You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
504 lines
16 KiB
504 lines
16 KiB
5 months ago
|
from functools import partial
|
||
|
from typing import Any, Callable, List, Optional, Sequence, Tuple, Type, Union
|
||
|
|
||
|
import torch.nn as nn
|
||
|
from torch import Tensor
|
||
|
|
||
|
from ...transforms._presets import VideoClassification
|
||
|
from ...utils import _log_api_usage_once
|
||
|
from .._api import register_model, Weights, WeightsEnum
|
||
|
from .._meta import _KINETICS400_CATEGORIES
|
||
|
from .._utils import _ovewrite_named_param, handle_legacy_interface
|
||
|
|
||
|
|
||
|
__all__ = [
|
||
|
"VideoResNet",
|
||
|
"R3D_18_Weights",
|
||
|
"MC3_18_Weights",
|
||
|
"R2Plus1D_18_Weights",
|
||
|
"r3d_18",
|
||
|
"mc3_18",
|
||
|
"r2plus1d_18",
|
||
|
]
|
||
|
|
||
|
|
||
|
class Conv3DSimple(nn.Conv3d):
|
||
|
def __init__(
|
||
|
self, in_planes: int, out_planes: int, midplanes: Optional[int] = None, stride: int = 1, padding: int = 1
|
||
|
) -> None:
|
||
|
|
||
|
super().__init__(
|
||
|
in_channels=in_planes,
|
||
|
out_channels=out_planes,
|
||
|
kernel_size=(3, 3, 3),
|
||
|
stride=stride,
|
||
|
padding=padding,
|
||
|
bias=False,
|
||
|
)
|
||
|
|
||
|
@staticmethod
|
||
|
def get_downsample_stride(stride: int) -> Tuple[int, int, int]:
|
||
|
return stride, stride, stride
|
||
|
|
||
|
|
||
|
class Conv2Plus1D(nn.Sequential):
|
||
|
def __init__(self, in_planes: int, out_planes: int, midplanes: int, stride: int = 1, padding: int = 1) -> None:
|
||
|
super().__init__(
|
||
|
nn.Conv3d(
|
||
|
in_planes,
|
||
|
midplanes,
|
||
|
kernel_size=(1, 3, 3),
|
||
|
stride=(1, stride, stride),
|
||
|
padding=(0, padding, padding),
|
||
|
bias=False,
|
||
|
),
|
||
|
nn.BatchNorm3d(midplanes),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Conv3d(
|
||
|
midplanes, out_planes, kernel_size=(3, 1, 1), stride=(stride, 1, 1), padding=(padding, 0, 0), bias=False
|
||
|
),
|
||
|
)
|
||
|
|
||
|
@staticmethod
|
||
|
def get_downsample_stride(stride: int) -> Tuple[int, int, int]:
|
||
|
return stride, stride, stride
|
||
|
|
||
|
|
||
|
class Conv3DNoTemporal(nn.Conv3d):
|
||
|
def __init__(
|
||
|
self, in_planes: int, out_planes: int, midplanes: Optional[int] = None, stride: int = 1, padding: int = 1
|
||
|
) -> None:
|
||
|
|
||
|
super().__init__(
|
||
|
in_channels=in_planes,
|
||
|
out_channels=out_planes,
|
||
|
kernel_size=(1, 3, 3),
|
||
|
stride=(1, stride, stride),
|
||
|
padding=(0, padding, padding),
|
||
|
bias=False,
|
||
|
)
|
||
|
|
||
|
@staticmethod
|
||
|
def get_downsample_stride(stride: int) -> Tuple[int, int, int]:
|
||
|
return 1, stride, stride
|
||
|
|
||
|
|
||
|
class BasicBlock(nn.Module):
|
||
|
|
||
|
expansion = 1
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
inplanes: int,
|
||
|
planes: int,
|
||
|
conv_builder: Callable[..., nn.Module],
|
||
|
stride: int = 1,
|
||
|
downsample: Optional[nn.Module] = None,
|
||
|
) -> None:
|
||
|
midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes)
|
||
|
|
||
|
super().__init__()
|
||
|
self.conv1 = nn.Sequential(
|
||
|
conv_builder(inplanes, planes, midplanes, stride), nn.BatchNorm3d(planes), nn.ReLU(inplace=True)
|
||
|
)
|
||
|
self.conv2 = nn.Sequential(conv_builder(planes, planes, midplanes), nn.BatchNorm3d(planes))
|
||
|
self.relu = nn.ReLU(inplace=True)
|
||
|
self.downsample = downsample
|
||
|
self.stride = stride
|
||
|
|
||
|
def forward(self, x: Tensor) -> Tensor:
|
||
|
residual = x
|
||
|
|
||
|
out = self.conv1(x)
|
||
|
out = self.conv2(out)
|
||
|
if self.downsample is not None:
|
||
|
residual = self.downsample(x)
|
||
|
|
||
|
out += residual
|
||
|
out = self.relu(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class Bottleneck(nn.Module):
|
||
|
expansion = 4
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
inplanes: int,
|
||
|
planes: int,
|
||
|
conv_builder: Callable[..., nn.Module],
|
||
|
stride: int = 1,
|
||
|
downsample: Optional[nn.Module] = None,
|
||
|
) -> None:
|
||
|
|
||
|
super().__init__()
|
||
|
midplanes = (inplanes * planes * 3 * 3 * 3) // (inplanes * 3 * 3 + 3 * planes)
|
||
|
|
||
|
# 1x1x1
|
||
|
self.conv1 = nn.Sequential(
|
||
|
nn.Conv3d(inplanes, planes, kernel_size=1, bias=False), nn.BatchNorm3d(planes), nn.ReLU(inplace=True)
|
||
|
)
|
||
|
# Second kernel
|
||
|
self.conv2 = nn.Sequential(
|
||
|
conv_builder(planes, planes, midplanes, stride), nn.BatchNorm3d(planes), nn.ReLU(inplace=True)
|
||
|
)
|
||
|
|
||
|
# 1x1x1
|
||
|
self.conv3 = nn.Sequential(
|
||
|
nn.Conv3d(planes, planes * self.expansion, kernel_size=1, bias=False),
|
||
|
nn.BatchNorm3d(planes * self.expansion),
|
||
|
)
|
||
|
self.relu = nn.ReLU(inplace=True)
|
||
|
self.downsample = downsample
|
||
|
self.stride = stride
|
||
|
|
||
|
def forward(self, x: Tensor) -> Tensor:
|
||
|
residual = x
|
||
|
|
||
|
out = self.conv1(x)
|
||
|
out = self.conv2(out)
|
||
|
out = self.conv3(out)
|
||
|
|
||
|
if self.downsample is not None:
|
||
|
residual = self.downsample(x)
|
||
|
|
||
|
out += residual
|
||
|
out = self.relu(out)
|
||
|
|
||
|
return out
|
||
|
|
||
|
|
||
|
class BasicStem(nn.Sequential):
|
||
|
"""The default conv-batchnorm-relu stem"""
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
super().__init__(
|
||
|
nn.Conv3d(3, 64, kernel_size=(3, 7, 7), stride=(1, 2, 2), padding=(1, 3, 3), bias=False),
|
||
|
nn.BatchNorm3d(64),
|
||
|
nn.ReLU(inplace=True),
|
||
|
)
|
||
|
|
||
|
|
||
|
class R2Plus1dStem(nn.Sequential):
|
||
|
"""R(2+1)D stem is different than the default one as it uses separated 3D convolution"""
|
||
|
|
||
|
def __init__(self) -> None:
|
||
|
super().__init__(
|
||
|
nn.Conv3d(3, 45, kernel_size=(1, 7, 7), stride=(1, 2, 2), padding=(0, 3, 3), bias=False),
|
||
|
nn.BatchNorm3d(45),
|
||
|
nn.ReLU(inplace=True),
|
||
|
nn.Conv3d(45, 64, kernel_size=(3, 1, 1), stride=(1, 1, 1), padding=(1, 0, 0), bias=False),
|
||
|
nn.BatchNorm3d(64),
|
||
|
nn.ReLU(inplace=True),
|
||
|
)
|
||
|
|
||
|
|
||
|
class VideoResNet(nn.Module):
|
||
|
def __init__(
|
||
|
self,
|
||
|
block: Type[Union[BasicBlock, Bottleneck]],
|
||
|
conv_makers: Sequence[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]],
|
||
|
layers: List[int],
|
||
|
stem: Callable[..., nn.Module],
|
||
|
num_classes: int = 400,
|
||
|
zero_init_residual: bool = False,
|
||
|
) -> None:
|
||
|
"""Generic resnet video generator.
|
||
|
|
||
|
Args:
|
||
|
block (Type[Union[BasicBlock, Bottleneck]]): resnet building block
|
||
|
conv_makers (List[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]]): generator
|
||
|
function for each layer
|
||
|
layers (List[int]): number of blocks per layer
|
||
|
stem (Callable[..., nn.Module]): module specifying the ResNet stem.
|
||
|
num_classes (int, optional): Dimension of the final FC layer. Defaults to 400.
|
||
|
zero_init_residual (bool, optional): Zero init bottleneck residual BN. Defaults to False.
|
||
|
"""
|
||
|
super().__init__()
|
||
|
_log_api_usage_once(self)
|
||
|
self.inplanes = 64
|
||
|
|
||
|
self.stem = stem()
|
||
|
|
||
|
self.layer1 = self._make_layer(block, conv_makers[0], 64, layers[0], stride=1)
|
||
|
self.layer2 = self._make_layer(block, conv_makers[1], 128, layers[1], stride=2)
|
||
|
self.layer3 = self._make_layer(block, conv_makers[2], 256, layers[2], stride=2)
|
||
|
self.layer4 = self._make_layer(block, conv_makers[3], 512, layers[3], stride=2)
|
||
|
|
||
|
self.avgpool = nn.AdaptiveAvgPool3d((1, 1, 1))
|
||
|
self.fc = nn.Linear(512 * block.expansion, num_classes)
|
||
|
|
||
|
# init weights
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, nn.Conv3d):
|
||
|
nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
|
||
|
if m.bias is not None:
|
||
|
nn.init.constant_(m.bias, 0)
|
||
|
elif isinstance(m, nn.BatchNorm3d):
|
||
|
nn.init.constant_(m.weight, 1)
|
||
|
nn.init.constant_(m.bias, 0)
|
||
|
elif isinstance(m, nn.Linear):
|
||
|
nn.init.normal_(m.weight, 0, 0.01)
|
||
|
nn.init.constant_(m.bias, 0)
|
||
|
|
||
|
if zero_init_residual:
|
||
|
for m in self.modules():
|
||
|
if isinstance(m, Bottleneck):
|
||
|
nn.init.constant_(m.bn3.weight, 0) # type: ignore[union-attr, arg-type]
|
||
|
|
||
|
def forward(self, x: Tensor) -> Tensor:
|
||
|
x = self.stem(x)
|
||
|
|
||
|
x = self.layer1(x)
|
||
|
x = self.layer2(x)
|
||
|
x = self.layer3(x)
|
||
|
x = self.layer4(x)
|
||
|
|
||
|
x = self.avgpool(x)
|
||
|
# Flatten the layer to fc
|
||
|
x = x.flatten(1)
|
||
|
x = self.fc(x)
|
||
|
|
||
|
return x
|
||
|
|
||
|
def _make_layer(
|
||
|
self,
|
||
|
block: Type[Union[BasicBlock, Bottleneck]],
|
||
|
conv_builder: Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]],
|
||
|
planes: int,
|
||
|
blocks: int,
|
||
|
stride: int = 1,
|
||
|
) -> nn.Sequential:
|
||
|
downsample = None
|
||
|
|
||
|
if stride != 1 or self.inplanes != planes * block.expansion:
|
||
|
ds_stride = conv_builder.get_downsample_stride(stride)
|
||
|
downsample = nn.Sequential(
|
||
|
nn.Conv3d(self.inplanes, planes * block.expansion, kernel_size=1, stride=ds_stride, bias=False),
|
||
|
nn.BatchNorm3d(planes * block.expansion),
|
||
|
)
|
||
|
layers = []
|
||
|
layers.append(block(self.inplanes, planes, conv_builder, stride, downsample))
|
||
|
|
||
|
self.inplanes = planes * block.expansion
|
||
|
for i in range(1, blocks):
|
||
|
layers.append(block(self.inplanes, planes, conv_builder))
|
||
|
|
||
|
return nn.Sequential(*layers)
|
||
|
|
||
|
|
||
|
def _video_resnet(
|
||
|
block: Type[Union[BasicBlock, Bottleneck]],
|
||
|
conv_makers: Sequence[Type[Union[Conv3DSimple, Conv3DNoTemporal, Conv2Plus1D]]],
|
||
|
layers: List[int],
|
||
|
stem: Callable[..., nn.Module],
|
||
|
weights: Optional[WeightsEnum],
|
||
|
progress: bool,
|
||
|
**kwargs: Any,
|
||
|
) -> VideoResNet:
|
||
|
if weights is not None:
|
||
|
_ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))
|
||
|
|
||
|
model = VideoResNet(block, conv_makers, layers, stem, **kwargs)
|
||
|
|
||
|
if weights is not None:
|
||
|
model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
|
||
|
|
||
|
return model
|
||
|
|
||
|
|
||
|
_COMMON_META = {
|
||
|
"min_size": (1, 1),
|
||
|
"categories": _KINETICS400_CATEGORIES,
|
||
|
"recipe": "https://github.com/pytorch/vision/tree/main/references/video_classification",
|
||
|
"_docs": (
|
||
|
"The weights reproduce closely the accuracy of the paper. The accuracies are estimated on video-level "
|
||
|
"with parameters `frame_rate=15`, `clips_per_video=5`, and `clip_len=16`."
|
||
|
),
|
||
|
}
|
||
|
|
||
|
|
||
|
class R3D_18_Weights(WeightsEnum):
|
||
|
KINETICS400_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/r3d_18-b3b3357e.pth",
|
||
|
transforms=partial(VideoClassification, crop_size=(112, 112), resize_size=(128, 171)),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 33371472,
|
||
|
"_metrics": {
|
||
|
"Kinetics-400": {
|
||
|
"acc@1": 63.200,
|
||
|
"acc@5": 83.479,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 40.697,
|
||
|
"_file_size": 127.359,
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = KINETICS400_V1
|
||
|
|
||
|
|
||
|
class MC3_18_Weights(WeightsEnum):
|
||
|
KINETICS400_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/mc3_18-a90a0ba3.pth",
|
||
|
transforms=partial(VideoClassification, crop_size=(112, 112), resize_size=(128, 171)),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 11695440,
|
||
|
"_metrics": {
|
||
|
"Kinetics-400": {
|
||
|
"acc@1": 63.960,
|
||
|
"acc@5": 84.130,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 43.343,
|
||
|
"_file_size": 44.672,
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = KINETICS400_V1
|
||
|
|
||
|
|
||
|
class R2Plus1D_18_Weights(WeightsEnum):
|
||
|
KINETICS400_V1 = Weights(
|
||
|
url="https://download.pytorch.org/models/r2plus1d_18-91a641e6.pth",
|
||
|
transforms=partial(VideoClassification, crop_size=(112, 112), resize_size=(128, 171)),
|
||
|
meta={
|
||
|
**_COMMON_META,
|
||
|
"num_params": 31505325,
|
||
|
"_metrics": {
|
||
|
"Kinetics-400": {
|
||
|
"acc@1": 67.463,
|
||
|
"acc@5": 86.175,
|
||
|
}
|
||
|
},
|
||
|
"_ops": 40.519,
|
||
|
"_file_size": 120.318,
|
||
|
},
|
||
|
)
|
||
|
DEFAULT = KINETICS400_V1
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", R3D_18_Weights.KINETICS400_V1))
|
||
|
def r3d_18(*, weights: Optional[R3D_18_Weights] = None, progress: bool = True, **kwargs: Any) -> VideoResNet:
|
||
|
"""Construct 18 layer Resnet3D model.
|
||
|
|
||
|
.. betastatus:: video module
|
||
|
|
||
|
Reference: `A Closer Look at Spatiotemporal Convolutions for Action Recognition <https://arxiv.org/abs/1711.11248>`__.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.video.R3D_18_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.video.R3D_18_Weights`
|
||
|
below for more details, and possible values. By default, no
|
||
|
pre-trained weights are used.
|
||
|
progress (bool): If True, displays a progress bar of the download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.video.resnet.VideoResNet`` base class.
|
||
|
Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/video/resnet.py>`_
|
||
|
for more details about this class.
|
||
|
|
||
|
.. autoclass:: torchvision.models.video.R3D_18_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = R3D_18_Weights.verify(weights)
|
||
|
|
||
|
return _video_resnet(
|
||
|
BasicBlock,
|
||
|
[Conv3DSimple] * 4,
|
||
|
[2, 2, 2, 2],
|
||
|
BasicStem,
|
||
|
weights,
|
||
|
progress,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", MC3_18_Weights.KINETICS400_V1))
|
||
|
def mc3_18(*, weights: Optional[MC3_18_Weights] = None, progress: bool = True, **kwargs: Any) -> VideoResNet:
|
||
|
"""Construct 18 layer Mixed Convolution network as in
|
||
|
|
||
|
.. betastatus:: video module
|
||
|
|
||
|
Reference: `A Closer Look at Spatiotemporal Convolutions for Action Recognition <https://arxiv.org/abs/1711.11248>`__.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.video.MC3_18_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.video.MC3_18_Weights`
|
||
|
below for more details, and possible values. By default, no
|
||
|
pre-trained weights are used.
|
||
|
progress (bool): If True, displays a progress bar of the download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.video.resnet.VideoResNet`` base class.
|
||
|
Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/video/resnet.py>`_
|
||
|
for more details about this class.
|
||
|
|
||
|
.. autoclass:: torchvision.models.video.MC3_18_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = MC3_18_Weights.verify(weights)
|
||
|
|
||
|
return _video_resnet(
|
||
|
BasicBlock,
|
||
|
[Conv3DSimple] + [Conv3DNoTemporal] * 3, # type: ignore[list-item]
|
||
|
[2, 2, 2, 2],
|
||
|
BasicStem,
|
||
|
weights,
|
||
|
progress,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
@register_model()
|
||
|
@handle_legacy_interface(weights=("pretrained", R2Plus1D_18_Weights.KINETICS400_V1))
|
||
|
def r2plus1d_18(*, weights: Optional[R2Plus1D_18_Weights] = None, progress: bool = True, **kwargs: Any) -> VideoResNet:
|
||
|
"""Construct 18 layer deep R(2+1)D network as in
|
||
|
|
||
|
.. betastatus:: video module
|
||
|
|
||
|
Reference: `A Closer Look at Spatiotemporal Convolutions for Action Recognition <https://arxiv.org/abs/1711.11248>`__.
|
||
|
|
||
|
Args:
|
||
|
weights (:class:`~torchvision.models.video.R2Plus1D_18_Weights`, optional): The
|
||
|
pretrained weights to use. See
|
||
|
:class:`~torchvision.models.video.R2Plus1D_18_Weights`
|
||
|
below for more details, and possible values. By default, no
|
||
|
pre-trained weights are used.
|
||
|
progress (bool): If True, displays a progress bar of the download to stderr. Default is True.
|
||
|
**kwargs: parameters passed to the ``torchvision.models.video.resnet.VideoResNet`` base class.
|
||
|
Please refer to the `source code
|
||
|
<https://github.com/pytorch/vision/blob/main/torchvision/models/video/resnet.py>`_
|
||
|
for more details about this class.
|
||
|
|
||
|
.. autoclass:: torchvision.models.video.R2Plus1D_18_Weights
|
||
|
:members:
|
||
|
"""
|
||
|
weights = R2Plus1D_18_Weights.verify(weights)
|
||
|
|
||
|
return _video_resnet(
|
||
|
BasicBlock,
|
||
|
[Conv2Plus1D] * 4,
|
||
|
[2, 2, 2, 2],
|
||
|
R2Plus1dStem,
|
||
|
weights,
|
||
|
progress,
|
||
|
**kwargs,
|
||
|
)
|
||
|
|
||
|
|
||
|
# The dictionary below is internal implementation detail and will be removed in v0.15
|
||
|
from .._utils import _ModelURLs
|
||
|
|
||
|
|
||
|
model_urls = _ModelURLs(
|
||
|
{
|
||
|
"r3d_18": R3D_18_Weights.KINETICS400_V1.url,
|
||
|
"mc3_18": MC3_18_Weights.KINETICS400_V1.url,
|
||
|
"r2plus1d_18": R2Plus1D_18_Weights.KINETICS400_V1.url,
|
||
|
}
|
||
|
)
|