You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

65 lines
2.3 KiB

5 months ago
from typing import List, Optional, Union
import torchgen.api.meta as meta
import torchgen.api.structured as structured
from torchgen.api.types import kernel_signature
from torchgen.context import with_native_function_and_index
from torchgen.model import BackendIndex, NativeFunction, NativeFunctionsGroup
from torchgen.utils import mapMaybe
@with_native_function_and_index
def gen_unstructured(f: NativeFunction, backend_index: BackendIndex) -> Optional[str]:
sig = kernel_signature(f, backend_index)
metadata = backend_index.get_kernel(f)
if metadata is None:
return None
if "legacy::" in metadata.kernel:
return None
else:
prefix = "static" if backend_index.external else "TORCH_API"
return f"{prefix} {sig.decl(name=metadata.kernel)};"
@with_native_function_and_index
def gen_structured(g: NativeFunctionsGroup, backend_index: BackendIndex) -> List[str]:
meta_name = meta.name(g)
out_args = structured.impl_arguments(g)
metadata = backend_index.get_kernel(g)
if metadata is None:
return []
prefix = "" if backend_index.external else "TORCH_API "
return [
f"""\
struct {prefix}structured_{metadata.kernel} : public at::meta::structured_{meta_name} {{
void impl({', '.join(a.decl() for a in out_args)});
}};
"""
]
# Generates NativeFunctions.h, a list of forward declarations of all
# actual kernel definitions we keep in aten/src/ATen/native/
@with_native_function_and_index
def compute_native_function_declaration(
g: Union[NativeFunctionsGroup, NativeFunction], backend_index: BackendIndex
) -> List[str]:
metadata = backend_index.get_kernel(g)
if isinstance(g, NativeFunctionsGroup):
if metadata is not None and metadata.structured:
if backend_index.external:
# Structured hasn't been tested with external backends yet.
raise AssertionError(
"Structured external backend functions are not implemented yet."
)
else:
return gen_structured(g, backend_index)
else:
return list(
mapMaybe(lambda f: gen_unstructured(f, backend_index), g.functions())
)
else:
x = gen_unstructured(g, backend_index)
return [] if x is None else [x]