You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
802 lines
30 KiB
802 lines
30 KiB
5 months ago
|
from .module import Module
|
||
|
from .utils import _pair, _quadruple, _ntuple
|
||
|
from .. import functional as F
|
||
|
|
||
|
from torch import Tensor
|
||
|
from ..common_types import _size_2_t, _size_4_t, _size_6_t
|
||
|
from typing import Sequence, Tuple
|
||
|
|
||
|
|
||
|
# TODO: grad_output size asserts in THNN
|
||
|
|
||
|
__all__ = ['CircularPad1d', 'CircularPad2d', 'CircularPad3d', 'ConstantPad1d', 'ConstantPad2d',
|
||
|
'ConstantPad3d', 'ReflectionPad1d', 'ReflectionPad2d', 'ReflectionPad3d',
|
||
|
'ReplicationPad1d', 'ReplicationPad2d', 'ReplicationPad3d', 'ZeroPad1d', 'ZeroPad2d', 'ZeroPad3d']
|
||
|
|
||
|
|
||
|
class _CircularPadNd(Module):
|
||
|
__constants__ = ['padding']
|
||
|
padding: Sequence[int]
|
||
|
|
||
|
def _check_input_dim(self, input):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
self._check_input_dim(input)
|
||
|
return F.pad(input, self.padding, 'circular')
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'{self.padding}'
|
||
|
|
||
|
|
||
|
class CircularPad1d(_CircularPadNd):
|
||
|
r"""Pads the input tensor using circular padding of the input boundary.
|
||
|
|
||
|
Tensor values at the beginning of the dimension are used to pad the end,
|
||
|
and values at the end are used to pad the beginning. If negative padding is
|
||
|
applied then the ends of the tensor get removed.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in all boundaries. If a 2-`tuple`, uses
|
||
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
|
||
|
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
|
||
|
>>> m = nn.CircularPad1d(2)
|
||
|
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
|
||
|
>>> input
|
||
|
tensor([[[0., 1., 2., 3.],
|
||
|
[4., 5., 6., 7.]]])
|
||
|
>>> m(input)
|
||
|
tensor([[[2., 3., 0., 1., 2., 3., 0., 1.],
|
||
|
[6., 7., 4., 5., 6., 7., 4., 5.]]])
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.CircularPad1d((3, 1))
|
||
|
>>> m(input)
|
||
|
tensor([[[1., 2., 3., 0., 1., 2., 3., 0.],
|
||
|
[5., 6., 7., 4., 5., 6., 7., 4.]]])
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_2_t) -> None:
|
||
|
super().__init__()
|
||
|
self.padding = _pair(padding)
|
||
|
|
||
|
def _check_input_dim(self, input):
|
||
|
if input.dim() != 2 and input.dim() != 3:
|
||
|
raise ValueError(
|
||
|
f"expected 2D or 3D input (got {input.dim()}D input)"
|
||
|
)
|
||
|
|
||
|
|
||
|
class CircularPad2d(_CircularPadNd):
|
||
|
r"""Pads the input tensor using circular padding of the input boundary.
|
||
|
|
||
|
Tensor values at the beginning of the dimension are used to pad the end,
|
||
|
and values at the end are used to pad the beginning. If negative padding is
|
||
|
applied then the ends of the tensor get removed.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
|
||
|
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
|
||
|
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
|
||
|
|
||
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.CircularPad2d(2)
|
||
|
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
|
||
|
>>> input
|
||
|
tensor([[[[0., 1., 2.],
|
||
|
[3., 4., 5.],
|
||
|
[6., 7., 8.]]]])
|
||
|
>>> m(input)
|
||
|
tensor([[[[4., 5., 3., 4., 5., 3., 4.],
|
||
|
[7., 8., 6., 7., 8., 6., 7.],
|
||
|
[1., 2., 0., 1., 2., 0., 1.],
|
||
|
[4., 5., 3., 4., 5., 3., 4.],
|
||
|
[7., 8., 6., 7., 8., 6., 7.],
|
||
|
[1., 2., 0., 1., 2., 0., 1.],
|
||
|
[4., 5., 3., 4., 5., 3., 4.]]]])
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.CircularPad2d((1, 1, 2, 0))
|
||
|
>>> m(input)
|
||
|
tensor([[[[5., 3., 4., 5., 3.],
|
||
|
[8., 6., 7., 8., 6.],
|
||
|
[2., 0., 1., 2., 0.],
|
||
|
[5., 3., 4., 5., 3.],
|
||
|
[8., 6., 7., 8., 6.]]]])
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int, int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_4_t) -> None:
|
||
|
super().__init__()
|
||
|
self.padding = _quadruple(padding)
|
||
|
|
||
|
def _check_input_dim(self, input):
|
||
|
if input.dim() != 3 and input.dim() != 4:
|
||
|
raise ValueError(
|
||
|
f"expected 3D or 4D input (got {input.dim()}D input)"
|
||
|
)
|
||
|
|
||
|
|
||
|
class CircularPad3d(_CircularPadNd):
|
||
|
r"""Pads the input tensor using circular padding of the input boundary.
|
||
|
|
||
|
Tensor values at the beginning of the dimension are used to pad the end,
|
||
|
and values at the end are used to pad the beginning. If negative padding is
|
||
|
applied then the ends of the tensor get removed.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in all boundaries. If a 6-`tuple`, uses
|
||
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
|
||
|
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
|
||
|
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
|
||
|
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
|
||
|
where
|
||
|
|
||
|
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
|
||
|
|
||
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = nn.CircularPad3d(3)
|
||
|
>>> input = torch.randn(16, 3, 8, 320, 480)
|
||
|
>>> output = m(input)
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.CircularPad3d((3, 3, 6, 6, 1, 1))
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int, int, int, int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_6_t) -> None:
|
||
|
super().__init__()
|
||
|
self.padding = _ntuple(6)(padding)
|
||
|
|
||
|
def _check_input_dim(self, input):
|
||
|
if input.dim() != 4 and input.dim() != 5:
|
||
|
raise ValueError(
|
||
|
f"expected 4D or 5D input (got {input.dim()}D input)"
|
||
|
)
|
||
|
|
||
|
|
||
|
class _ConstantPadNd(Module):
|
||
|
__constants__ = ['padding', 'value']
|
||
|
value: float
|
||
|
padding: Sequence[int]
|
||
|
|
||
|
def __init__(self, value: float) -> None:
|
||
|
super().__init__()
|
||
|
self.value = value
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.pad(input, self.padding, 'constant', self.value)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'padding={self.padding}, value={self.value}'
|
||
|
|
||
|
|
||
|
class ConstantPad1d(_ConstantPadNd):
|
||
|
r"""Pads the input tensor boundaries with a constant value.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in both boundaries. If a 2-`tuple`, uses
|
||
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
|
||
|
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = nn.ConstantPad1d(2, 3.5)
|
||
|
>>> input = torch.randn(1, 2, 4)
|
||
|
>>> input
|
||
|
tensor([[[-1.0491, -0.7152, -0.0749, 0.8530],
|
||
|
[-1.3287, 1.8966, 0.1466, -0.2771]]])
|
||
|
>>> m(input)
|
||
|
tensor([[[ 3.5000, 3.5000, -1.0491, -0.7152, -0.0749, 0.8530, 3.5000,
|
||
|
3.5000],
|
||
|
[ 3.5000, 3.5000, -1.3287, 1.8966, 0.1466, -0.2771, 3.5000,
|
||
|
3.5000]]])
|
||
|
>>> m = nn.ConstantPad1d(2, 3.5)
|
||
|
>>> input = torch.randn(1, 2, 3)
|
||
|
>>> input
|
||
|
tensor([[[ 1.6616, 1.4523, -1.1255],
|
||
|
[-3.6372, 0.1182, -1.8652]]])
|
||
|
>>> m(input)
|
||
|
tensor([[[ 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000, 3.5000],
|
||
|
[ 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000, 3.5000]]])
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.ConstantPad1d((3, 1), 3.5)
|
||
|
>>> m(input)
|
||
|
tensor([[[ 3.5000, 3.5000, 3.5000, 1.6616, 1.4523, -1.1255, 3.5000],
|
||
|
[ 3.5000, 3.5000, 3.5000, -3.6372, 0.1182, -1.8652, 3.5000]]])
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_2_t, value: float):
|
||
|
super().__init__(value)
|
||
|
self.padding = _pair(padding)
|
||
|
|
||
|
|
||
|
class ConstantPad2d(_ConstantPadNd):
|
||
|
r"""Pads the input tensor boundaries with a constant value.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
|
||
|
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
|
||
|
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
|
||
|
|
||
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = nn.ConstantPad2d(2, 3.5)
|
||
|
>>> input = torch.randn(1, 2, 2)
|
||
|
>>> input
|
||
|
tensor([[[ 1.6585, 0.4320],
|
||
|
[-0.8701, -0.4649]]])
|
||
|
>>> m(input)
|
||
|
tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
|
||
|
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
|
||
|
[ 3.5000, 3.5000, 1.6585, 0.4320, 3.5000, 3.5000],
|
||
|
[ 3.5000, 3.5000, -0.8701, -0.4649, 3.5000, 3.5000],
|
||
|
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
|
||
|
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]])
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.ConstantPad2d((3, 0, 2, 1), 3.5)
|
||
|
>>> m(input)
|
||
|
tensor([[[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
|
||
|
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000],
|
||
|
[ 3.5000, 3.5000, 3.5000, 1.6585, 0.4320],
|
||
|
[ 3.5000, 3.5000, 3.5000, -0.8701, -0.4649],
|
||
|
[ 3.5000, 3.5000, 3.5000, 3.5000, 3.5000]]])
|
||
|
"""
|
||
|
|
||
|
__constants__ = ['padding', 'value']
|
||
|
padding: Tuple[int, int, int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_4_t, value: float) -> None:
|
||
|
super().__init__(value)
|
||
|
self.padding = _quadruple(padding)
|
||
|
|
||
|
|
||
|
class ConstantPad3d(_ConstantPadNd):
|
||
|
r"""Pads the input tensor boundaries with a constant value.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in all boundaries. If a 6-`tuple`, uses
|
||
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
|
||
|
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
|
||
|
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
|
||
|
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or
|
||
|
:math:`(C, D_{out}, H_{out}, W_{out})`, where
|
||
|
|
||
|
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
|
||
|
|
||
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.ConstantPad3d(3, 3.5)
|
||
|
>>> input = torch.randn(16, 3, 10, 20, 30)
|
||
|
>>> output = m(input)
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.ConstantPad3d((3, 3, 6, 6, 0, 1), 3.5)
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int, int, int, int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_6_t, value: float) -> None:
|
||
|
super().__init__(value)
|
||
|
self.padding = _ntuple(6)(padding)
|
||
|
|
||
|
|
||
|
class _ReflectionPadNd(Module):
|
||
|
__constants__ = ['padding']
|
||
|
padding: Sequence[int]
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.pad(input, self.padding, 'reflect')
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'{self.padding}'
|
||
|
|
||
|
|
||
|
class ReflectionPad1d(_ReflectionPadNd):
|
||
|
r"""Pads the input tensor using the reflection of the input boundary.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in all boundaries. If a 2-`tuple`, uses
|
||
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
|
||
|
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.ReflectionPad1d(2)
|
||
|
>>> # xdoctest: +IGNORE_WANT("other tests seem to modify printing styles")
|
||
|
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
|
||
|
>>> input
|
||
|
tensor([[[0., 1., 2., 3.],
|
||
|
[4., 5., 6., 7.]]])
|
||
|
>>> m(input)
|
||
|
tensor([[[2., 1., 0., 1., 2., 3., 2., 1.],
|
||
|
[6., 5., 4., 5., 6., 7., 6., 5.]]])
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.ReflectionPad1d((3, 1))
|
||
|
>>> m(input)
|
||
|
tensor([[[3., 2., 1., 0., 1., 2., 3., 2.],
|
||
|
[7., 6., 5., 4., 5., 6., 7., 6.]]])
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_2_t) -> None:
|
||
|
super().__init__()
|
||
|
self.padding = _pair(padding)
|
||
|
|
||
|
|
||
|
class ReflectionPad2d(_ReflectionPadNd):
|
||
|
r"""Pads the input tensor using the reflection of the input boundary.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
|
||
|
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
|
||
|
Note that padding size should be less than the corresponding input dimension.
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
|
||
|
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})` where
|
||
|
|
||
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
|
||
|
>>> m = nn.ReflectionPad2d(2)
|
||
|
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
|
||
|
>>> input
|
||
|
tensor([[[[0., 1., 2.],
|
||
|
[3., 4., 5.],
|
||
|
[6., 7., 8.]]]])
|
||
|
>>> m(input)
|
||
|
tensor([[[[8., 7., 6., 7., 8., 7., 6.],
|
||
|
[5., 4., 3., 4., 5., 4., 3.],
|
||
|
[2., 1., 0., 1., 2., 1., 0.],
|
||
|
[5., 4., 3., 4., 5., 4., 3.],
|
||
|
[8., 7., 6., 7., 8., 7., 6.],
|
||
|
[5., 4., 3., 4., 5., 4., 3.],
|
||
|
[2., 1., 0., 1., 2., 1., 0.]]]])
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.ReflectionPad2d((1, 1, 2, 0))
|
||
|
>>> m(input)
|
||
|
tensor([[[[7., 6., 7., 8., 7.],
|
||
|
[4., 3., 4., 5., 4.],
|
||
|
[1., 0., 1., 2., 1.],
|
||
|
[4., 3., 4., 5., 4.],
|
||
|
[7., 6., 7., 8., 7.]]]])
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int, int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_4_t) -> None:
|
||
|
super().__init__()
|
||
|
self.padding = _quadruple(padding)
|
||
|
|
||
|
|
||
|
class ReflectionPad3d(_ReflectionPadNd):
|
||
|
r"""Pads the input tensor using the reflection of the input boundary.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in all boundaries. If a 6-`tuple`, uses
|
||
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
|
||
|
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
|
||
|
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
|
||
|
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
|
||
|
where
|
||
|
|
||
|
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
|
||
|
|
||
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
|
||
|
>>> m = nn.ReflectionPad3d(1)
|
||
|
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2)
|
||
|
>>> m(input)
|
||
|
tensor([[[[[7., 6., 7., 6.],
|
||
|
[5., 4., 5., 4.],
|
||
|
[7., 6., 7., 6.],
|
||
|
[5., 4., 5., 4.]],
|
||
|
[[3., 2., 3., 2.],
|
||
|
[1., 0., 1., 0.],
|
||
|
[3., 2., 3., 2.],
|
||
|
[1., 0., 1., 0.]],
|
||
|
[[7., 6., 7., 6.],
|
||
|
[5., 4., 5., 4.],
|
||
|
[7., 6., 7., 6.],
|
||
|
[5., 4., 5., 4.]],
|
||
|
[[3., 2., 3., 2.],
|
||
|
[1., 0., 1., 0.],
|
||
|
[3., 2., 3., 2.],
|
||
|
[1., 0., 1., 0.]]]]])
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int, int, int, int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_6_t) -> None:
|
||
|
super().__init__()
|
||
|
self.padding = _ntuple(6)(padding)
|
||
|
|
||
|
|
||
|
class _ReplicationPadNd(Module):
|
||
|
__constants__ = ['padding']
|
||
|
padding: Sequence[int]
|
||
|
|
||
|
def forward(self, input: Tensor) -> Tensor:
|
||
|
return F.pad(input, self.padding, 'replicate')
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'{self.padding}'
|
||
|
|
||
|
|
||
|
class ReplicationPad1d(_ReplicationPadNd):
|
||
|
r"""Pads the input tensor using replication of the input boundary.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in all boundaries. If a 2-`tuple`, uses
|
||
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
|
||
|
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("not sure why xdoctest is choking on this")
|
||
|
>>> m = nn.ReplicationPad1d(2)
|
||
|
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 2, 4)
|
||
|
>>> input
|
||
|
tensor([[[0., 1., 2., 3.],
|
||
|
[4., 5., 6., 7.]]])
|
||
|
>>> m(input)
|
||
|
tensor([[[0., 0., 0., 1., 2., 3., 3., 3.],
|
||
|
[4., 4., 4., 5., 6., 7., 7., 7.]]])
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.ReplicationPad1d((3, 1))
|
||
|
>>> m(input)
|
||
|
tensor([[[0., 0., 0., 0., 1., 2., 3., 3.],
|
||
|
[4., 4., 4., 4., 5., 6., 7., 7.]]])
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_2_t) -> None:
|
||
|
super().__init__()
|
||
|
self.padding = _pair(padding)
|
||
|
|
||
|
|
||
|
class ReplicationPad2d(_ReplicationPadNd):
|
||
|
r"""Pads the input tensor using replication of the input boundary.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
|
||
|
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
|
||
|
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
|
||
|
|
||
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.ReplicationPad2d(2)
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
|
||
|
>>> input
|
||
|
tensor([[[[0., 1., 2.],
|
||
|
[3., 4., 5.],
|
||
|
[6., 7., 8.]]]])
|
||
|
>>> m(input)
|
||
|
tensor([[[[0., 0., 0., 1., 2., 2., 2.],
|
||
|
[0., 0., 0., 1., 2., 2., 2.],
|
||
|
[0., 0., 0., 1., 2., 2., 2.],
|
||
|
[3., 3., 3., 4., 5., 5., 5.],
|
||
|
[6., 6., 6., 7., 8., 8., 8.],
|
||
|
[6., 6., 6., 7., 8., 8., 8.],
|
||
|
[6., 6., 6., 7., 8., 8., 8.]]]])
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.ReplicationPad2d((1, 1, 2, 0))
|
||
|
>>> m(input)
|
||
|
tensor([[[[0., 0., 1., 2., 2.],
|
||
|
[0., 0., 1., 2., 2.],
|
||
|
[0., 0., 1., 2., 2.],
|
||
|
[3., 3., 4., 5., 5.],
|
||
|
[6., 6., 7., 8., 8.]]]])
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int, int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_4_t) -> None:
|
||
|
super().__init__()
|
||
|
self.padding = _quadruple(padding)
|
||
|
|
||
|
|
||
|
class ReplicationPad3d(_ReplicationPadNd):
|
||
|
r"""Pads the input tensor using replication of the input boundary.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in all boundaries. If a 6-`tuple`, uses
|
||
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
|
||
|
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
|
||
|
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
|
||
|
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or :math:`(C, D_{out}, H_{out}, W_{out})`,
|
||
|
where
|
||
|
|
||
|
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
|
||
|
|
||
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = nn.ReplicationPad3d(3)
|
||
|
>>> input = torch.randn(16, 3, 8, 320, 480)
|
||
|
>>> output = m(input)
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.ReplicationPad3d((3, 3, 6, 6, 1, 1))
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int, int, int, int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_6_t) -> None:
|
||
|
super().__init__()
|
||
|
self.padding = _ntuple(6)(padding)
|
||
|
|
||
|
|
||
|
class ZeroPad1d(ConstantPad1d):
|
||
|
r"""Pads the input tensor boundaries with zero.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in both boundaries. If a 2-`tuple`, uses
|
||
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(C, W_{in})` or :math:`(N, C, W_{in})`.
|
||
|
- Output: :math:`(C, W_{out})` or :math:`(N, C, W_{out})`, where
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = nn.ZeroPad1d(2)
|
||
|
>>> input = torch.randn(1, 2, 4)
|
||
|
>>> input
|
||
|
tensor([[[-1.0491, -0.7152, -0.0749, 0.8530],
|
||
|
[-1.3287, 1.8966, 0.1466, -0.2771]]])
|
||
|
>>> m(input)
|
||
|
tensor([[[ 0.0000, 0.0000, -1.0491, -0.7152, -0.0749, 0.8530, 0.0000,
|
||
|
0.0000],
|
||
|
[ 0.0000, 0.0000, -1.3287, 1.8966, 0.1466, -0.2771, 0.0000,
|
||
|
0.0000]]])
|
||
|
>>> m = nn.ZeroPad1d(2)
|
||
|
>>> input = torch.randn(1, 2, 3)
|
||
|
>>> input
|
||
|
tensor([[[ 1.6616, 1.4523, -1.1255],
|
||
|
[-3.6372, 0.1182, -1.8652]]])
|
||
|
>>> m(input)
|
||
|
tensor([[[ 0.0000, 0.0000, 1.6616, 1.4523, -1.1255, 0.0000, 0.0000],
|
||
|
[ 0.0000, 0.0000, -3.6372, 0.1182, -1.8652, 0.0000, 0.0000]]])
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.ZeroPad1d((3, 1))
|
||
|
>>> m(input)
|
||
|
tensor([[[ 0.0000, 0.0000, 0.0000, 1.6616, 1.4523, -1.1255, 0.0000],
|
||
|
[ 0.0000, 0.0000, 0.0000, -3.6372, 0.1182, -1.8652, 0.0000]]])
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_2_t) -> None:
|
||
|
super().__init__(padding, 0.)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'{self.padding}'
|
||
|
|
||
|
class ZeroPad2d(ConstantPad2d):
|
||
|
r"""Pads the input tensor boundaries with zero.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in all boundaries. If a 4-`tuple`, uses (:math:`\text{padding\_left}`,
|
||
|
:math:`\text{padding\_right}`, :math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, H_{in}, W_{in})` or :math:`(C, H_{in}, W_{in})`.
|
||
|
- Output: :math:`(N, C, H_{out}, W_{out})` or :math:`(C, H_{out}, W_{out})`, where
|
||
|
|
||
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> # xdoctest: +IGNORE_WANT("non-deterministic")
|
||
|
>>> m = nn.ZeroPad2d(2)
|
||
|
>>> input = torch.randn(1, 1, 3, 3)
|
||
|
>>> input
|
||
|
tensor([[[[-0.1678, -0.4418, 1.9466],
|
||
|
[ 0.9604, -0.4219, -0.5241],
|
||
|
[-0.9162, -0.5436, -0.6446]]]])
|
||
|
>>> m(input)
|
||
|
tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
||
|
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
||
|
[ 0.0000, 0.0000, -0.1678, -0.4418, 1.9466, 0.0000, 0.0000],
|
||
|
[ 0.0000, 0.0000, 0.9604, -0.4219, -0.5241, 0.0000, 0.0000],
|
||
|
[ 0.0000, 0.0000, -0.9162, -0.5436, -0.6446, 0.0000, 0.0000],
|
||
|
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
||
|
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000, 0.0000]]]])
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.ZeroPad2d((1, 1, 2, 0))
|
||
|
>>> m(input)
|
||
|
tensor([[[[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
||
|
[ 0.0000, 0.0000, 0.0000, 0.0000, 0.0000],
|
||
|
[ 0.0000, -0.1678, -0.4418, 1.9466, 0.0000],
|
||
|
[ 0.0000, 0.9604, -0.4219, -0.5241, 0.0000],
|
||
|
[ 0.0000, -0.9162, -0.5436, -0.6446, 0.0000]]]])
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int, int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_4_t) -> None:
|
||
|
super().__init__(padding, 0.)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'{self.padding}'
|
||
|
|
||
|
class ZeroPad3d(ConstantPad3d):
|
||
|
r"""Pads the input tensor boundaries with zero.
|
||
|
|
||
|
For `N`-dimensional padding, use :func:`torch.nn.functional.pad()`.
|
||
|
|
||
|
Args:
|
||
|
padding (int, tuple): the size of the padding. If is `int`, uses the same
|
||
|
padding in all boundaries. If a 6-`tuple`, uses
|
||
|
(:math:`\text{padding\_left}`, :math:`\text{padding\_right}`,
|
||
|
:math:`\text{padding\_top}`, :math:`\text{padding\_bottom}`,
|
||
|
:math:`\text{padding\_front}`, :math:`\text{padding\_back}`)
|
||
|
|
||
|
Shape:
|
||
|
- Input: :math:`(N, C, D_{in}, H_{in}, W_{in})` or :math:`(C, D_{in}, H_{in}, W_{in})`.
|
||
|
- Output: :math:`(N, C, D_{out}, H_{out}, W_{out})` or
|
||
|
:math:`(C, D_{out}, H_{out}, W_{out})`, where
|
||
|
|
||
|
:math:`D_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}`
|
||
|
|
||
|
:math:`H_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}`
|
||
|
|
||
|
:math:`W_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}`
|
||
|
|
||
|
Examples::
|
||
|
|
||
|
>>> m = nn.ZeroPad3d(3)
|
||
|
>>> input = torch.randn(16, 3, 10, 20, 30)
|
||
|
>>> output = m(input)
|
||
|
>>> # using different paddings for different sides
|
||
|
>>> m = nn.ZeroPad3d((3, 3, 6, 6, 0, 1))
|
||
|
>>> output = m(input)
|
||
|
"""
|
||
|
|
||
|
padding: Tuple[int, int, int, int, int, int]
|
||
|
|
||
|
def __init__(self, padding: _size_6_t) -> None:
|
||
|
super().__init__(padding, 0.)
|
||
|
|
||
|
def extra_repr(self) -> str:
|
||
|
return f'{self.padding}'
|