You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

129 lines
3.9 KiB

5 months ago
import contextlib
import functools
from typing import Any, Callable, Dict, Iterator, List, Optional, Tuple, TypeVar, Union
import torchgen.local as local
from torchgen.model import (
BackendIndex,
DispatchKey,
NativeFunction,
NativeFunctionsGroup,
NativeFunctionsViewGroup,
)
from torchgen.utils import context, S, T
# Helper functions for defining generators on things in the model
F = TypeVar(
"F",
NativeFunction,
NativeFunctionsGroup,
NativeFunctionsViewGroup,
Union[NativeFunction, NativeFunctionsGroup],
Union[NativeFunction, NativeFunctionsViewGroup],
)
F2 = TypeVar(
"F2",
NativeFunction,
NativeFunctionsGroup,
Optional[NativeFunction],
bool,
str,
)
F3 = TypeVar("F3", Tuple[NativeFunction, Any], List[NativeFunction])
@contextlib.contextmanager
def native_function_manager(
g: Union[NativeFunctionsGroup, NativeFunctionsViewGroup, NativeFunction]
) -> Iterator[None]:
if isinstance(g, NativeFunctionsGroup):
# By default, we associate all errors with structured native functions
# with the out variant. In some cases, it might be better to have
# a more specific place to hang things; if so, use
# native_function_manager again on the inside
f = g.out
elif isinstance(g, NativeFunctionsViewGroup):
# We associate errors with the view operator
f = g.view
else:
f = g
with context(lambda: f"in native_functions.yaml line {f.loc}:\n {f.func}"):
with local.parametrize(
use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors,
use_ilistref_for_tensor_lists=f.part_of_structured_group,
):
yield
# Given a function that operates on NativeFunction, wrap it into a new function
# that sets some appropriate context managers for that native function.
# YOU MUST WRAP FUNCTIONS IN THIS for calls to api modules to be sound
# (you will get an error if we try to access the local variables without having
# set them).
def with_native_function(func: Callable[[F], T]) -> Callable[[F], T]:
@functools.wraps(func)
def wrapper(f: F) -> T:
with native_function_manager(f):
return func(f)
return wrapper
def with_native_function_and(func: Callable[[F, F2], T]) -> Callable[[F, F2], T]:
@functools.wraps(func)
def wrapper(f: F, f2: F2) -> T:
# The first native_function is assumed to be the one with the appropriate context.
with native_function_manager(f):
return func(f, f2)
return wrapper
def method_with_native_function(func: Callable[[S, F], T]) -> Callable[[S, F], T]:
@functools.wraps(func)
def wrapper(slf: S, f: F) -> T:
with native_function_manager(f):
return func(slf, f)
return wrapper
def method_with_nested_native_function(
func: Callable[[S, F3], T]
) -> Callable[[S, F3], T]:
@functools.wraps(func)
def wrapper(slf: S, f: F3) -> T:
with native_function_manager(f[0]):
return func(slf, f)
return wrapper
# Convenience decorator for functions that explicitly take in a BackendIndex,
# instead of indirectly taking one in as a closure
def with_native_function_and_index(
func: Callable[[F, BackendIndex], T]
) -> Callable[[F, BackendIndex], T]:
@functools.wraps(func)
def wrapper(f: F, backend_index: BackendIndex) -> T:
with native_function_manager(f):
return func(f, backend_index)
return wrapper
# Convenience decorator for functions that explicitly take in a Dict of BackendIndices
def with_native_function_and_indices(
func: Callable[[F, Dict[DispatchKey, BackendIndex]], T]
) -> Callable[[F, Dict[DispatchKey, BackendIndex]], T]:
@functools.wraps(func)
def wrapper(f: F, backend_indices: Dict[DispatchKey, BackendIndex]) -> T:
with native_function_manager(f):
return func(f, backend_indices)
return wrapper