bias, self.stride, self.padding,
|
||
|
output_padding, self.groups, self.dilation)
|
||
|
|
||
|
|
||
|
class ConvTranspose2d(_ConvTransposeNd):
|
||
|
__doc__ = r"""Applies a 2D transposed convolution operator over an input image
|
||
|
composed of several input planes.
|
||
|
|
||
|
This module can be seen as the gradient of Conv2d with respect to its input.
|
||
|
It is also known as a fractionally-strided convolution or
|
||
|
a deconvolution (although it is not an actual deconvolution operation as it does
|
||
|
not compute a true inverse of convolution). For more information, see the visualizations
|
||
|
`here`_ and the `Deconvolutional Networks`_ paper.
|
||
|
|
||
|
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
|
||
|
|
||
|
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
|
||
|
|
||
|
* :attr:`stride` controls the stride for the cross-correlation.
|
||
|
|
||
|
* :attr:`padding` controls the amount of implicit zero padding on both
|
||
|
sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note
|
||
|
below for details.
|
||
|
|
||
|
* :attr:`output_padding` controls the additional size added to one side
|
||
|
of the output shape. See note below for details.
|
||
|
|
||
|
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
|
||
|
It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does.
|
||
|
|
||
|
{groups_note}
|
||
|
|
||
|
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding`
|
||
|
can either be:
|
||
|
|
||
|
- a single ``int`` -- in which case the same value is used for the height and width dimensions
|
||
|
- a ``tuple`` of two ints -- in which case, the first `int` is used for the height dimension,
|
||
|
and the second `int` for the width dimension
|
||
|
|
||
|
Note:
|
||
|
The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding``
|
||
|
amount of zero padding to both sizes of the input. This is set so that
|
||
|
when a :class:`~torch.nn.Conv2d` and a :class:`~torch.nn.ConvTranspose2d`
|
||
|
are initialized with same parameters, they are inverses of each other in
|
||
|
regard to the input and output shapes. However, when ``stride > 1``,
|
||
|
:class:`~torch.nn.Conv2d` maps multiple input shapes to the same output
|
||
|
shape. :attr:`output_padding` is provided to resolve this ambiguity by
|
||
|
effectively increasing the calculated output shape on one side. Note
|
||
|
that :attr:`output_padding` is only used to find output shape, but does
|
||
|
not actually add zero-padding to output.
|
||
|
|
||
|
Note:
|
||
|
{cudnn_reproducibility_note}
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): Number of channels in the input image
|
||
|
out_channels (int): Number of channels produced by the convolution
|
||
|
kernel_size (int or tuple): Size of the convolving kernel
|
||
|
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||
|
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
|
||
|
will be added to both sides of each dimension in the input. Default: 0
|
||
|
output_padding (int or tuple, optional): Additional size added to one side
|
||
|
of each dimension in the output shape. Default: 0
|
||
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
||
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
||
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
||
|
""".format(**reproducibility_notes, **convolution_notes) + r"""
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C_{in}, H_{in}, W_{in})` or :math:`(C_{in}, H_{in}, W_{in})`
|
||
|
- Output: :math:`(N, C_{out}, H_{out}, W_{out})` or :math:`(C_{out}, H_{out}, W_{out})`, where
|
||
|
|
||
|
.. math::
|
||
|
H_{out} = (H_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0]
|
||
|
\times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1
|
||
|
.. math::
|
||
|
W_{out} = (W_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1]
|
||
|
\times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1
|
||
|
|
||
|
Attributes:
|
||
|
weight (Tensor): the learnable weights of the module of shape
|
||
|
:math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},`
|
||
|
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]})`.
|
||
|
The values of these weights are sampled from
|
||
|
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
||
|
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`
|
||
|
bias (Tensor): the learnable bias of the module of shape (out_channels)
|
||
|
If :attr:`bias` is ``True``, then the values of these weights are
|
||
|
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
||
|
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{1}\text{kernel\_size}[i]}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # With square kernels and equal stride
|
||
|
>>> m = nn.ConvTranspose2d(16, 33, 3, stride=2)
|
||
|
>>> # non-square kernels and unequal stride and with padding
|
||
|
>>> m = nn.ConvTranspose2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2))
|
||
|
>>> input = torch.randn(20, 16, 50, 100)
|
||
|
>>> output = m(input)
|
||
|
>>> # exact output size can be also specified as an argument
|
||
|
>>> input = torch.randn(1, 16, 12, 12)
|
||
|
>>> downsample = nn.Conv2d(16, 16, 3, stride=2, padding=1)
|
||
|
>>> upsample = nn.ConvTranspose2d(16, 16, 3, stride=2, padding=1)
|
||
|
>>> h = downsample(input)
|
||
|
>>> h.size()
|
||
|
torch.Size([1, 16, 6, 6])
|
||
|
>>> output = upsample(h, output_size=input.size())
|
||
|
>>> output.size()
|
||
|
torch.Size([1, 16, 12, 12])
|
||
|
|
||
|
.. _`here`:
|
||
|
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
||
|
|
||
|
.. _`Deconvolutional Networks`:
|
||
|
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
out_channels: int,
|
||
|
kernel_size: _size_2_t,
|
||
|
stride: _size_2_t = 1,
|
||
|
padding: _size_2_t = 0,
|
||
|
output_padding: _size_2_t = 0,
|
||
|
groups: int = 1,
|
||
|
bias: bool = True,
|
||
|
dilation: _size_2_t = 1,
|
||
|
padding_mode: str = 'zeros',
|
||
|
device=None,
|
||
|
dtype=None
|
||
|
) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
kernel_size = _pair(kernel_size)
|
||
|
stride = _pair(stride)
|
||
|
padding = _pair(padding)
|
||
|
dilation = _pair(dilation)
|
||
|
output_padding = _pair(output_padding)
|
||
|
super().__init__(
|
||
|
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
||
|
True, output_padding, groups, bias, padding_mode, **factory_kwargs)
|
||
|
|
||
|
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
|
||
|
if self.padding_mode != 'zeros':
|
||
|
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose2d')
|
||
|
|
||
|
assert isinstance(self.padding, tuple)
|
||
|
# One cannot replace List by Tuple or Sequence in "_output_padding" because
|
||
|
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
|
||
|
num_spatial_dims = 2
|
||
|
output_padding = self._output_padding(
|
||
|
input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type]
|
||
|
num_spatial_dims, self.dilation) # type: ignore[arg-type]
|
||
|
|
||
|
return F.conv_transpose2d(
|
||
|
input, self.weight, self.bias, self.stride, self.padding,
|
||
|
output_padding, self.groups, self.dilation)
|
||
|
|
||
|
|
||
|
class ConvTranspose3d(_ConvTransposeNd):
|
||
|
__doc__ = r"""Applies a 3D transposed convolution operator over an input image composed of several input
|
||
|
planes.
|
||
|
The transposed convolution operator multiplies each input value element-wise by a learnable kernel,
|
||
|
and sums over the outputs from all input feature planes.
|
||
|
|
||
|
This module can be seen as the gradient of Conv3d with respect to its input.
|
||
|
It is also known as a fractionally-strided convolution or
|
||
|
a deconvolution (although it is not an actual deconvolution operation as it does
|
||
|
not compute a true inverse of convolution). For more information, see the visualizations
|
||
|
`here`_ and the `Deconvolutional Networks`_ paper.
|
||
|
|
||
|
This module supports :ref:`TensorFloat32<tf32_on_ampere>`.
|
||
|
|
||
|
On certain ROCm devices, when using float16 inputs this module will use :ref:`different precision<fp16_on_mi200>` for backward.
|
||
|
|
||
|
* :attr:`stride` controls the stride for the cross-correlation.
|
||
|
|
||
|
* :attr:`padding` controls the amount of implicit zero padding on both
|
||
|
sides for ``dilation * (kernel_size - 1) - padding`` number of points. See note
|
||
|
below for details.
|
||
|
|
||
|
* :attr:`output_padding` controls the additional size added to one side
|
||
|
of the output shape. See note below for details.
|
||
|
|
||
|
* :attr:`dilation` controls the spacing between the kernel points; also known as the à trous algorithm.
|
||
|
It is harder to describe, but the link `here`_ has a nice visualization of what :attr:`dilation` does.
|
||
|
|
||
|
{groups_note}
|
||
|
|
||
|
The parameters :attr:`kernel_size`, :attr:`stride`, :attr:`padding`, :attr:`output_padding`
|
||
|
can either be:
|
||
|
|
||
|
- a single ``int`` -- in which case the same value is used for the depth, height and width dimensions
|
||
|
- a ``tuple`` of three ints -- in which case, the first `int` is used for the depth dimension,
|
||
|
the second `int` for the height dimension and the third `int` for the width dimension
|
||
|
|
||
|
Note:
|
||
|
The :attr:`padding` argument effectively adds ``dilation * (kernel_size - 1) - padding``
|
||
|
amount of zero padding to both sizes of the input. This is set so that
|
||
|
when a :class:`~torch.nn.Conv3d` and a :class:`~torch.nn.ConvTranspose3d`
|
||
|
are initialized with same parameters, they are inverses of each other in
|
||
|
regard to the input and output shapes. However, when ``stride > 1``,
|
||
|
:class:`~torch.nn.Conv3d` maps multiple input shapes to the same output
|
||
|
shape. :attr:`output_padding` is provided to resolve this ambiguity by
|
||
|
effectively increasing the calculated output shape on one side. Note
|
||
|
that :attr:`output_padding` is only used to find output shape, but does
|
||
|
not actually add zero-padding to output.
|
||
|
|
||
|
Note:
|
||
|
{cudnn_reproducibility_note}
|
||
|
|
||
|
Args:
|
||
|
in_channels (int): Number of channels in the input image
|
||
|
out_channels (int): Number of channels produced by the convolution
|
||
|
kernel_size (int or tuple): Size of the convolving kernel
|
||
|
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||
|
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
|
||
|
will be added to both sides of each dimension in the input. Default: 0
|
||
|
output_padding (int or tuple, optional): Additional size added to one side
|
||
|
of each dimension in the output shape. Default: 0
|
||
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
||
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
||
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
||
|
""".format(**reproducibility_notes, **convolution_notes) + r"""
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C_{in}, D_{in}, H_{in}, W_{in})` or :math:`(C_{in}, D_{in}, H_{in}, W_{in})`
|
||
|
- Output: :math:`(N, C_{out}, D_{out}, H_{out}, W_{out})` or
|
||
|
:math:`(C_{out}, D_{out}, H_{out}, W_{out})`, where
|
||
|
|
||
|
.. math::
|
||
|
D_{out} = (D_{in} - 1) \times \text{stride}[0] - 2 \times \text{padding}[0] + \text{dilation}[0]
|
||
|
\times (\text{kernel\_size}[0] - 1) + \text{output\_padding}[0] + 1
|
||
|
.. math::
|
||
|
H_{out} = (H_{in} - 1) \times \text{stride}[1] - 2 \times \text{padding}[1] + \text{dilation}[1]
|
||
|
\times (\text{kernel\_size}[1] - 1) + \text{output\_padding}[1] + 1
|
||
|
.. math::
|
||
|
W_{out} = (W_{in} - 1) \times \text{stride}[2] - 2 \times \text{padding}[2] + \text{dilation}[2]
|
||
|
\times (\text{kernel\_size}[2] - 1) + \text{output\_padding}[2] + 1
|
||
|
|
||
|
|
||
|
Attributes:
|
||
|
weight (Tensor): the learnable weights of the module of shape
|
||
|
:math:`(\text{in\_channels}, \frac{\text{out\_channels}}{\text{groups}},`
|
||
|
:math:`\text{kernel\_size[0]}, \text{kernel\_size[1]}, \text{kernel\_size[2]})`.
|
||
|
The values of these weights are sampled from
|
||
|
:math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
||
|
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`
|
||
|
bias (Tensor): the learnable bias of the module of shape (out_channels)
|
||
|
If :attr:`bias` is ``True``, then the values of these weights are
|
||
|
sampled from :math:`\mathcal{U}(-\sqrt{k}, \sqrt{k})` where
|
||
|
:math:`k = \frac{groups}{C_\text{out} * \prod_{i=0}^{2}\text{kernel\_size}[i]}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # With square kernels and equal stride
|
||
|
>>> m = nn.ConvTranspose3d(16, 33, 3, stride=2)
|
||
|
>>> # non-square kernels and unequal stride and with padding
|
||
|
>>> m = nn.ConvTranspose3d(16, 33, (3, 5, 2), stride=(2, 1, 1), padding=(0, 4, 2))
|
||
|
>>> input = torch.randn(20, 16, 10, 50, 100)
|
||
|
>>> output = m(input)
|
||
|
|
||
|
.. _`here`:
|
||
|
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
|
||
|
|
||
|
.. _`Deconvolutional Networks`:
|
||
|
https://www.matthewzeiler.com/mattzeiler/deconvolutionalnetworks.pdf
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
in_channels: int,
|
||
|
out_channels: int,
|
||
|
kernel_size: _size_3_t,
|
||
|
stride: _size_3_t = 1,
|
||
|
padding: _size_3_t = 0,
|
||
|
output_padding: _size_3_t = 0,
|
||
|
groups: int = 1,
|
||
|
bias: bool = True,
|
||
|
dilation: _size_3_t = 1,
|
||
|
padding_mode: str = 'zeros',
|
||
|
device=None,
|
||
|
dtype=None
|
||
|
) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
kernel_size = _triple(kernel_size)
|
||
|
stride = _triple(stride)
|
||
|
padding = _triple(padding)
|
||
|
dilation = _triple(dilation)
|
||
|
output_padding = _triple(output_padding)
|
||
|
super().__init__(
|
||
|
in_channels, out_channels, kernel_size, stride, padding, dilation,
|
||
|
True, output_padding, groups, bias, padding_mode, **factory_kwargs)
|
||
|
|
||
|
def forward(self, input: Tensor, output_size: Optional[List[int]] = None) -> Tensor:
|
||
|
if self.padding_mode != 'zeros':
|
||
|
raise ValueError('Only `zeros` padding mode is supported for ConvTranspose3d')
|
||
|
|
||
|
assert isinstance(self.padding, tuple)
|
||
|
# One cannot replace List by Tuple or Sequence in "_output_padding" because
|
||
|
# TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
|
||
|
num_spatial_dims = 3
|
||
|
output_padding = self._output_padding(
|
||
|
input, output_size, self.stride, self.padding, self.kernel_size, # type: ignore[arg-type]
|
||
|
num_spatial_dims, self.dilation) # type: ignore[arg-type]
|
||
|
|
||
|
return F.conv_transpose3d(
|
||
|
input, self.weight, self.bias, self.stride, self.padding,
|
||
|
output_padding, self.groups, self.dilation)
|
||
|
|
||
|
|
||
|
# TODO: Deprecate and remove the following alias `_ConvTransposeMixin`.
|
||
|
#
|
||
|
# `_ConvTransposeMixin` was a mixin that was removed. It is meant to be used
|
||
|
# with `_ConvNd` to construct actual module classes that implements conv
|
||
|
# transpose ops:
|
||
|
#
|
||
|
# class MyConvTranspose(_ConvNd, _ConvTransposeMixin):
|
||
|
# ...
|
||
|
#
|
||
|
# In PyTorch, it has been replaced by `_ConvTransposeNd`, which is a proper
|
||
|
# subclass of `_ConvNd`. However, some user code in the wild still (incorrectly)
|
||
|
# use the internal class `_ConvTransposeMixin`. Hence, we provide this alias
|
||
|
# for BC, because it is cheap and easy for us to do so, even though that
|
||
|
# `_ConvTransposeNd` is really not a mixin anymore (but multiple inheritance as
|
||
|
# above would still work).
|
||
|
class _ConvTransposeMixin(_ConvTransposeNd):
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
warnings.warn(
|
||
|
"_ConvTransposeMixin is a deprecated internal class. "
|
||
|
"Please consider using public APIs.")
|
||
|
super().__init__(*args, **kwargs)
|
||
|
|
||
|
|
||
|
# TODO: Conv2dLocal
|
||
|
# TODO: Conv2dMap
|
||
|
# TODO: ConvTranspose2dMap
|
||
|
|
||
|
|
||
|
class _LazyConvXdMixin(LazyModuleMixin):
|
||
|
groups: int
|
||
|
transposed: bool
|
||
|
in_channels: int
|
||
|
out_channels: int
|
||
|
kernel_size: Tuple[int, ...]
|
||
|
weight: UninitializedParameter
|
||
|
bias: UninitializedParameter
|
||
|
|
||
|
def reset_parameters(self) -> None:
|
||
|
# has_uninitialized_params is defined in parent class and it is using a protocol on self
|
||
|
if not self.has_uninitialized_params() and self.in_channels != 0: # type: ignore[misc]
|
||
|
# "type:ignore[..]" is required because mypy thinks that "reset_parameters" is undefined
|
||
|
# in super class. Turns out that it is defined in _ConvND which is inherited by any class
|
||
|
# that also inherits _LazyConvXdMixin
|
||
|
super().reset_parameters() # type: ignore[misc]
|
||
|
|
||
|
# Signature of "initialize_parameters" is incompatible with the definition in supertype LazyModuleMixin
|
||
|
def initialize_parameters(self, input) -> None: # type: ignore[override]
|
||
|
# defined by parent class but using a protocol
|
||
|
if self.has_uninitialized_params(): # type: ignore[misc]
|
||
|
self.in_channels = self._get_in_channels(input)
|
||
|
if self.in_channels % self.groups != 0:
|
||
|
raise ValueError('in_channels must be divisible by groups')
|
||
|
assert isinstance(self.weight, UninitializedParameter)
|
||
|
if self.transposed:
|
||
|
self.weight.materialize((
|
||
|
self.in_channels, self.out_channels // self.groups, *self.kernel_size))
|
||
|
else:
|
||
|
self.weight.materialize((
|
||
|
self.out_channels, self.in_channels // self.groups, *self.kernel_size))
|
||
|
if self.bias is not None:
|
||
|
assert isinstance(self.bias, UninitializedParameter)
|
||
|
self.bias.materialize((self.out_channels,))
|
||
|
self.reset_parameters()
|
||
|
|
||
|
# Function to extract in_channels from first input.
|
||
|
def _get_in_channels(self, input: Tensor) -> int:
|
||
|
num_spatial_dims = self._get_num_spatial_dims()
|
||
|
num_dims_no_batch = num_spatial_dims + 1 # +1 for channels dim
|
||
|
num_dims_batch = num_dims_no_batch + 1
|
||
|
if input.dim() not in (num_dims_no_batch, num_dims_batch):
|
||
|
raise RuntimeError("Expected {}D (unbatched) or {}D (batched) input to {}, but "
|
||
|
"got input of size: {}".format(num_dims_no_batch, num_dims_batch,
|
||
|
self.__class__.__name__, input.shape))
|
||
|
return input.shape[1] if input.dim() == num_dims_batch else input.shape[0]
|
||
|
|
||
|
# Function to return the number of spatial dims expected for inputs to the module.
|
||
|
# This is expected to be implemented by subclasses.
|
||
|
def _get_num_spatial_dims(self) -> int:
|
||
|
raise NotImplementedError()
|
||
|
|
||
|
|
||
|
# LazyConv1d defines weight as a Tensor but derived class defines it as UnitializeParameter
|
||
|
class LazyConv1d(_LazyConvXdMixin, Conv1d): # type: ignore[misc]
|
||
|
r"""A :class:`torch.nn.Conv1d` module with lazy initialization of the ``in_channels`` argument.
|
||
|
|
||
|
The ``in_channels`` argument of the :class:`Conv1d` is inferred from the ``input.size(1)``.
|
||
|
The attributes that will be lazily initialized are `weight` and `bias`.
|
||
|
|
||
|
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
|
||
|
on lazy modules and their limitations.
|
||
|
|
||
|
Args:
|
||
|
out_channels (int): Number of channels produced by the convolution
|
||
|
kernel_size (int or tuple): Size of the convolving kernel
|
||
|
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||
|
padding (int or tuple, optional): Zero-padding added to both sides of
|
||
|
the input. Default: 0
|
||
|
padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
|
||
|
``'replicate'`` or ``'circular'``. Default: ``'zeros'``
|
||
|
dilation (int or tuple, optional): Spacing between kernel
|
||
|
elements. Default: 1
|
||
|
groups (int, optional): Number of blocked connections from input
|
||
|
channels to output channels. Default: 1
|
||
|
bias (bool, optional): If ``True``, adds a learnable bias to the
|
||
|
output. Default: ``True``
|
||
|
|
||
|
.. seealso:: :class:`torch.nn.Conv1d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
|
||
|
"""
|
||
|
|
||
|
# super class define this variable as None. "type: ignore[..] is required
|
||
|
# since we are redefining the variable.
|
||
|
cls_to_become = Conv1d # type: ignore[assignment]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
out_channels: int,
|
||
|
kernel_size: _size_1_t,
|
||
|
stride: _size_1_t = 1,
|
||
|
padding: _size_1_t = 0,
|
||
|
dilation: _size_1_t = 1,
|
||
|
groups: int = 1,
|
||
|
bias: bool = True,
|
||
|
padding_mode: str = 'zeros',
|
||
|
device=None,
|
||
|
dtype=None
|
||
|
) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
super().__init__(
|
||
|
0,
|
||
|
0,
|
||
|
kernel_size,
|
||
|
stride,
|
||
|
padding,
|
||
|
dilation,
|
||
|
groups,
|
||
|
# bias is hardcoded to False to avoid creating tensor
|
||
|
# that will soon be overwritten.
|
||
|
False,
|
||
|
padding_mode,
|
||
|
**factory_kwargs
|
||
|
)
|
||
|
self.weight = UninitializedParameter(**factory_kwargs)
|
||
|
self.out_channels = out_channels
|
||
|
if bias:
|
||
|
self.bias = UninitializedParameter(**factory_kwargs)
|
||
|
|
||
|
def _get_num_spatial_dims(self) -> int:
|
||
|
return 1
|
||
|
|
||
|
|
||
|
# LazyConv2d defines weight as a Tensor but derived class defines it as UnitializeParameter
|
||
|
class LazyConv2d(_LazyConvXdMixin, Conv2d): # type: ignore[misc]
|
||
|
r"""A :class:`torch.nn.Conv2d` module with lazy initialization of the ``in_channels`` argument.
|
||
|
|
||
|
The ``in_channels`` argument of the :class:`Conv2d` that is inferred from the ``input.size(1)``.
|
||
|
The attributes that will be lazily initialized are `weight` and `bias`.
|
||
|
|
||
|
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
|
||
|
on lazy modules and their limitations.
|
||
|
|
||
|
Args:
|
||
|
out_channels (int): Number of channels produced by the convolution
|
||
|
kernel_size (int or tuple): Size of the convolving kernel
|
||
|
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||
|
padding (int or tuple, optional): Zero-padding added to both sides of
|
||
|
the input. Default: 0
|
||
|
padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
|
||
|
``'replicate'`` or ``'circular'``. Default: ``'zeros'``
|
||
|
dilation (int or tuple, optional): Spacing between kernel
|
||
|
elements. Default: 1
|
||
|
groups (int, optional): Number of blocked connections from input
|
||
|
channels to output channels. Default: 1
|
||
|
bias (bool, optional): If ``True``, adds a learnable bias to the
|
||
|
output. Default: ``True``
|
||
|
|
||
|
.. seealso:: :class:`torch.nn.Conv2d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
|
||
|
"""
|
||
|
|
||
|
# super class define this variable as None. "type: ignore[..] is required
|
||
|
# since we are redefining the variable.
|
||
|
cls_to_become = Conv2d # type: ignore[assignment]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
out_channels: int,
|
||
|
kernel_size: _size_2_t,
|
||
|
stride: _size_2_t = 1,
|
||
|
padding: _size_2_t = 0,
|
||
|
dilation: _size_2_t = 1,
|
||
|
groups: int = 1,
|
||
|
bias: bool = True,
|
||
|
padding_mode: str = 'zeros', # TODO: refine this type
|
||
|
device=None,
|
||
|
dtype=None
|
||
|
) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
super().__init__(
|
||
|
0,
|
||
|
0,
|
||
|
kernel_size,
|
||
|
stride,
|
||
|
padding,
|
||
|
dilation,
|
||
|
groups,
|
||
|
# bias is hardcoded to False to avoid creating tensor
|
||
|
# that will soon be overwritten.
|
||
|
False,
|
||
|
padding_mode,
|
||
|
**factory_kwargs
|
||
|
)
|
||
|
self.weight = UninitializedParameter(**factory_kwargs)
|
||
|
self.out_channels = out_channels
|
||
|
if bias:
|
||
|
self.bias = UninitializedParameter(**factory_kwargs)
|
||
|
|
||
|
def _get_num_spatial_dims(self) -> int:
|
||
|
return 2
|
||
|
|
||
|
|
||
|
# LazyConv3d defines weight as a Tensor but derived class defines it as UnitializeParameter
|
||
|
class LazyConv3d(_LazyConvXdMixin, Conv3d): # type: ignore[misc]
|
||
|
r"""A :class:`torch.nn.Conv3d` module with lazy initialization of the ``in_channels`` argument.
|
||
|
|
||
|
The ``in_channels`` argument of the :class:`Conv3d` that is inferred from
|
||
|
the ``input.size(1)``.
|
||
|
The attributes that will be lazily initialized are `weight` and `bias`.
|
||
|
|
||
|
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
|
||
|
on lazy modules and their limitations.
|
||
|
|
||
|
Args:
|
||
|
out_channels (int): Number of channels produced by the convolution
|
||
|
kernel_size (int or tuple): Size of the convolving kernel
|
||
|
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||
|
padding (int or tuple, optional): Zero-padding added to both sides of
|
||
|
the input. Default: 0
|
||
|
padding_mode (str, optional): ``'zeros'``, ``'reflect'``,
|
||
|
``'replicate'`` or ``'circular'``. Default: ``'zeros'``
|
||
|
dilation (int or tuple, optional): Spacing between kernel
|
||
|
elements. Default: 1
|
||
|
groups (int, optional): Number of blocked connections from input
|
||
|
channels to output channels. Default: 1
|
||
|
bias (bool, optional): If ``True``, adds a learnable bias to the
|
||
|
output. Default: ``True``
|
||
|
|
||
|
.. seealso:: :class:`torch.nn.Conv3d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
|
||
|
"""
|
||
|
|
||
|
# super class define this variable as None. "type: ignore[..] is required
|
||
|
# since we are redefining the variable.
|
||
|
cls_to_become = Conv3d # type: ignore[assignment]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
out_channels: int,
|
||
|
kernel_size: _size_3_t,
|
||
|
stride: _size_3_t = 1,
|
||
|
padding: _size_3_t = 0,
|
||
|
dilation: _size_3_t = 1,
|
||
|
groups: int = 1,
|
||
|
bias: bool = True,
|
||
|
padding_mode: str = 'zeros',
|
||
|
device=None,
|
||
|
dtype=None
|
||
|
) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
super().__init__(
|
||
|
0,
|
||
|
0,
|
||
|
kernel_size,
|
||
|
stride,
|
||
|
padding,
|
||
|
dilation,
|
||
|
groups,
|
||
|
# bias is hardcoded to False to avoid creating tensor
|
||
|
# that will soon be overwritten.
|
||
|
False,
|
||
|
padding_mode,
|
||
|
**factory_kwargs
|
||
|
)
|
||
|
self.weight = UninitializedParameter(**factory_kwargs)
|
||
|
self.out_channels = out_channels
|
||
|
if bias:
|
||
|
self.bias = UninitializedParameter(**factory_kwargs)
|
||
|
|
||
|
def _get_num_spatial_dims(self) -> int:
|
||
|
return 3
|
||
|
|
||
|
|
||
|
# LazyConvTranspose1d defines weight as a Tensor but derived class defines it as UnitializeParameter
|
||
|
class LazyConvTranspose1d(_LazyConvXdMixin, ConvTranspose1d): # type: ignore[misc]
|
||
|
r"""A :class:`torch.nn.ConvTranspose1d` module with lazy initialization of the ``in_channels`` argument.
|
||
|
|
||
|
The ``in_channels`` argument of the :class:`ConvTranspose1d` that is inferred from
|
||
|
the ``input.size(1)``.
|
||
|
The attributes that will be lazily initialized are `weight` and `bias`.
|
||
|
|
||
|
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
|
||
|
on lazy modules and their limitations.
|
||
|
|
||
|
Args:
|
||
|
out_channels (int): Number of channels produced by the convolution
|
||
|
kernel_size (int or tuple): Size of the convolving kernel
|
||
|
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||
|
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
|
||
|
will be added to both sides of the input. Default: 0
|
||
|
output_padding (int or tuple, optional): Additional size added to one side
|
||
|
of the output shape. Default: 0
|
||
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
||
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
||
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
||
|
|
||
|
.. seealso:: :class:`torch.nn.ConvTranspose1d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
|
||
|
"""
|
||
|
|
||
|
# super class define this variable as None. "type: ignore[..] is required
|
||
|
# since we are redefining the variable.
|
||
|
cls_to_become = ConvTranspose1d # type: ignore[assignment]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
out_channels: int,
|
||
|
kernel_size: _size_1_t,
|
||
|
stride: _size_1_t = 1,
|
||
|
padding: _size_1_t = 0,
|
||
|
output_padding: _size_1_t = 0,
|
||
|
groups: int = 1,
|
||
|
bias: bool = True,
|
||
|
dilation: _size_1_t = 1,
|
||
|
padding_mode: str = 'zeros',
|
||
|
device=None,
|
||
|
dtype=None
|
||
|
) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
super().__init__(
|
||
|
0,
|
||
|
0,
|
||
|
kernel_size,
|
||
|
stride,
|
||
|
padding,
|
||
|
output_padding,
|
||
|
groups,
|
||
|
# bias is hardcoded to False to avoid creating tensor
|
||
|
# that will soon be overwritten.
|
||
|
False,
|
||
|
dilation,
|
||
|
padding_mode,
|
||
|
**factory_kwargs
|
||
|
)
|
||
|
self.weight = UninitializedParameter(**factory_kwargs)
|
||
|
self.out_channels = out_channels
|
||
|
if bias:
|
||
|
self.bias = UninitializedParameter(**factory_kwargs)
|
||
|
|
||
|
def _get_num_spatial_dims(self) -> int:
|
||
|
return 1
|
||
|
|
||
|
|
||
|
# LazyConvTranspose2d defines weight as a Tensor but derived class defines it as UnitializeParameter
|
||
|
class LazyConvTranspose2d(_LazyConvXdMixin, ConvTranspose2d): # type: ignore[misc]
|
||
|
r"""A :class:`torch.nn.ConvTranspose2d` module with lazy initialization of the ``in_channels`` argument.
|
||
|
|
||
|
The ``in_channels`` argument of the :class:`ConvTranspose2d` is inferred from
|
||
|
the ``input.size(1)``.
|
||
|
The attributes that will be lazily initialized are `weight` and `bias`.
|
||
|
|
||
|
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
|
||
|
on lazy modules and their limitations.
|
||
|
|
||
|
Args:
|
||
|
out_channels (int): Number of channels produced by the convolution
|
||
|
kernel_size (int or tuple): Size of the convolving kernel
|
||
|
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||
|
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
|
||
|
will be added to both sides of each dimension in the input. Default: 0
|
||
|
output_padding (int or tuple, optional): Additional size added to one side
|
||
|
of each dimension in the output shape. Default: 0
|
||
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
||
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
||
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
||
|
|
||
|
.. seealso:: :class:`torch.nn.ConvTranspose2d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
|
||
|
"""
|
||
|
|
||
|
# super class define this variable as None. "type: ignore[..] is required
|
||
|
# since we are redefining the variable.
|
||
|
cls_to_become = ConvTranspose2d # type: ignore[assignment]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
out_channels: int,
|
||
|
kernel_size: _size_2_t,
|
||
|
stride: _size_2_t = 1,
|
||
|
padding: _size_2_t = 0,
|
||
|
output_padding: _size_2_t = 0,
|
||
|
groups: int = 1,
|
||
|
bias: bool = True,
|
||
|
dilation: int = 1,
|
||
|
padding_mode: str = 'zeros',
|
||
|
device=None,
|
||
|
dtype=None
|
||
|
) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
super().__init__(
|
||
|
0,
|
||
|
0,
|
||
|
kernel_size,
|
||
|
stride,
|
||
|
padding,
|
||
|
output_padding,
|
||
|
groups,
|
||
|
# bias is hardcoded to False to avoid creating tensor
|
||
|
# that will soon be overwritten.
|
||
|
False,
|
||
|
dilation,
|
||
|
padding_mode,
|
||
|
**factory_kwargs
|
||
|
)
|
||
|
self.weight = UninitializedParameter(**factory_kwargs)
|
||
|
self.out_channels = out_channels
|
||
|
if bias:
|
||
|
self.bias = UninitializedParameter(**factory_kwargs)
|
||
|
|
||
|
def _get_num_spatial_dims(self) -> int:
|
||
|
return 2
|
||
|
|
||
|
|
||
|
# LazyConvTranspose3d defines weight as a Tensor but derived class defines it as UnitializeParameter
|
||
|
class LazyConvTranspose3d(_LazyConvXdMixin, ConvTranspose3d): # type: ignore[misc]
|
||
|
r"""A :class:`torch.nn.ConvTranspose3d` module with lazy initialization of the ``in_channels`` argument.
|
||
|
|
||
|
The ``in_channels`` argument of the :class:`ConvTranspose3d` is inferred from
|
||
|
the ``input.size(1)``.
|
||
|
The attributes that will be lazily initialized are `weight` and `bias`.
|
||
|
|
||
|
Check the :class:`torch.nn.modules.lazy.LazyModuleMixin` for further documentation
|
||
|
on lazy modules and their limitations.
|
||
|
|
||
|
Args:
|
||
|
out_channels (int): Number of channels produced by the convolution
|
||
|
kernel_size (int or tuple): Size of the convolving kernel
|
||
|
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||
|
padding (int or tuple, optional): ``dilation * (kernel_size - 1) - padding`` zero-padding
|
||
|
will be added to both sides of each dimension in the input. Default: 0
|
||
|
output_padding (int or tuple, optional): Additional size added to one side
|
||
|
of each dimension in the output shape. Default: 0
|
||
|
groups (int, optional): Number of blocked connections from input channels to output channels. Default: 1
|
||
|
bias (bool, optional): If ``True``, adds a learnable bias to the output. Default: ``True``
|
||
|
dilation (int or tuple, optional): Spacing between kernel elements. Default: 1
|
||
|
|
||
|
.. seealso:: :class:`torch.nn.ConvTranspose3d` and :class:`torch.nn.modules.lazy.LazyModuleMixin`
|
||
|
"""
|
||
|
|
||
|
# super class define this variable as None. "type: ignore[..] is required
|
||
|
# since we are redefining the variable.
|
||
|
cls_to_become = ConvTranspose3d # type: ignore[assignment]
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
out_channels: int,
|
||
|
kernel_size: _size_3_t,
|
||
|
stride: _size_3_t = 1,
|
||
|
padding: _size_3_t = 0,
|
||
|
output_padding: _size_3_t = 0,
|
||
|
groups: int = 1,
|
||
|
bias: bool = True,
|
||
|
dilation: _size_3_t = 1,
|
||
|
padding_mode: str = 'zeros',
|
||
|
device=None,
|
||
|
dtype=None
|
||
|
) -> None:
|
||
|
factory_kwargs = {'device': device, 'dtype': dtype}
|
||
|
super().__init__(
|
||
|
0,
|
||
|
0,
|
||
|
kernel_size,
|
||
|
stride,
|
||
|
padding,
|
||
|
output_padding,
|
||
|
groups,
|
||
|
# bias is hardcoded to False to avoid creating tensor
|
||
|
# that will soon be overwritten.
|
||
|
False,
|
||
|
dilation,
|
||
|
padding_mode,
|
||
|
**factory_kwargs
|
||
|
)
|
||
|
self.weight = UninitializedParameter(**factory_kwargs)
|
||
|
self.out_channels = out_channels
|
||
|
if bias:
|
||
|
self.bias = UninitializedParameter(**factory_kwargs)
|
||
|
|
||
|
def _get_num_spatial_dims(self) -> int:
|
||
|
return 3
|